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Abstract: In this paper, we used Landsat imagery for water body identification to create a novel
36-year surface area extent time series for lakes Azuei (Haiti) and Enriquillo (Dominican Republic)
aimed at illuminating the dramatic temporal changes of these two lakes not just at yearly but at
monthly or even sub-monthly scales. We used the Normalized Difference Water Index (NDWI) to
extract water features and we also used spatial differentiation and thresholding techniques to remove
clouds and associated shadows from the scene that were then passed through gap filling algorithms
to complete and extract the lake extent polygons. We also explored the challenges that arrive from
trying to combine RS-based Digital Elevation Model data with locally collected bathymetric data
to yield a seamless representation of the topographic features of the rift valley that contains the
two lakes. This “bathtub” model was then meshed with the lake extent polygons to compute lake
volumes, maximum depths, and geospatially referenced lake levels rating curves. We used this data
to examine the lakes and their geospatial characteristics in the context of the lakes” growth/shrinking
patterns. While we did not carry out a full hydrologic analysis we attempted to illuminate how
specific lake levels cause what type of flooding and especially answered the questions if (a) Lake
Azuei would ever spill into Lake Enriquillo, and (b) what the maximum lake levels need to be before
spilling into neighboring watersheds.

Keywords: remote sensing; lake; water dynamics; NDWI; cloud detection; shadow removal; gap
filling; bathymetry; rating curve

1. Introduction

Remote sensing has opened the door for large-scale geospatial analyses of both geographic features
and land/ocean surfaces. While there are numerous satellites orbiting the globe that have a multitude
of instruments on-board that explore various bandwidths in the electro-magnetic spectrum, Landsat
based images are ideally suited for surface feature analyses because of its high spatial resolution
imagery. Hence, these images, in this study collected from Landsat satellites 4, 5, and 7 (the first,
Landsat 1, was launched in 1972 while the latest, Landsat 8, in 2013) provide a “view” of the earth
surface from 1984 to the present. Landsat images were and continue to be taken twice a month around
16 days apart thus providing us with an imagery pool of about 300 images between 1984 and 2014
(theoretically it could be about 480 but not all years have 2 images/month schedule). Note, that not all
the images could be used since many of them contain clouds, cloud shadows, topographic shadows,
and missing imagery data due to the failure of the ETM+ scan line corrector (SLC) on Landsat 7.
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Despite these constraints, the temporal resolution adds to the suitability of using the scenes to track
lake surface extents namely because the processes that drive lake surface area growth or decline are
slow enough to be captured well with a 16-day repeat frequency. In this paper we outline a procedure
to use this pool of about 300 images to create a Lake Surface Area time series of two lakes on the Island
of Hispaniola in addition to some applications that are based on the generation of these time series.

The island of Hispaniola is home to two of the largest lakes in the Caribbean; Lake Azuei (or Etang
Saumatre) on the Haitian side and Lake Enriquillo on the Dominican side both of which are located
in the Hispaniolian rift valley and are just separated by a 2-3 mile wide peninsula along the border
between these two countries; Figure 1. The lakes are endorheic in nature, i.e., they have no outlet to the
sea, are fed by their surrounding watersheds, and feature no man-made withdrawal/discharge controls.
Both lakes have experienced a dramatic growth over the past roughly 10 years to unprecedented levels
that have caused vast flooding in the western and eastern regions of each lake, inundating farmland,
threatening small towns (e.g., Boca de Cachon in the DR), and disrupting a key trade transit road
connecting the two countries along the border town of Jimani (DR) [1-8].
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Figure 1. The island of Hispaniola with an insert showing our study area featuring the two lakes.

While the lakes have experienced some form of oscillatory growth and decline patterns over time
the dramatic growth trend starting in 2004 has been unprecedented. Not surprisingly, this phenomenon
has attracted considerable attention not only from the two governments who face the need to deal
with the adverse effects but also from the scientific community trying to (a) shed some light as to the
“why” and “how”, and (b) trying to predict what might happen in the future, especially in view of
changing climate patterns [9-18].

A key aspect in understanding the growth patterns has been to assess and identify the lake
area extent as well as the bathymetry (and thus depth) of the lakes, allowing volume changes to
be computed over time. To know these volume changes is essential when trying to compute the
water balance for the lakes and their surrounding watersheds and in turn is a fundamental step in
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understanding the lakes” behavior. However, reports on lake levels and area extents are not consistent
throughout the literature which actually focuses mostly on Lake Enriquillo with little to no information
available for Lake Azuei. In 2003, Schubert [19] reported that Lake Enriquillo surface area and volume
were 254 km? and 1.4 km? respectively for the year of 1983, and 222 km? and 0.76 km? in 1992. He also
stated that lake elevation was 43.3 m below Mean Sea Level (MSL) while lake volume was 0.76 km?3,
in 1999. Buck and Brenner [10] reported that in 2000 the Lake Enriquillo elevation was 46 m below
MSL with a surface area of approximately 200 km?. Wright et al. [13] on the other side reported a lake
elevation for Enriquillo of 49 m below MSL for the same year with additional estimates for, 1984 (49 m
below MSL), 1997 (51 m below MSL), 2004 (54 m below MSL). The Dominican Instituto Nacional de
Recursos Hidraulicos INDRHI) estimated that from the years of 2000 to 2012 Lake Enriquillo had
risen by up to 6 m and grown to 320 km? [12]. Based on the data INDRHI presented, Logan et al. [12]
calculated that Lake Enriquillo must have expanded by 1.5 km? from 2000 to 2012 and also estimated
that in 2012 between the months of July to September 0.16 km? of water had been added to the lake
resulting in a 0.5 m rise. Another report published by Mendez-Tejeda et al. [11] suggest that between
the years of 1982 to 2000, the surface area of Lake Enriquillo had been reported to fluctuate between
195 km? and 332 km? while Lake Azuei ranged between 113 km? to 118 km?. Based on a NASA report,
Pichardo et al. [18] suggested that the surface area of Lake Enriquillo changed from 205.35 km? in
2000 to 311.58 km? in 2009. Sources for Lake Azuei are much less numerous making a comparison
literally impossible.

Although the lakes’ surface area, volume, and elevation values are reported in the literature,
the comparison is quite challenging. The challenges arise from the fact that the sampling rate of data
(mostly satellite imagery, Landsat) is infrequent sometimes only featuring a single image per year or
less in any of the time series published. In this regard, the time horizon also differs vastly with no
long-term historic record being available. Lastly, documentation of methods and procedures used
to analyze Landsat satellite imagery and the subsequent computation of lake extents and vertical
reference levels is often poorly if not at all documented. It is well known that both lakes fluctuate
throughout the year and are able to respond to short-term events such as Hurricanes and tropical
storms. The lack of accounting for and documenting lake behavior at sub-annual time scales is
pervasive in all the literature we examined thus missing out on documenting seasonal and sometimes
even monthly patterns.

We outline the algorithm we developed to process all available Landsat images; delineating water
bodies, removing clouds and their associated shadows, topographic shadows and data gaps from the
image and complete missing parts of the water body using reference images. We also present a set of
“rating” curves that are designed to provide the relationships between surface area extent and volume,
surface area extent and maximum depth and, as a result, maximum lake depth and volume. Lastly,
we are able to showcase a predictive tool which emerges from “stitching” together the bathymetry
data we collected [20] and the surrounding 30 m Digital Elevation Model data that form two (one for
each of the lakes) “bath-tub” models that we can fill and drain to show potential future levels and
associated inundation areas.

2. Materials and Methods

2.1. Study Area

The Hispaniola rift valley features two large lakes, Lake Azuei in Haiti and Lake Enriquillo in the
Dominican Republic. Lake Enriquillo is located in the lowest part of the valley Neiba, about 31.5 m
below sea level (EGM96), covering the area of about 347.3 km? (measured in March 2013), also being
the Caribbean’s largest lake and lowest point. Almost five kilometers apart from Lake Enriquillo to
the west with a level of 23 m above the sea level (EGM96), lies Lake Azuei with an area of 154.5 km?
(measured in July 2013) thus having about half the surface area of Lake Enriquillo. The associated
watershed areas are 713 km? for Lake Azuei and 3062 km? for Lake Enriquillo making the Enriquillo
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basin about four times as big as the Azuei watershed. Both lakes in the past have exhibited a constantly
changing water level that despite the close proximity to each other has not always been synchronous.
While the general trend development aligns, especially the dramatic growth over the past 10 years,
there are many instances where one lake grows while the other subsides and vice versa. As a result,
the lake level difference oscillates between 45 m and 60 m throughout the years.

