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Abstract: Permanent crops, such as olive groves, vineyards and fruit trees, are important in European
agriculture because of their spatial and economic relevance. Agricultural geographical databases
(AGDBs) are commonly used by public bodies to gain knowledge of the extension covered by these
crops and to manage related agricultural subsidies and inspections. However, the updating of these
databases is mostly based on photointerpretation, and thus keeping this information up-to-date
is very costly in terms of time and money. This paper describes a methodology for automatic
detection of uprooted orchards (parcels where fruit trees have been eliminated) based on the textural
classification of orthophotos with a spatial resolution of 0.25 m. The textural features used for
this classification were derived from the grey level co-occurrence matrix (GLCM) and wavelet
transform, and were selected through principal components (PCA) and separability analyses. Next,
a Discriminant Analysis classification algorithm was used to detect uprooted orchards. Entropy,
contrast and correlation were found to be the most informative textural features obtained from the
co-occurrence matrix. The minimum and standard deviation in plane 3 were the selected features
based on wavelet transform. The classification based on these features achieved a true positive
rate (TPR) of over 80% and an accuracy (A) of over 88%. As a result, this methodology enabled
reducing the number of fields to photointerpret by 60–85%, depending on the membership threshold
value selected. The proposed approach could be easily adopted by different stakeholders and could
increase significantly the efficiency of agricultural database updating tasks.

Keywords: orchard detection; image analysis; texture feature; GLCM; wavelet transform;
discriminant analysis; parcel level classification

1. Introduction

The European Common Agricultural Policy provides financial support to agricultural producers
via a number of different subsidies and measures [1]. Thus, the administrations of the European
Community states make great efforts to meet the necessary requirements to receive this aid. In this
context, and due to its significant spatial presence and economic relevance, agricultural geographical
databases of olive groves, vineyards, orchards and citrus trees should be kept up-to-date by the
regional public bodies.

The combination of photointerpretation and field visits is a very popular up-dating technique
because of the high level of accuracy it provides [2]. However, it is very costly in terms of both the
economic and time investments it requires. For this reason, developing an effective methodology to
detect changes in AGDBs is a topic of high interest among public administrations at both the regional
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and national levels. Automatic crop identification methodologies based on the processing of remotely
sensed images reduce the cost and accelerate the updating process, making this technique a viable
option for detecting changes in AGDB [3]. Different authors have assessed the utility of remotely
sensed image processing for automatic identification and management of crops [4–7] as well as for
updating GDBs [8,9].

To update AGDBs using remotely sensed sub-metric resolution images, there should be,
at minimum, an annual coverage of the entire territory. However, the acquisition of multi-spectral
satellite data with very high spatial resolution of a large territory is very costly. Besides, cloud cover
further compromises the acquisition of useful observations in many regions of the World. This suggests
the need to find alternative sources of information with enough spatial resolution to tackle this issue.

Digital orthophotos are routinely acquired in many countries of the world, since they are a crucial
information source for land planning and related activities. Orthophotos are high resolution aerial
images that have been subjected to a photogrammetric process. This process gives the image the
right scale and coordinates, allowing its use as a map. Historically, the orthophoto has been used
in cartography generation and in photointerpretation processes. Therefore, the development of
photogrammetric systems has been focused on obtaining geospatial information as accurate as possible.
In this context, the orthophoto radiometry has been utilized from a visual and not quantitative point of
view. Nowadays, an intense research effort is being made to introduce a rigorous radiometric correction
in the orthophoto production. This correction will be useful for: (1) eliminating discontinuities in the
radiometry of orthophoto mosaics; (2) obtaining “real“ color orthophoto; and (3) using the orthophoto
to calculate biophysical parameters. Generating a uniform regional or country level orthophoto from
individual ones (in most cases acquired in different dates, with different illumination conditions, etc.)
involves a process of mosaicking that necessarily modifies the spectral values of pixels to homogenize
their color and brightness settings. This fact precludes the use of orthophotos as a source of spectral
information in the process of automatic detection of crops in studies that consider wide areas. However,
due to their high spatial resolution their textural information can still be useful to identify different
crops and land covers [10–12]. The use of spectral information from orthophoto should be limited to
small areas covered by a single or by contiguous orthophotos captured under the same conditions
to achieve comparable spectral values. Therefore, the spatial characteristics such as texture become
an interesting alternative for studies based on orthophotos at the regional level.