Both lakes lie in close proximity to the Enriquillo-Plantain-Garden fault that runs underneath
the rift valley in east-westerly directions. The lakes are flanked to the north and south by high rise
mountains while the eastern and western ends are flat and follow the general direction of the rift valley.
The climate also varies from arid in the lowlands to very humid in the mountains especially at the
Montane Forrest belt [21]. All the rivers and streams around both lakes are of ephemeral nature and
each lake is approximately located in the center of their respective watersheds with no surface outlet
to the sea, i.e., they are endorheic basins. Basins of this type are known to be very sensitive to slight
changes in hydrological balance, which in turn, may cause significant changes in the water budget of
the lake [22]. Figure 2 shows the two lakes, their associated watersheds, and color coded lake surfaces
that contrast the extent in 2003 and 2014.
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Figure 2. Study Area (lakes” extent is obtained using Landsat images).

2.2. Landsat Imagery Acquisition and Preprocessing

Our image pool consists of 100 (LT1) Landsat 4-5 TM and 193 (LT1) Landsat 7-ETM+ scenes (WRS
2 path8/row47) acquired from the US Geographical Survey (USGS) Global Visualization Viewer for
the years of 1984 to 2014. We did not acquire Landsat 8 imagery (starting in 2013) because we did not
have access to the latest processing software version of ENVI that would have been needed to do so.
We also did not use the LEDAPS products because at the time of analyses these were only available for
Landsat 7 imagery. We wanted to be consistent across our image pool, hence the use of ENVI based
analyses on the raw images. The images were pre-georeferenced to UTM zone 19 North Projection
using the WGS-84 datum.

The analyses proved challenging because more than 60% of the images are fully or partially
obscured by clouds which made it difficult to extract the full extent of the lakes and consequently
calculate their surface area. Moreover, 85% of the images have data gaps (stripes pattern) due to the
failure of the ETM+ scan line corrector (SLC) on Landsat 7 starting in 2003 which adds another degree
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of complexity. Figure 3 shows some example scenes with clouds, data gaps and a combination of
both while Table 1 presents the specification of the Landsat Images.

Table 1. Study area Landsat Images specification.

Satellite Sensor Year Number  Resolution Number of Percentage of the Data
of Bands (m) Available Images Cloud-Free Scene  Gaps
Landsat-4 ™ 1988-1992 7 30 9 0% -
Landsat-5 ™ 1984-2011 7 30 91 45% -
Landsat-7 ETM 1999-2014 8 30 193 49% 85%
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Figure 3. Landsat scene samples contaminated with clouds and data gaps: (a) Clear Landsat Image of
the lakes (7 October 2002); (b) Landsat Image of the lakes with stripes/no data gaps (15 August 2006);
(c) Landsat Image of the lakes covered with clouds (22 February 2001); (d) Landsat Image of the lakes
with stripes and covered with clouds (2 December 2005).

Images recorded by satellite suffer from the influence of atmospheric scattering and absorption
effects caused by ozone, water vapor, distribution of aerosols, and particles in the air [23]. These effects
alter the visibility and characteristics of the images in ways so they differ from each other although
they were taken from the same scene though at different date and time. In order to eliminate these
incompatibilities and “clean” the images for analyses, an atmospheric correction has to be applied to
the images so they are on the same radiometric scale. Atmospheric correction includes transforming
the digital value of at-sensor radiance (DN) into the physical value of surface reflectance. Although
the USGS website has provided atmospherically corrected images for Landsat ETM-7, we decided to
use raw images and calibrate all Landsat ETM-7, TM-5 and TM-4 images using ENVI 4.8 software to
ensure consistency for all the images used.

We used the Dark Object Subtraction (DOS) method as improved by [24] which is embedded in
ENVI to convert at-sensor radiance (digital numbers (DN) of pixels’ radiance in Landsat images) into
at-sensor reflectance and from that to surface reflectance using sun position and solar azimuth angle
information as well as date and time of the image taken available in the image meta-data. All 292 TM
and ETM images acquired for the scene were processed using the same technique and subsequently
calibrated for the lakes’ shoreline extraction.
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2.3. Water Body Extraction

The presence of shallow topographic features dominated by wetlands and agricultural areas poses
a challenge when trying to extract lake shorelines, e.g., the shadow of the mountains, wetlands, and also
the shadows cast by clouds present “darker” areas that can be mistaken by the analysis algorithm as
water surfaces. Thus we needed to introduce some degree of filtering that would eliminate anomalous
pixels from the scene/waterbody pixels. For example, “wetland” pixels only cause a problem when
trying to detect the lake shoreline on the east and west side of Lake Enriquillo (Shown in Figure 4)
and mountain shadow (hill shades) only exists on the south side of Lake Azuei where the lake is
surrounded by high mountains that would cast, at a specific time of the day, a shadow toward the lake
due to the sun position (shown in Figure 5). Therefore we decided to process the images separately for
each lake.

Figure 4. Lake Enriquillo Landsat Image taken on 26 December 1999; red circle shows where wet lands
are situated.

Figure 5. Lake Azuei Landsat Image taken on: (a) 31 July 1986 and; (b) 4 January 1989; red circles on
both images shows where hills are situated and how their shades may cause conflict in extracting Lake
Azuei outline, yellow circle shows how cloud shadows might distort the lake’s outline.

2.4. Cloud and Shadow Detection

One of the problems in using satellite images is the presence of clouds which often obscure
the scene, restricting analyses for the dates and the years for which less cloud-free images exist.
Unfortunately, only a relatively small percentage of the images are ideal in the sense that they permit
a clear and unobscured view of the lake leaving a very limited number of images to work with.
Since our goal was to use as many images as possible to get as detailed a time series as we could, we
had to find ways around the prevailing lack of “cleanness”. One aspect that helps is that since in this
study we are only interested in the extent of the lakes we can consider images of feature clouds that
have not blocked the lakes’ shoreline as a cloud-free scene. Refer to Table 1 which gives a summary of
the information regarding what is the percentage of available cloud-free scenes.
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Since Clouds are characterized by having a high solar reflectivity at visible wavelengths compared
to the reflectance of other surfaces [25], spatial differentiation and thresholding techniques can be
applied to distinguish clouds from other features [26]. Various automated detection methods have
been developed to detect and mask out clouds and cloud shadows [26-34]. Martinuzzi et al. [25]
developed a simple cloud and cloud shadow masking method for tropical landscapes. They applied
their method in Puerto Rico and suggested that the method can be used for Puerto Rico’s adjacent
islands landscape analyses as well. Since the island of Hispaniola has a similar climate to Puerto
Rico due its proximity, we decided to apply the same method Martinuzzi et al. had suggested for
distinguishing clouds. Band 1 which is an optical band and band 6.1 which represents a thermal band
were used in this method. In thermal bands, clouds appear in dark tones (cooler), whereas warmer
surfaces have brighter tones, consequently using a thermal band along with the optical band is suitable
to detect clouds [25,30,35].

Typically two types of shadows are present in the scene: cloud shadows and topographic shadows
(mountain shadows). These shadows are falsely classified as water when using water index methods
since they are characterized to be dark and cold [27,35]. Cloud shadows are distinguishable using both
geometrical and spectral techniques [28]. These techniques are based on combining spectral methods
with finding the geographic position of shadows based on the location and height of clouds and the
sun illumination angle [25,28,29,31,32]. Using spectral techniques, on the other hand, shadows can
be detected using Near Infrared band (NIR-TM Band 4), and Short Wave Infrared band (SWIR- TM
Band 5) [31,35]. In fact, using spectral methods is simpler and less time consuming than alternative
approaches and the results they produce have the accuracy of what we need in this study, thus we
decided to use these methods for masking out cloud shadows.

Mountain shadows, on the other hand, can be detected by their geographic position using
topographic maps [25,28]. A Digital Elevation Map (DEM) for Hispaniola is available in 30 m resolution
and can be downloaded from USGS’ Earth Explorer website. We used the DEM (data collected in 2000,
published in 2008) to find the location of those specific hills and detect the pixels associated with those
places from the images. Knowing the current lake level, we set up a threshold for elevation so if the
elevation of any pixel identified falsely as water body is bigger than the threshold, its value is going to
be substituted automatically to a synthetic value other than water body pixel value. Identifying clouds,
cloud shadows, and topographic shadows allow us to approximately find contaminated regions and
mask them out of the scene by giving them a value other than water and land surface.

2.4.1. Water Indices

Between general feature classification methods and spectral water index methods, the latter
has been identified to produce better results for extracting water bodies [36]. Spectral water index
methods are based on the difference of the spectral change trend of all the ground objects through a
visible band, usually green, and an Infrared band [37]. The spectral reflectance of lake water is usually
lowest in NIR (TM Band 4) and SWIR (TM Bands 5 and 7) bands in comparison with the other land
surfaces such as vegetation, build-up lands etc. [38,39]. Using this spectrum property, multi-band
methods or spectral water index methods are designed to increase the distance between waterbodies
and other ground surfaces [37]. The widely used indices for water body extractions are Normalized
Difference Water Index (NDWI) [40], Modified Normalized Difference Water Index (MNDWI) [38],
Normalized Difference Moisture Index (NDMI) [41], Water Ratio Index (WRI) [42], Normalized
Difference Vegetation Index (NDVI) [43], and Automated Water Extraction Index (AWEI) [44].

The NDWI proposed by McFeeters (1996) uses the green (TM band 2) and near-infrared
(TM band 4) to delineate open water features. In 2006, Xu replaced band 4 with band 5 in the NDWI
formula suggesting a new water index called MNDWI in order to modify the inability of NDWI in
discriminating built-up surfaces from water pixels [38]. NDMI, WRI, and NDVI indices which are
mainly used to detect other features were also suggested to be useful in delineating water in some
cases [41-43]. Feyisa et al. [44] introduced two automated water extraction indices of AWEInsh and
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AWEIsh for identifying water features in cases where no shadow is present in the scene and when
the scene is contaminated with shadow, respectively. Differences between these methods result from
their changing ability to accurately identify different water body types; meaning water indices work
differently depending on the type of water such as lakes, rivers, deep or shallow water, etc. [45].

A waterbody itself has two types of pixels. One is clean and deep water which has a stable spectral
profile and the other type is the pixels associated with shallow water not having stable characteristics.
Deep-water pixels (pure) can easily be separated from land while shallow (mixed) pixels are more
problematic. Based on topological characteristics of the water body, it may contain both pure pixels
in its deep section and mixed ones at the edges [39]. In 2014, Jiang et al. [39] stated that based on
the type of land surfaces in the study area, water indices may have different performance when
applied to different inland water bodies, because they are sensitive to noise such as mountain shadows,
vegetation, and built-up land or urban area. For example, when urban land is present, NDWI is most
likely to confuse the land pixels with water pixels, while the AWEInsh struggles in the presence of
mountain shadow pixels where the NDWI shows the best performance [39]. Hence, the selection of
an adequate water index suitable for a specific study site must also be chosen based on the surrounding
landscape characteristics and not just the water body alone.

In order to determine the surface area of the lakes, the water indices for each lake domain needed
to be computed separately because preliminary analysis of the lakes showed that their topographical
characterizations are different from each other although they are located only three kilometers apart.
Lake Enriquillo bathymetry features extremely shallow sections on its western and eastern sections
while being deep in the center. Lake Azuei on the other hand mostly has defined steep shores (except
a shallow part of the northwest side of the lake) while being deep elsewhere. These topographic
differences mean that the two lakes have different image characteristics, making it difficult to analyze
both lakes as a single feature/in the same image. Lake Enriquillo’s mostly shallow shoreline dictates
the use of a different index threshold when compared to the one applied for Lake Azuei. For example,
applying only the index threshold used to separate water from wetland for Lake Enriquillo would
cause the algorithm to interpret hill shades as waterbody while extracting the shoreline for Lake Azuei.
Hence, we analyzed each lake separately applying the NDWI, NDMI, MNDWI, WRI, NDVI, and
AWEI indices to find out which index has the best performance when extracting the water body while
minimizing the effect (error) of misinterpreted wetland, cloud shadow and hill shades.

In order to test the W1Is performance for differentiating land and water along the shore (to get
the shoreline right but not to carry out a full classification of the entire scene) in shadowed areas,
wet lands and shallow water, we just considered two classes: water and land. In order to avoid
erroneous calculations resulting from counting water pixels in the land surface areas, we first removed
all land-water pixels before setting out to accumulate all water body pixels for further processing. And,
Figures 6 and 7 show the result of applying different water indices on the lakes images.

Tables 2 and 3 show the quantitative evaluation and visual inspection of the water indices.

Table 2. Summary of performance evaluation of the water indices used for differentiating land and
water pixels along the Lake Enriquillo’s shore. (See 2.4.1 for full abbreviations)

Surface Area Overall Kappa F-Overlapping Omission Commission . .
Wis Error (%) Accuracy (%)  Coefficient (%) s Error (%) Error (%) Visual Inspection
NDWI —0.68 99.997 0.99 99.32 0.68 0.00 Good
MNDWI +4.20 99.97 0.96 92.68 5.82 1.69 Detects wet land as water
NDMI +209.94 99.09 0.46 29.78 5.93 69.65 Not good
WRI +1.38 99.99 0.99 98.28 0.18 1.55 Detects wet land as water
NDVI —1.01 99.996 0.99 98.99 1.01 0.00 Unable to detect shallow water
AWEI ¢, +5.23 99.68 0.93 83.57 4.62 1.43 Detects wet land as water

AWEI,p, +1.11 99.99 0.99 98.85 1.18 1.02 Good
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Table 3. Summary of performance evaluation of the water indices used for differentiating land and
water pixels along the Lake Azuei’s shore.

Wi Accuray () Coofitient o T Bmor  Fmortop Visual Inspection
NDWI —0.87 99.72 0.99 98.79 1.04 032 Good
MNDWI 448 98.85 0.97 95.09 4.70 142 U“abfntfh‘iitﬁgtr;ﬂ:hade
NDMI +32.29 90.17 0.75 69.41 1136 28.06 Not good

WRI ~159 99.63 0.99 98.41 1.59 048 Good

NDVI ~29.69 93.04 0.78 70.31 29.69 833 Not good
AWEIL, +241 99.37 0.97 87.64 322 1.36 Unabfntfhiestﬁgr;iig':hade
AWEIL;, -181 99.51 0.98 98.03 1.79 0.68 Good

AWElnsh

Figure 7. Visual Inspection of the performance of the water indices for Lake Azuei.

Since the surface area of the water body changes throughout time, sometimes growing and
creating shallow water areas to expand and at other times shrinking and leaving wetland behind,
we needed a water index that can differentiate these features and their associated pixels. We used
quantification of (total) surface area error, overall accuracy, Kappa Coefficient, F overlapping, and
Omission and Commission error, along with visual assessment in the selection of the best index.
It turned out that the overall accuracy of all indices were relatively high, so we used the surface area
error and omission and commission error to differentiate between their performances. The results
show that except the NDMI, all indices have relatively high performance levels in detecting water
pixels. NDWI, NDVI WRI, and AWEIsh showed acceptable results for Lake Enriquillo while for Lake
Azuei, NDWI, WRI, and AWEIsh worked better. We chose to use the NDWI, because it had better
performance in differentiating mixed water pixels for both lakes, and also featured the smallest surface
area error.
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2.4.2. Gap Filling

A processed image includes pixels with different values for land, water, clouds, cloud shadows,
and hill shades. In order to make use of most images as far as lake outline blockage allows, we needed to
detect whether any pixel of cloud, shadows, and hill shades situated next to water body belongs to the
lake or not. Toward this end, we decided to treat these pixels as “no data” value pixels while filling their
values using a suitable gap-filling method. There are various techniques suggested for gap filling, such
as Compositing [25], Regression [33], Data fusion [34], and Neighborhood pixel interpolation [46,47].
While some of these methods utilize a reference image that uses spectral information all are based on
computing a value for “no data” pixels depending on pixels from neighboring pixels. In methods using
reference images, contaminated pixels will be replaced with good quality pixels from the reference
image. The reference image is usually a preceding or subsequent image to the one in question with as
minimal a time gap as possible. This technique seems to work well in cases where the environmental
and land-cover changes are not significant over time, so images can be spaced in the temporal domain.