Image texture is an important spatial component of remotely sensed images. The texture of
an image can be defined as the relationship between the grey levels of neighboring pixels that contribute
to the general appearance of the image [13,14]. Texture is essential for the perception of different
regions and cover types on images [15]. Because the textural characteristics of images provide useful
information for discrimination, it is important to set features to quantitatively evaluate it [16].

Many scientists have tackled the problem of texture feature extraction; thus, a variety of
methods for quantifying spatial patterns have been proposed, such as variograms [17], fractals [18],
scale-invariant feature transform (SIFT) [19–21], wavelet transformation [10] and both first and second
order statistics [22]. One of the most common procedures used to measure texture involves the use of
a grey level co-occurrence matrix [13,23,24]. This matrix includes the relative frequencies with which
two neighbor pixels, separated at distance d with direction a, occur in the image, one with a grey
tone i, and other with a grey tone j. The set of features proposed by Haralick et al. [16] based on
GLCM has been recently assessed for diverse applications using very high resolution (VHR) imagery
such as GeoEye [25,26], WorldView-2 [27–30], WorldView-3 [31] or Unmanned Aerial Vehicles (UAVs)
imagery [32,33]. GLCM based features (H) have been successfully used in the agroforestry field
for diverse applications as land cover mapping of forested areas [24] and for crops identification
in agriculture [3,34], such as vineyards and orchards [4,34–37]. Regarding previous work in VHR
image texture analysis using wavelet decomposition, different texture features have been extracted
and assessed using VHR imagery, such as the local energy [38], the variance filter [39] or histogram
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signatures [40], among others. In the field of agriculture, Recio [41] applied features based on wavelet
planes (W) to update agricultural AGDBs.

According to Tuceryan and Jain [42], texture is a property of the context, and the definition of
the context is associated with the choice of a neighborhood of pixels, so called objects. Working at
object level allows neighboring pixels to be grouped in homogeneous areas with physical meaning,
which will later be characterized texturally and identified as independent units. In agriculture, it is
common to use pixel grouping methodologies based on Geographic Information System (GIS) data that
is superimposed on the image [9,43]. This process is known as parcel-level segmentation and is applied
especially in agriculture, where the dominant spatial unit is the cadastral parcel [44]. The boundaries
between adjacent parcels are helpful for detecting changes and updating agricultural databases because
these boundaries are relatively stable, while crops change frequently [45]. This approach assumes that
cartographic boundaries are stable over time and homogeneous in relation to a selected legend, so crops
can be identified but the boundaries between them are not modified. In parcel-level classification,
every pixel of the parcel is classified in the same category, which reduces the typical salt and pepper
effect obtained when classifying very high-resolution images at pixel level. This technique reduces
the amount of data that must be classified and produces results that are easily interpretable. Multiple
classification algorithms have been developed; the choice of one depends on the nature of the data
and the sample size. Classifiers can differ greatly in terms of the training information they require for
an accurate classification [46]. A training set that could be used to derive a highly accurate classification
from one classifier may yield a lower accuracy if used with another classifier [47]. For example, unequal
size of classes and small training samples do not influence the results of the Discriminant Analysis
classifier [48], which could be useful when a minority class wants to be identified among a big
population. Discriminant Analysis classifier has been assessed in Remote Sensing (RS) to identify
rainforest types [49], forest types [50] grass weeds [51,52] or crop stress [52–54].

The objective of this study is to determine whether it is possible to automatically detect uprooted
orchards by using only textural information calculated from orthophotos, with the aim of reducing
the amount of photointerpretation needed in the updating process of agricultural databases. The use
of orthophotos in automated RS applications would extend the utility of this image, which is freely
available in most cases, and thus reduce the need to purchase VHR satellite imagery for this particular
application To this aim, a combination of textural features based on GLCM and Wavelet planes
were used in this paper due to its acceptance in research scenarios analogous to the analyzed in this
investigation [4,34,37,41], and because it is widely acknowledged that properly combining multiple
features results in good classification performance [55]. The proposed approach is based on supervised
Discriminant Analysis classification performed at parcel-level in order to discriminate between
orchards and uprooted orchard parcels. Due to the large number of textural features that can be
drawn from each parcel, a statistical analysis was performed based on the study of both relevancy
and redundancy. This analysis aims to reduce the number of features without losing information and
maximizing the separability between uprooted orchard parcels and orchard parcels.