In our case, using neighboring pixels did not give us sufficiently correct information on the
decision either to keep a water pixel or to ignore a land pixel in the shoreline area. Hence, we
decided to use an approach that introduces a reference polygon that is based on the lakes” outline
shapefiles. Working with shapefiles gave us the ability to find the best match for the target shapefile in
a straightforward fashion thus avoiding pixel replacement in favor of replacing missing line segments.
This approach involved converting all processed images into shapefiles and removing all features
with the values other than water body values. Using this method, we were left with only the lakes’
shapefile; either those generated from cloud-free and gap-free images or blocked scene images. While
the lakes’ shoreline created out of clear images/scenes were complete, other shorelines were distorted
and were made of discontinued lines having missing parts in between.

We created two groups of lake-shoreline features: ones that are complete and those that are
incomplete. In order to turn incomplete into complete features, the incomplete feature outline was
compared to all others of the complete group. Using the least mean square method, we selected the
one with the best fit and inserted the missing parts of the target feature eventually creating a closed
polygon for the lake shoreline. Note that after 2003, all extracted features have had discontinuities
due to the failure of the ETM+ scan line corrector (SLC), which coincides with the start of both lakes
continuously expanding up to now. This resulted, after the 2006-2007 period, into creating shoreline
features at locations hitherto not covered thus dramatically reducing the pool of “complete” features
that could be used to substitute for “incomplete” features. In order to compensate for this situation,
we started to include more than just one “best” fit feature.

2.4.3. Final Algorithm

Based on the characteristics of the study site and the type of water bodies and noise in the scene,
we developed an algorithm to identify and classify noise pixels and remove them from the scene and
then detect water bodies using the appropriate water index. In the algorithm, shown in Figure 8, cloud
pixels were identified in the scene first because of their distinct spectral characteristics as compared
to the other noise types. Band 1 (Blue, 0.45-0.52 mm) and Band 6 (Thermal, 10.4-12.5 mm) fraction
worked best for us in extracting clouds. A threshold setting of 0.2 worked effectively and pixels that
fell below this threshold were labeled as a cloud. However, out of 192 images total for each lake, 55 for
Lake Enriquillo and 59 for Lake Azuei could not be processed due to the high percentage of cloud
cover obscuring the scene.
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Figure 8. Water Body Extraction Algorithm.
The Normalized Difference Water Index (NDWI) is expressed as:

NDWI — (PGreen — PNIR) (1)
(PGreen +PNIR)

where, pGreen and pnr are the surface reflectance values of Band 2 (green, 0.53-0.61 mm) and Band 4
(Near-Infrared, NIR, 0.76-0.90 mm) in the Landsat TM/ETM. The threshold of zero was proposed
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by McFeeters (1996) for extracting water bodies, having positive NDWI values for water pixels and
negative values for non-water pixels. Thus, a starting threshold of zero was initially considered for
both lakes which were then followed by a gradual adjustment of the threshold to find an optimum
value for each lake. For Lake Azuei, the optimal NDWTI threshold turned out to be —0.12 while a zero
value for the NDWI threshold worked best for Lake Enriquillo. Since both TM and ETM satellite
sensors have the same bandwidth, the NDWI threshold for both is the same. Using the same approach
we were also able to address the wetland issue.

After identifying water body pixels all resulting water pixels were examined to see if they were
mixed in with shadows. Using the Digital Elevation map and also the Short Wave Infrared band,
both topographic and cloud shadows were detected from the group of mixed water pixels. We also
considered a buffer of one-pixel size around cloud and their associated shadows to make sure that they
are completely removed from the scene. Figure 9 shows one of the Landsat images before and after
the process and also the classified image of detecting different pixels. After identifying all non-water
pixels they were removed from the scene along with the land surface pixels. This step was followed
by the creation of the lake’s feature shoreline where the missing or incomplete parts were completed
using one or more reference images, as described earlier.

Water

- - Land

Clouds

E - Cloud Shadows
3 - Hill Shades

No data

Figure 9. (a) Landsat Image taken on 21 February 2012 (path8/row47); (b) Processed Landsat Image;
(c) Study Area Classified Image.

When all non-water pixels were identified, they were removed from the scene along with land
surface pixels. Then lake feature/lake’s feature outlines were created and their missing parts were
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completed using one or more reference images. Figure 10 shows an example of a lake’s feature
which has been extracted from the image taken on 21 February 2012 and completed using a reference
image. The target lake outline is derived using the February Landsat image which was completed
using a reference outline from 20 January 2012. Figure 10a,b shows the target Landsat image and
the extracted outline, respectively and Figure 10c,d shows the reference image and the lake’s outline.
For this sample only one reference image was used, although in some cases more than one reference
image was needed.
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Figure 10. Completed Lake Azuei polygon: (a) Landsat image taken on 21 February 2012; (b) Lake’s
outline created using image on 21 February 2012; (c) Landsat image taken on 20 January 2012; (d) Lake’s
outline created using image on 20 January 2012; (e) Image created from overlaying two Landsat images
of (a,c); (f) Lake’s outline created using (b,d) outlines.
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2.5. Validation of Image Analyses

During two field campaigns in 2013, we collected bathymetric data for the two lakes.
The generated tracks, referenced with Lat/Lon, included many alongshore sections (before turning
back to another leg of a general zig-zag pattern crossing the lakes) that we decided to use as a second
set of data to compare to the lake shoreline polygon (in these sections) as extracted from the satellite
images. To assess the general validity of the results we first selected those track segments that
mapped the shoreline and then measured the distance between the track of the boat and the lakes’
extent. Near steep edges the boat could get to within a few meters of the shore while in shallower
areas the boat needed to stay back, up to several hundred meters in very shallow areas (Figure 11a).
Nevertheless, since all GPS data was taken from inside the water body it should also be inside the
extracted lake extent. While this was true for the vast majority of points we observed that some
fell outside (Figure 11b). In order to have a better understanding of the extent of these “misses” we
computed minimum distance, maximum distance, mean distance, and standard deviation for each lake
as summarized in Table 4. The results showed that for Lake Enriquillo, the distances (track location
minus polygon location) are between 0.17 (minimum) and 17.05 (maximum) meters with an average of
3.67 m and a standard deviation of 2.42 (Figure 12a). For Lake Azuei the minimum and maximum
distances are 0.03 m and 36.58 m, respectively with an average of 8.38 m and a standard deviation of
6.33 (Figure 12b). Considering the fact that the resolution of the Landsat images is 30 m/pixel, these
errors fall well within or at least close to the image resolution thus demonstrating a good degree of
accuracy on image analysis.

GPS Points fall

outside the

GPS Points are delineated lake
inside the extent

delineated lake
extent

Source: Esri, DigitalGlobe, GeoEye,i-cubed, Earthstar Geographics,
CNES/Airbus DS, USDA, USGA, AEX, Getmapping, Aerogrid, IGN,
IGP, swisstopo, and the GIS User Community

Figure 11. (a) Black line is the boat track of GPS points and the pink line is classification result for
the Landsat image taken in 1 July 2013; (b) Position of GPS data in comparison with the extracted
lake extent.

Table 4. Comparison of classification results with GPS data.

Date of Maximum  Minimum Mean

Gathering In]::n:ls)a:te QII::I‘?: Lake GPS Points Position Distance Distance  Distance IS)t::/lii:;:n
GPS Data g y (m) (m) (m)

GPS points fall inside

the delineated 94.57 0.18 41.07 32.75

-Clear scene

-Existence of  Enriquillo lake extent

25-26 March 27 March

2013 2013 gaps GPS points are
outside the delineated 17.05 0.17 3.67 242
lake extent
GPS points fall inside
Existence of: the delineated 89.61 0.03 35.25 21.51
_ -G
19-24 June 1]July 2013 —Clacf)usd Azuei lake extent
2013 _Cloud GPS points are
outside the delineated 36.58 0.03 8.38 6.33

had
shadow lake extent
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Figure 12. (a,b) Distribution of the values of the distance between GPS points and the lake extent.

As an additional step we chose three images for each lake from our pool having a mix of clear
and problematic scenes and then overlaid these with referenced lake polygons that we manually
generated using GIS tools. Table 5 shows the accuracy assessment of the results in comparison with

the reference maps.

Table 5. Summary of classification accuracy using reference maps.

Lake Date Clgzdlt:;g:l F-Overlapping Overall Surface Absolute Relative
PP (%) Accuracy (%)  Area(km?)  Error (km?)  Error (%)
Water Body

22 February 2001 0.989 98.72 99.76% 206.036 0.53 0.26

Enriquillo 19 September 2007 0.992 98.31 99.64% 231.977 0.71 0.31

21 August 2014 0.992 98.97 99.68% 346.694 0.30 0.09

22 February 2001 0.995 98.59 99.67% 118.368 0.56 0.47

Azuei 19 September 2007 0.993 98.46 99.63% 119.296 0.20 0.17

21 August 2014 0.980 98.08 99.47% 137.277 1.08 0.79

Three images from the years of 2001, 2007, and 2014 were selected and the accuracy statistics
consisting of conditional Kappa (only for water body), F-overlapping, and overall accuracy were
calculated for each lake using a scripted tool [48]. We also computed the absolute error (the surface
area difference between the produced water body and the reference map), and the relative error
(absolute error over the surface area of water body in the reference map) to see how much error
would be introduced to the surface area values by our classification method. The overall accuracy
for both lakes yields a value of more than 99% agreement, a conditional kappa coefficient of more
than 98%, and an F-overlapping percentage of more than 98%. Relative errors are also small and
less than 1%, which demonstrates a high degree of accuracy in surface area estimation even though
there are miss classifications of a few hundred pixels in each case; these do not significantly affect the

accuracy however.
3. Results
3.1. Lake Time Series

3.1.1. Previous Work

Although the extent of Lake Enriquillo’s surface area has been published in several reports
over the years there have been few attempts to examine surface area change dynamics of the
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lake [9,11-14,18,19,49-52]. The Instituto Nacional de Recursos Hidraulicos (INDRHI) and the Water
Center for the Humid Tropics of Latin America and the Caribbean (in Spanish- Centro del Agua del
Trépico Humedo para America Latina y el Caribe (CATHALAC)) are perhaps the best-known data
sources for Lake Enriquillo. In 2009, CATHALAC published seven values for the lake surface area
from 2000 to 2009 two of which were calculated based on the Landsat Images while the remaining
five were based on MODIS data [9,12,18,50,51]. In 2012, CATHALAC published a new set of lake
surface area data spanning the years from 2007 to 2012, which turned out to be different from the ones
presented in 2009 [51]. Logan et al. [12] showed two time series of surface area, one of which is taken
from the CATHALAC-2009 paper, while the other one was referenced to INDRHI data generated from
Landsat images. There are two other groups, i.e., Programa de Naciones Unidas para el Desarrollo
(PNUD) and Universidad Auténoma de Santo Domingo (UASD), that produced some surface area
information for the lake as well [52]. The UASD values seem to have been averaged over the reported
years of 2004, 2011, 2012, and 2013 even though it remains unclear if these values have been computed
from averaging several images over a specific month or just using any image as a representative for
a specific month.

Another source of data is the Coastal Urban Environmental Research Group (CUERG) at the
City College of New York which publishes lake data on their Webpage called “The Hispaniola Lakes
Project” [53]. They used Landsat imagery to calculate the surface area of both Lakes Azuei and
Enriquillo starting from 1979 until 2015 using about 50 data points for Lake Enriquillo. Schubert [19],
Méndez-tejeda et al. [11], and Luna and Poteau [14] present average surface area values for Lake
Enriquillo also having used Landsat Imagery. The newest time series available for both Lakes is the
one produced by Wright et al. in 2015 [13]. They too used Landsat Imagery to calculate surface area
for both lakes even though they do not reference all data they used. We have summarized all sources
of lake surface area in Table 6 (for Enriquillo) and Table 7 (for Azuei).

Table 6. Lake Enriquillo surface area time series references.

Source Timespan ]I;I:tl:gzirrgfs Range of Values km? Data Used

INDRHI [12,17] 2000-2012 14 % 160-320 km? * Landsat Imagery

CATHALAC, 2009 [9,18,50,51]  2000-2009 7 205-312 km? Landsat/MODIS
CATHALAC, 2012 [51] 2007-2012 9 234-340 km? -
PNUD [52] 2000-2013 7 205-369 km? -
UASD [52] 2004-2013 4 231-404 km? -

CCNY [53] 1979-2015 50 165-353 km? Landsat Imagery
Schubert, 2003 [19] 1969-2002 7 165-269 km? * -

Luna and Poteau, 2011 [14] 1982-2010 24 195-332 km? Landsat Imagery

Wright et al., 2015 [13] 1984-2013 60 * 231-325 km? * Landsat Imagery
Mendez et al., 2016 [11] 1996-2013 9 22-46 km? -

* The data is retrieved from the graph presented by the reference and the values are approximate.

Table 7. Lake Azuei surface area time series references.

Number of

: 2
Source Timespan Data Points Range of Values km Data Used
CATHALAC, 2012 [54] 2007-2012 9 119-137 km? -
CCNY [53] 1979-2015 47 111-140 km? Landsat Imagery
Luna and Poteau, 2011 [14,49]  1985-2011 21 113-132 km? Landsat Imagery
Wright et al., 2015 [13] 1984-2013 49 * 121-133 km? * Landsat Imagery

* The data is retrieved from the graph presented by the reference and the values are approximate.

3.1.2. Time Series Development

The “Lake Extent”-time series was produced after passing all images through the analyzing tool
we described earlier spanning the period starting in 1984 to 2014, i.e., about 20 years of coverage.
We noted that the image pool had several gaps the most significant from May 1984 to January 1986 and
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from July 1992 to July 1996, i.e., 2 and 4 years respectively as shown in Figures 13 and 14. Examining
the general time series patterns of both lakes two significant behaviors stand out: firstly, before 1998
the lakes show an uncorrelated growth and recede pattern, i.e., they expand and shrink at a random
synchronous or asynchronous rate suggesting that the two lakes exhibit dynamics that are mostly
independent, even though one cannot fully rule out some impact due to lake level differences. Secondly,
the two lakes align their general behavior after 1998 with a first strong growth-recede pattern from
1998 to 2004 after which the dramatic growth period starts peaking in 2014 with a 2.3 (Enriquillo) and
1.2 (Lake Azuei) increase in surface extent when compared to 2004. Note that the surface area extent
dynamics alone do not indicate proportional or non-proportional growth/shrink correlations between
the lakes because of the lack of bathymetry and surrounding DEM inclusion. While surface area extent
is our primary data entry point a much more meaningful comparison is the total volume increase,
relative volume increase, and the ratio of volume increase to associated drainage area to discern values
and indices that allow for comparison. While the general growth trend from 2004 to 2014 is the most
significant in view of the societal impact because of the many inundations and subsequent loss to land
and property, shorter term (seasons or even monthly) patterns that are superimposed on the 10-year
growth remain as uncorrelated and appear to follow lake specific dynamics.
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Figure 13. Lake Enriquillo surface area time series.

Figure 15 shows the surface area data series for Lake Enriquillo. Straight lines in the graph mean
a gap in data series whether there is or there is not any satellite image available for corresponding
dates. Note the data gaps between the years of 1993 to 1996 which is, as mentioned before, due to the
lack of Landsat images for those years. Imagery production resumed in June 1996 and it took until
2004 for the production to be no less than 12 a year, i.e., recording frequency increased. It should be
noted that we eliminated the Méndez-tejeda et al. data series [11] because it did not present the same
range and also was off by a factor of almost 10. It is clear from Figure 13 that all references capture
the general trends represented by the steady shrinkage from 1982-1998, the 1998-2004 spike and then
the “grand growth, GG” from 1996-2014. Straight lines, such as in the in Luna and Poteau series [14]
(for 2003 to 2006) and 1999 in Wright et al. series [13] are due to lack of data compiled for these years.
Other deviations, such as over and undershoots, which vary in extent between the data sets and are
not consistent within or across data sets can also be due to variations in Landsat image analyses, i.e.,
cloud cover and shadow removal which can lead to local oscillations from one image to the next.
The largest difference between the sets arrives from the absolute values between them, namely Luna
and Poteau [14], Wright et al. [13], and CCNY which show a generally higher location on the plot than
the other references. Although Luna and Poteau [14] and CCNY started almost at the same point with
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Wright in 1984, they diverged as time progressed and join the graphs of the other references in 1998.
There is much less difference between values observed in our study and others time series, namely
Schubert (2003) [19], INDRHI (2012), and CATHALAC (2012). PNUD introduce much higher values
for the lake surface area, starting from the period of 2008-2012 and only match the rest of the curve
group for 2014. We attribute these differences to the use of different data sources/products such as
Landsat, MODIS, and ASTER, in addition to the aforementioned differences in analyses tools.
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Figure 14. Lake Azuei surface area time series.
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Figure 15. Lake Enriquillo surface area time series comparison.