2. Materials and Methods

2.1. Study Area

Navarre, with a surface area of 10,400 km2, is located in the northern part of Spain at the western
end of the Pyrenees. Permanent crops represent approximately 10% of the agricultural area of Navarre,
and normally consist of small parcels scattered throughout the territory. Figure 1 shows the location of
the study sites and the area occupied by orchards in each of the municipalities of Navarre. The study
is focused on the parcels of the Orchard Register of 2006 that belong to the municipalities of Sartaguda,
Fontellas and Carcar, involving a total of 2072 study parcels. These parcels are candidates that are likely
to contain an uprooted orchard, as uprooted orchards can only occur in parcels in which an orchard
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was previously located. Parcel size in hectares (ha) ranges approximately from 0.01 ha to 20 ha, 0.4 ha
and 0.23 ha being the mean and the median of the parcels size, respectively.
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2.2. Data Preparation

The textural data were obtained from the National Plan of Aerial Orthophotography (PNOA)
digital orthophoto. Since 2004, in Spain, the PNOA provides annual, complete, country-wide coverage
with a spatial resolution of at least 0.5 m. This image is available for free and can be requested from the
website of the Spanish National Institute of Geography. Specifically, the used orthophoto was an 8-bit
RGB-NIR image with a spatial resolution of 0.25 m. This orthophoto was acquired in June 2010 with
a Digital Mapping Camera (DMC) sensor.

The definition of the study parcels, which constitute the basic unit of analysis in this research,
was based on the cartographic limits obtained from the cadaster corresponding to the study site.
The class Orchard (O) included different orchard species, i.e., apricot (Prunus armeniaca), almond
(Prunus dulcis), cherry (Prunus cerasus), plum (Prunus domestica), peach (Prunus persica), apple
(Malus dulcis), walnut (Juglans regia), pear (Pyrus communis) and blackthorn (Prunus spinosa). In orchards,
the trees are grown following three geometric patterns: regular (i.e., open-vase planting system
following square, rectangular, and triangular planting arrangements), linear (i.e., hedgerow planting
system following a rectangular planting arrangement in which the plant-to-plant distance within the
row is 1/3 to 1/2 of the distance between rows) and random (i.e., open-vase planting system following
an arbitrary distribution). The Uprooted class (U) consisted of parcels in which fruit trees have been
eliminated, and thus show no defined texture pattern. The reasons that can lead to an orchard owner
to uproot it are multiple. However, in commercial fruit cultivation, this practice is mainly related
to low productivity and cost effectiveness. After the removal of the trees, new orchards could be
planted again, or the land use of the parcel could change (e.g., arable crops, fallow lands, greenhouses,
and urban covers.) The Uprooted class includes this last type of parcels.
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To train the classification algorithm and to assess the results obtained with this methodology,
reliable data regarding land use are needed. With the aim of obtaining an accurate ground truth (GT),
the 2072 study parcels of the Orchard Register of 2006 were photointerpreted using the image from
2010. During this period, 1813 parcels remained as orchards, while 259 were found to be uprooted.
This imbalance between classes reflects a real scenario, where the number of uprooted parcels is
much less than the number of tree orchards. Once ground truth was carried out, 15% of the parcels
were randomly chosen as training samples for the classification process. The training sample is
composed of 14% uprooted parcels and 86% orchard parcels. The remaining 85%—approximately 1760
parcels—were used to verify the classification model. Figure 2 presents the general process.
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2.3. Parcel Level Image Segmentation

The segmentation is the process in which an image is totally divided into non overlapping regions
or objects [56] with a real physical meaning [57]. The objective is to simplify the representation
of an image in an easier way to analyze [58]. In the segmentation process, the minimum units of
classification are created, and to be correct or not depends on the pursued objectives.

In this study, the parcel-level segmentation of the images of 2006 and 2010 was performed using
the cartographic boundaries of the Cadaster of Navarre of 2006, so the cadastral parcel is the basic unit
of classification.

2.4. Textural Feature Extraction

The textural features based on GLCM and wavelet planes were calculated in this step of
the methodology.

2.4.1. Textural Features Based on GLCM

One of the most commonly used methods for mathematically measuring texture is based on
the extraction of second-order statistical features from the GLCM [59]. Haralick et al. [16] proposed
spatial co-occurrence as a basic structure in the derivation of quantitative features that characterize
the texture of digital images. They assumed that the spatial variability information of an image was
contained in the “average” spatial relationships that grey tones in the image had with one another.
These relationships are summarized in co-occurrence matrices, which are calculated for four
directions (0◦, 45◦, 90◦, and 135◦) between neighboring pixels within a given parcel. The GLCM
is a two-dimensional histogram of grey level for a pair of pixels that are separated by a fixed spatial
relationship and distance. The GLCM approximates the joint probability distribution of a pair of pixels.

Figure 3B represents the GLCM of an orchard (Figure 3(B.1)) and an uprooted orchard
(Figure 3(B.2)). It also includes the logarithmic transformation of both GLCMs. Since the GLCM
is calculated from an orthophoto of 8 bits, a square matrix of 256 × 256 pixels is obtained. Each pixel in
the matrix represents a co-occurrence combination, with the pixels of the main diagonal representing
pairs of pixels in the orthophoto with same grey level. Lighter pixels represent more frequent
co-occurrence combinations of their corresponding grey levels. As the pixels move away from the
diagonal, they represent greater differences in grey levels. In the Uprooted class case (Figure 3(B.2)),
the information is located near the diagonal because in an homogeneous image, most pixels show
a grey level identical to that of their neighbors. On the other hand, the highly contrasted texture
of an Orchard (Figure 3(B.1)) generates a GLCM with more expansion with respect to the diagonal.
Haralick et al. [16] proposed a set of textural features that describe the distribution of data in the
GLCM. In this study, we calculated 8 of these features: homogeneity, entropy, angular second moment
(ASM), contrast, dissimilarity, mean, standard deviation and correlation (definitions are provided
in Table 1). All features were calculated considering four different directions (0◦, 45◦, 90◦, and 135◦)
and a multi-directional relationship (All) in the red and green semi-sum band; thus, each parcel is
characterized by 40 textural features based on GLCM.
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Table 1. Textural features based on GLCM.

GLCM Based Feature Equation Direction (◦) Name

Homogeneity
N−1
∑

i=0

N−1
∑

j=0

Pi,j

1 + (i− j)2

0 h_h_0
45 h_h_45
90 h_h_90

135 h_h_135
All h_h_All

Dissimilarity
N−1
∑

i=0

N−1
∑

j=0
Pi,j|i− j|

0 h_d_0
45 h_d_45
90 h_d_90

135 h_d_135
All h_d_All

Contrast
N−1
∑

i=0

N−1
∑

j=0
Pi,j(i− j)2

0 h_cn_0
45 h_cn_45
90 h_cn_90

135 h_cn_135
All h_cn_All

Entropy
N−1
∑

i=0

N−1
∑

j=0
−Pi,j ln Pi,j

0 h_e_0
45 h_e_45
90 h_e_90

135 h_e_135
All h_e_All

Angular second moment
N−1
∑

i=0

N−1
∑

j=0
P2

i,j

0 h_a_0
45 h_a_45
90 h_a_90

135 h_a_135
All h_a_All

Mean
N−1
∑

i=0
iP(x) = µI

0 h_m_0
45 h_m_45
90 h_m_90

135 h_m_135
All h_m_All

Standard Deviation

√
N−1
∑

i=0

N−1
∑

j=0
Pi,j(i− µI)

2 = σI

0 h_s_0
45 h_s_45
90 h_s_90

135 h_s_135
All h_s_All

Correlation
N−1
∑

i=0

N−1
∑

j=0

(i− µI)(j− µJ)

σIσJ

0 h_cr_0
45 h_ cr_45
90 h_cr_90

135 h_cr_135
All h_cr_All

where N is the number of grey levels; P is the normalized symmetric
GLCM of dimension N × N; Pi,j is the (i,j)th element of P.

µJ =
N−1
∑

i=0

N−1
∑

j=0
jPi,j σJ =

√
N−1
∑

i=0

N−1
∑

j=0
Pi,j(j− µJ)

2
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Figure 3. (A.1) Orthophoto of an Orchard; (A.2) orthophoto of an Uprooted orchard (B.1); co-occurrence
matrix for an Orchard, in real and logarithmic scales; (B.2) co-occurrence matrix for an Uprooted orchard
(C.1); Wavelet plane 1 image for an Orchard (C.2); and wavelet plane 1 image for an Uprooted orchard.