Figure 16 shows all time-series data we have been able to compile for Lake Azuei in addition to
our own data, collected in 2014. Like as for Lake Enriquillo, the data groups agree on the general trends,
i.e., a period (1984-2006) with moderate oscillations around a steady mean of 115 km? (1984-1996)
and approximately 116 km? and (1996-2006), then the steady growth (2006-2014). Note though the
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Enriquillo spike from 1998-2004 is much less pronounced in Lake Azuei and also that the corresponding
GG for lake Azuei starts about two years after that of lake Enriquillo. While the graphs exhibit similar
oscillatory behavior as compared to Enriquillo, the most notable feature is that the graph from
Wright et al. sits considerably higher than the other graphs for the period of 1984 to 2006 suggesting
a substantial difference in how the data appears to have been analyzed. Personal communication
(October 2016) with the authors suggest that the discrepancy may be due to the use of yet another data
source, i.e., a topographic map of the region created a few years back by another research group which
introduced different elevation values for varying lake extent polygons. Like Lake Enriquillo, Lake
Azuei features larger time scale processes that are superimposed by smaller time scale ones, the latter
of which generate an oscillatory pattern of small amplitude growth and shrinkage. In general, however,
the graphs coincide fairly well, much better than the ones (same references) for Lake Enriquillo.
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Figure 16. Lake Azuei surface area time series comparison.

3.2. Bathymetric Data

There are five bathymetry maps available for Lake Enriquillo. The first map was created by
INDRHI in 1992 [17,49], shown in Figure 17a, featuring contour lines with corresponding elevation
data. In 2003, Schubert [19] presented a newer version of the bathymetry based on data collected
and prepared by INDRHI (Figure 17c). These two maps both show about the same contour line
patterns and also elevation data, even though they differ somewhat in the northern sector of the lake.
Unfortunately, neither map product is referenced to a vertical datum and also does not report the
dates at which the data was collected (thus denying an opportunity to link it to a Landsat image
taken around the same date). Buck and Brenner in 2005, showed a map which was modified from an
Araguas-Araguas et al. study done in 1993 (Figure 17b) [10,55]. The map is necessarily similar to the
one presented by Araguas-Araguas et al. in 1995, though now featuring lake depth contours instead
of elevation. The depths range between 0 to more than 22 m. These bathymetry maps show that the
lake is composed of two large bodies of water, separated by Cabritos island. The northern part of the
lake is smaller but much deeper in comparison to the southern part. There are also two small hills on
the west side of the lake called Islita and Barbarita islands. These two islands can fall dry for low lake
levels and disappear below the water surface for higher lake levels.
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In 2015, Piasecki et al. [20] and Wright et al. [13] both independently developed a new bathymetry
map slightly different from the others’ results, showing two small holes on the north side of the
lake (Figure 17d,f). Wright et al. [13] used seismic data taken from the study area in 2013 along with
Landsat images and past bathymetric maps to build a new contour map with depth values (Figure 17d).
The contour lines depict depth between 0 to 24 m, while the stretched color map of the lake beneath
ranges between 0 to 32 m. On combining the contour lines with the stretched color map yields two
deep depressions each almost 8 m deeper than the 24 m contour line. This presents a sudden change
of the bed of the lake, which is difficult to discern on the bathymetry images.
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Figure 17. Comparing bathymetry maps: (a) Bathymetry map presented by Araguas Araguas et al.,
1995 [17]; (b) Buck and Brenner, 2005 [10]; (c) Schubert, 2003, 2012 [19,49]; (d) Wright et al., 2015 [13];
(e,f) Piasecki et al., 2015 [20].

In 2013, Piasecki et al. [20] carried out several data collection campaigns aimed at obtaining
bathymetric data for both lakes, in addition to digital terrain information to create a seamless
lake/surrounding terrain model that can be filled and drained to obtain maximum depth, elevation,
and volume information. During several trips, sonar data was collected following a zig-zag pattern
through both Lakes Azuei and Enriquillo. The data was later analyzed and a bathymetry map was
produced using almost 35,000 sonar depth values collected [20,56]. Figure 17e,f shows the bathymetry
maps of both lakes.
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Maps produced prior to the ones published in the 2013 timeframe [10,13,17,19,49,55] are quite
similar. However, they feature significant differences in their shape of contour lines and the
presentation of data as elevation or depth makes it difficult to choose between them. Also, most
of them do not represent the recent growth (extent) of the lake and it is not stated how the maps were
created or what was the date of creation. The one created by Wright et al. [13] seems to feature an
unreasonable topography shape which may be the result of using older versions of bathymetric data.
Thus we decided to use the map produced by Piasecki et al. [20] as it shows the latest shape of the
lake due to the most recent collection campaign. It has also been prepared only using field measured
values and is such independent of older data sets; in addition, they presented the only bathymetry
map available for Lake Azuei.

3.3. Connecting DEM and Bathymetric Data

Although having surface area time series of the lake gives the ability to observe the behavior of
the lakes over time, it is not sufficient to quantify lake responses in terms of quantities that are relevant
to the water budget, i.e., volumes added or subtracted over time. To close this gap it is necessary to
develop a representation of the bathymetry and if one were to examine future states of growth, “stitch”
this bathymetry to the surrounding digital elevation model to form a “bathtub”-model that can be
filled and emptied at will. Short of having lake level sensors that track the lake level as referenced
to a vertical datum (such as Mean Sea Level) the only way to calculate volumetric changes is to use
the lake extent polygons (as described earlier) and slide them down the “bathtub” walls until they fit
snuggly around the wall thus yielding the current lake level (Figure 18).

T

- Lakes’ Extent on 6 Nov 2013
Elevation (MSL)

- 2663 m

. -42'm

Figure 18. An example of sliding a Landsat Image to Digital Elevation Map (DEM) in order to find the
elevation and volume.

Connecting, or “stitching”, the bathymetry data set to the surrounding SRTM DEM data set
proved challenging because the DEM used the EGM96 (Earth Gravitational Model 1996) datum as
a default while the bathymetry data is not referenced at all as the values collected were local, i.e.,
with respect to wherever the water level was on the day the data was collected. We did not have a
geographic control point (GCP) available that would have allowed us to “connect” the lake level to a
referenced vertical datum point. In fact, according to the cartography department of the Dominican
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Military (personal communication), there is only one GCP available which is about 10 miles to the
southeast of the eastern shore of Lake Enriquillo, way too far away for us to be of use.

There are several options on how to overlay the bathymetry on the DEM. The simplest way is to
consider one of the lake’s extents as a reference line and match it with DEM contour lines and extract
the elevation for that specific lake outline. Using that lake outline as a base, all lake elevations in the
time series can then be produced using lake surface area and their associated depth. Lastly, all the
DEM information beneath that specific contour line is then deleted and the bathymetry map can be
connected to the DEM along that lowest contour line. The DEM was published in 2008 and it shows
the lake extent/surface at that time with elevation —42 m (EGM96). However, it was unclear when
the elevation data was computed for the area with no date given. Because the lake fluctuates even
throughout the seasons the lack of a date renders the —42 m elevation almost unusable in our desire to
find a proper vertical reference.

When overlaying the bathymetry over the DEM we found that the largest lake extent recorded
matches with the contour line of —31.3 m (MSL). Hence, between the two elevations of —42 m and
—31.3 m, the DEM and the bathymetry overlap as demonstrated in Figure 19. In the DEM, two contour
lines of —31.3 m and —42 m are shown and the corresponding lakes” extents are also marked on the
bathymetry. The contour line of —31.3 m corresponds to the lake’s shoreline at zero depth (extracted
from the Landsat images, taken on 6 November 2013) while the contour line of —42 m corresponds
to the lake’s shoreline at a depth of 7.6 m (Landsat images taken on 2 October 2006). As can be seen
the depth difference between these two contour lines is 10.7 m which is higher than 7.6 m. In other
words, matching depth contours of the lake bathymetry to elevation contours of the DEM proves to be
inconsistent and thus poses a problem because the resulting lake volumes would also differ.
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Figure 19. Demonstration of bathymetry and DEM compatibility.

To better demonstrate the problem at hand we use a (hypothetical) cross section as shown in
Figure 20. The slope of the DEM between the contour of —42 m and —31.3 m is steeper than that of
the bathymetry. Any contour line between —42 m and —31.3 m can be considered as a reference line
and the bathymetry model could be placed anywhere between these two contours. We considered
the two extremes of —42 m and —31.3 m to see how the connection method affects the lakes’ physical
parameters. In Figure 20b, the bathymetry is placed using the —31.3 m contour line and all the DEM
surfaces below it are deleted. Figure 20c,d shows the condition in which the —42 m contour line is
used as the reference. However, these two figures differ in which overlapping surface is preserved.
In Figure 20c, the bathymetry is preserved and the DEM is eliminated. This method results in the
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formation of a cliff with a height of about 3 m, which is not realistic. On the other hand, in Figure 20d
the DEM is kept and the overlapping bathymetry surface is deleted. Both approaches have an effect on
the computed volume of the lake (Vb and Vc) which consequently results in a volume other than the
real value. Vb is almost 27% of the whole volume of water in Lake Enriquillo and Vc is less than 27%
depending on which contour line is considered as a reference line. Even if we were to find a contour
line that compensates for the calculated volume and that gives us a real volume in case (d) (Figure 20d),
the proper depth allocation remains unresolved. In cases (c) and (d), the bottom of the lake will sit
lower; resulting in an increase of depth (shown as D, in Figure 20). Hence, in order to reserve volume
and depth of the lake, we decided to use the case shown in Figure 20a. This way the bathymetry can be
connected to the DEM and for future calculations the error in deriving volume and depth is minimal.
The same approach was used for Lake Azuei albeit we decided to take a 6 November 2013 shapefile
as the base to extract elevation values and then delete all the DEM parts beneath it substituting
bathymetry values instead.

SRTM DEM
. T ~

313 453 £4-31.3 MsL)
MSL Gt ~- (-31.3 MSL) M5L

f reference
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|Inf2 MSL e (-42 MSL)
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e (-63.16 MSL)

Created Lake
bathymetry
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The difference of where to stitch
Bathymetry to DEM is up to 3 meters.
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-42 MSL & -- (-42 MSL) -42 MSL <
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line f line
—e (-66.26 MSL) M (-66.26 MSL)
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Figure 20. Presentation of different methods for stitching bathymetry to DEM; (a) illustration of two
possible options for choosing reference line; (b) the method using —31.3 MSL reference line; (c) the
method using —42 MSL, and preserving bathymetry reference line; (d) the method using —42 MSL
reference line, and preserving DEM.

3.4. Rating Curves

The first application of using the time series and the seamless bathtub model is to create rating
curves for Area-Volume and Area-maxDepth. These rating curves are useful because they represent
non-linear relationships between lake area (which we measure via Remote Sensing) and variables that
we do not, i.e., depth (and with that elevation) and volume. These in turn are helpful to compute rates
of volume change that we can relate to other processes in the hydrologic budget such as precipitation,
evaporation, and evapotranspiration. We created these rating curves using standard GIS tools that
would “fill the bathtub” to a pre-specified level and then computed area and volume based on
appropriate tools from the GIS tool box. These rating curves as shown in Figures 21 and 22. Here we
plot our three remaining parameters (volume, depth, elevation) versus our primary variable, i.e., lake
area extent.
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Figure 21. (a) Lake Enriquillo volume-area rating curve; (b) Lake Enriquillo max depth/elevation-area
rating curve.
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Figure 22. (a) Lake Azuei volume-area rating curve; (b) Lake Azuei max depth/elevation-area
rating curve.

Having constructed these rating curves, we are able to retrieve the volume of each lake for
a specific date and time for a new value in the lake’s surface area time series thus allowing us to quantify
the volumetric changes of lakes at any time in the past, now, and most importantly in the future.

4. Discussion

4.1. Lake Volumes

The various efforts to collect data on the lakes over time has produced a small pool of sources that
allows us to examine some of the previous work and compare it with our most recent efforts. In 2003,
Schubert [19] published average values for Lake Enriquillo’s volume ranging from 0.5 km? to 1.5 km?>
between the years of 1979 to 2002. Wright et al. [13] on the other side show a volume value range
between 0.8 km? to 1.6 km? for the years from 1983 and 2002 while our work suggests a range between
1.2 km?3 to 2.1 km? for the same year span. For the years after 2002, the values of Wright et al. [13] and
ours come closer, i.e., to about 3.8 km3 in mid-2013. Although the volume’s trend in all publications
is much the same, many gaps can be seen in Schubert’s [19] and Wright et al. [13] studies showing
sudden volume oscillations before the years of 2001 which is unrealistic, since no such change has
been shown in the corresponding surface area trend they presented, in addition to not having been
reported by any other references.

Araguds-Araguads et al. [17] reported Lake Enriquillo’s volume to be 1.7 km3, however, no
corresponding date was offered, rendering this information unusable. In 2012, Logan et al. [12] used
the average surface area of the lake during the last decade (~250 km?) and multiplied it by the depth
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increase of the lake reported by INDRHI (~6 m since 2000) to calculate the volume change of the lake
resulting in a 1.5 km? increase. Using the average volume in 2000 and considering 2011 as the target
year, we compute a 5.9-m rise and a corresponding 1.6 km? increase in volume, i.e., reasonably close.
They also compute a lake surface area growth of 0.16 km3 from 20 July to 28 September 2011 when the
lake purportedly rose by 0.5 m (reported by INDRHI). The images from those dates were not available,
so we took the values for 12 July and 10 October. Our calculations show that the lake rose only by
0.2 m and thus only added 0.066 km? in volume. Unfortunately, these are the only other references
that reported lake volume calculations producing numbers that we cannot confirm. We must assume
that these differences result from the method and bathymetry map used to extract volume.

4.2. Lake Elevations

We discovered some references that report elevation values of Lake Enriquillo, while none were
found for Lake Azuei. We have summarized the references in Table 8 listing the time frame for when
the data points were collected, the number of data points, and the range of lake levels reported.
Note that many of these references referenced other publications as the basis for their lake level
estimation. For example, in 2009, Quezada [50] presented 12 different references for 14 elevation values
and in 2013, Quezada [51] lists references for 32 elevation values. In 2003, Schubert [19] showed two
different time series for elevation, however, without stating the reference. The other elevation time
series in Table 8 are presented by UASD, INDRHI, PUND, and Wright et al. which are assumed to be
generated by the researchers [10,11,13,49,52]. Unfortunately, neither reference stated how these values
were extracted nor what the reference datum was to which the elevations were referenced, which is
the major impediment for comparing lake levels.

Table 8. Lake Enriquillo elevation references.

Source Timespan Number of Data Points Range of Values (m)

UASD [11,52] 1961-2011 11 —45.7 to —27.7

Quezada, 2013 [51] 1893-2009 31 —46.42 to +0.63
Quezada, 2009 [18,50,51] 1892-2009 14 —45.7 to +0.63

Schubert, 2003 [19] 1992-1999 14 —45.6to —42.2*

Schubert, 2003 [19] 1994-1995 5 —42.92 to —42.54 *

INDRHI [10,49] 1949-2002 27 —46.4 to —30.02
PNUD [52] 2000-2012 3 —43.7 to —30

Wright et al., 2015 [13] 1984-2013 57 —53.8to —41.1*

* The data is retrieved from the graph presented by the reference and the values are approximate.

Figure 23 (Lake Enriquillo) and Figure 24 (Lake Azuei) show a collection of time series plots from
various literature sources, referenced to mean sea level, MSL. Since the DEM itself has an absolute
vertical accuracy of 7 to 9 m for North America which contains Hispaniola as well [57], we decided
to envelop our time series with an average band of £4 m to reflect this uncertainty. Most of the
graphing-values shown in Figure 23 are related to years before 2004 and there are just a few values
produced for subsequent years. While most of the time series are close to each other, follow about the
same trend, and fall into the grey band of uncertainty, it is also evident that the one derived from the
Wright et al. study [13] and our study both of which have the highest point density, are set apart by
about 5 m.

In an attempt to find an explanation for this significant difference, we examined the elevation
data available in Google Earth and tried to match it to the DEM, which is referenced to the Earth
Gravitational Model of 1996, EGM96. Constructing contour lines and then overlaying these with
the DEM showed only negligible differences. A second thought concerned the potential use of GPS
readings which are horizontally and vertically referenced to the WGS84 ellipsoid. Since the difference
between the “static” ellipsoid and the undulating EGM96 geoid varies considerably as one moves
across the globe, we sought to establish this difference for our location at the lakes, which is about 27 m.
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Clearly, this difference is quite significant and much larger than the 5 m mentioned, thus rendering
our thought-of-explanation invalid. Unfortunately, there is no tool available to our knowledge to
validate the DEM elevations in addition to having no information about the error distribution, which
in all likelihood is uneven for a given region. As mentioned before, having only a single GCP for
the region, while helpful, would not be enough to correct/validate all elevation values of the DEM
around the lakes, thus leaving any reference made to lake levels referenced to MSL with some degree
of uncertainty.

The lakes” physical properties (except for MSL referenced elevations) can be calculated fairly
accurately, however, based on the bathymetry, for those cases when the surface area polygon falls inside
the bathymetry boundaries, i.e., below the shoreline polygon that was recorded in 2013. While the lakes
were both at a fairly high state in 2013 this would cover any level below that line and only be fraught
with uncertainty when we consider continued future lake growth which would reach elevations
derived from the DEM rather than the collected bathymetry data, i.e., is above the “stitch-line”.
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Figure 23. Lake Enriquillo elevation time series comparison.
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Figure 24. Lake Azuei elevation time series.

Our analysis shows that in summer of 1984 Lake Enriquillo’s area and volume were 257.648 km?
and 2.060 km?, respectively. Then it started to shrink to 170.010 km? and 1.225 km? in summer of
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1998 where it stayed relatively unchanged only to grow back again to 218.606 km? and 1.662 km? in
late 2000. The second recession of the lake happened in 2003 when the lake area and volume were
157.952 km? and 1.131 km?, respectively. Expanding over the next 10 years by the summer of 2013
the lake experienced it its biggest extent of record, i.e., 348.778 km?, with an equivalent volume of
3.881 km®. The last image we analyzed was for 21 August 2014 showing that the lake had arrested its
expansion and actually receded somewhat to 346.694 km? and 3.823 km3. The changes of Lake Azuei
were less pronounced than for Lake Enriquillo even though both lakes experienced the same congruent
recession growth patterns. In summer of 1984, Lake Azuei had a surface area of 115.002 km? and a
volume of 1.531 km3. After a period of moderate growth and recession, the lake reached its second
low point late summer of 2003 when its size was 115.419 km? and 1.536 km3 roughly the size it had in
1984. Like Lake Enriquillo, Lake Azuei grew substantially over the next 10 years to reach its maximum
extent of 138.298 km? and 2.005 km? (Volume) by late 2013. Since then it largely maintained its levels
even though the last analyzed image suggests that the lake has shrunk to 137.277 km? and 1.988 km3.
Note that the volumetric changes are quite different; from 2003 to 2013, Lake Enriquillo grew by 88%
while Lake Azuei only added 31%. It is these differences that despite the close proximity of the lakes,
prompt further research questions, i.e., why have they experienced such different growth values.

4.3. Future Lake Expansion

While the consequences of the lake expansion have been dramatic already in terms of loss of arable
land, roads, and housing, even greater concern has been expressed for what would happen if the lakes
were to continue to rise and expand; for example if at some point Lake Azuei would start overflowing
and convey water directly to Lake Enriquillo through the Jimani depression. Since our bathtub model
permits seamless “fill” and “drain” we examined what the consequences of future growth would be
in terms of a) additional flooding and b) movement of water volumes. The results show that both
lakes may continue to expand toward the shallow areas in the eastern and western expands of the
lakes thus inundating significant additional swaths of arable land all the way to the point where they
reach the lowest point in their watershed line. At this point, they would overflow and convey water to
neighboring watersheds. Lake Azuei will reach this “overflow” point at a maximum area extent of
154.58 km? (and an approximate MSL of 28 m) on its western shores, while Lake Enriquillo passes its
watershed border on the east side when its surface area is 860.86 km? (and an approximate MSL of
13 m). Figure 25 shows the maximum extent of each lake for the given maximum elevation.
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Figure 25. (a) Lake Azuei growth pattern; (b) Lake Enriquillo growth pattern.

It is worthwhile to examine the longitudinal cross section (about E-W) of the rift valley (as shown
in Figure 26), i.e., from the Bay of Port-au-Prince in the west to the Bay of Neiba in the east, which
would be the ultimate drainage points. Lake Azuei would drain to the west by first spilling over into
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the much smaller Lake Caiman (which sits at a higher elevation, with 4.7 km? surface area) and fill
the Caiman basin until the lowest point in the basin boundary has been reached and then convey
water through the Boucan Brou Canal connecting its basin to the Bay of Gonaves at Port-au-Prince.
As a consequence, Lake Azuei will never rise higher than ~28 m MSL and also never flood and spill
through the Jimani depression. Lake Enriquillo on the other hand, being so low, would need to rise to
about +13 m MSL, another 40+ m from its current levels to spill out on its eastern shore first into the
Lake Rincon basin (36.38 km?2 surface area) and then into the Yaque del Sud en route to the Caribbean
at Barahona. This maximum or “spill” level is depicted in Figure 27 with the completely flooded
Caiman and Rincon added to the image composition.
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Figure 26. Schematic vertical topographic profile of lakes.
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Figure 27. Trou-Caiman, Azuei, Enriquillo, and Ricon Lake growth.

Although it is clear that Lake Azuei will not overflow into Lake Enriquillo, both lakes will expand
towards each other and cause flooding in parts of Jimani and the surrounding town lands. We used the
topographic information we have for Jimani to identify which areas of the town and its surrounding
environment would be subject to flooding considering the maximum extent of both lakes. The results
of overlaying the maximum flood line of each lake with a Google Earth map is shown in Figure 28.
Although the elevation data in Google Earth is slightly different from the DEM, the differences are
small enough to give a fairly accurate inundation line for the western and eastern reaches of Jimani.
While the lakes would come to within about 500 m of each other they would not connect and most
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of Jimani would not be affected because it lies at slightly higher elevations than the lowest point in
the divide. Note though that this is a purely hypothetical consideration and while Lake Azuei is only
about 5 m away from its high point (Lake Enriquillo is about 40-50 m away) recent trends suggest that
the lake’s growth has stopped at about their current state (as mentioned before actually slightly less).
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Figure 28. Flood map of Jimani in case of maximum lakes’ extension.

5. Conclusions

In this case study, we used remote sensing methods to construct lake extent time series and
subsequent rating curves of depth and volume for Lakes Azuei and Enriquillo in the Hispaniola
rift valley. We used a pool of almost 300 images for which we also applied remote sensing and gap
filling techniques to give us the ability to distinguish water bodies from cloud and cloud shadows
and make use of most of the images that did not have acceptable quality before, to draw information
from. We compiled the densest and completest time series of the surface area for the two lakes to
date showing a lot more temporal detail, which can be used to shed some light on seasonal and even
monthly timescale hydro-meteorological processes.

In order to derive volume, depth, and elevation information, we combined the bathymetry of
the lakes with an existing high resolution (30 m) DEM and created a “bath-tub” model for the study
area. We examined the issues that arrive when trying to “stitch” two different elevation data sets
(each derived with entirely different means) together. We suggested some solutions and also stressed
the importance of needing a set of Geographic Control Points (GCPs) that establish proper vertical
datum references.

We demonstrated how the surface area values from the Landsat images serve as input information
to obtain volume, depth, and elevation data out of rating curves which in turn are required information
for investigating the water balance of the lakes. We also used our model to examine and answer
questions such as: Will Lake Azuei spill over into Lake Enriquillo? (it will not); what are the maximum
attainable lake levels and what impact would result if the lakes were to reach these maximum levels?
(Lake Azuei would flow over into the Bay of PaP and Lake Enriquillo would spill over and empty
towards the Bay at Barohuco); Will Jimani eventually get flooded (it will not, even though some
low-lying town areas may be impacted).
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