2.4.2. Plane-Based Wavelet Features

Wavelet transform is a powerful tool for discriminating textures [60,61], as it allows an image’s
spatial variability to be decomposed into different frequency components. If an object exhibits a fine
texture, as observed in uprooted parcels, its information is mostly concentrated in the low-frequency
region. On the contrary, if an object exhibits a coarse texture, most of its information is centered in the
high-frequency region.

The discrete wavelet transform can be performed with several different algorithms. One of the
most popular ones is the à trous algorithm [62]. In this study, the à trous algorithm is implemented
by using a bi-dimensional low pass filter associated to a B3 cubic spline function. The convolution
of an original 2j resolution image with the mentioned filter results in a degraded image with a 2j-1

resolution. The difference between an image and its degraded version will generate a wavelet plane or
wavelet image that contains the spatial detail information that is lost between 2j and 2j-1 resolution
images, that is, the high frequency information. To perform this analysis, we have obtained wavelet
images at 3 different levels (plane 1, plane 2 and plane 3), which are added to obtain a total wavelet
or detail image (plane T). From these wavelet images, maximum, minimum, standard deviation and
range are calculated for each parcel, resulting in a vector of 16 features for each parcel (definitions are
provided in Table 2).

Figure 3C shows an example of the wavelet images in plane 1 corresponding to the orchard
(Figure 3(C.1)) and the uprooted parcel (Figure 3(C.2)). Wavelet planes obtained from uprooted parcels
are very homogenous, while those calculated with orchard parcels present high-frequency information
derived from the trees’ borders. As observed in Figure 3(C.1), in these wavelet planes, the difference
between maximum and minimum is lower than that in the orchards parcels (Figure 3(C.2)),
which indicates a greater range and standard deviation in the latter. This fact could allow for the
discrimination between these two classes.
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Table 2. Plane-based wavelet features.

Wavelet Feature Equation Plane Name

Standard deviation
1

L− 1
·

L
∑

i=1
(xi − x)

1 w_s_1
2 w_s_2
3 w_s_3
4 w_s_4

Maximum xmax

1 w_mx_1
2 w_mx_2
3 w_mx_3
4 w_mx_4

Minimum xmin

1 w_mn_1
2 w_mn_2
3 w_mn_3
4 w_mn_4

Range xmax − xmin

1 w_s_1
2 w_s_2
3 w_s_3
4 w_s_4

where L is the number of pixels of the parcel; xi is the value of each pixel of the parcel.

x =
1
L
·

L
∑

i=1
xi

2.5. Feature Selection

After calculating the textural features, the most appropriate to discriminate between the Uprooted
and Orchard classes are selected. Detecting the most suitable features reduces the computational
complexity and increases the generalization capability of the classification algorithm [63]. Therefore,
suitable feature selection is expected to enhance the discrimination between uprooted and orchard
parcels in this study. For this, the features evaluated are classified as: (1) relevant, i.e. those that
influence the discrimination of a specific class; (2) not relevant, i.e. those that do not influence the
discrimination; and (3) redundant, i.e., those that do not provide any different information [64].
Redundant features can be both relevant and not relevant. The objective of any feature selection
analysis is to identify relevant and non-redundant features. The methodology used here is based on
the study of relevance and redundancy.

To analyze the relevance of each variable, Student’s t-test was performed. The T statistic is
particularly suitable for measuring the separability between two groups [64] and can be used as
distance measure to analyze the efficacy of each feature for discriminating between Orchard and
Uprooted classes [65]. T between two classes is defined as follows:

T =
|m1 −m2|√

σ2
1

n1
+

σ2
2

n2

(1)

where, m1, σ2
1 , n1, m2, σ2

2 , and n1 are the mean, variance and size of each class, respectively. Low T
values indicate that the differences between Uprooted and Orchard classes are low, whereas by
increasing the differences between the classes, T increases as well. Before performing the t-test,
the assumption of normality was evaluated using a Kolmogorov–Smirnov test. In the case of a negative
result, a logarithmic transformation was applied.

As previously stated T measures the statistical distance between classes for each feature but does
not provide any information about the redundancy or correlation between the features. For this reason,
a principal components analysis was performed to qualitatively explore the interrelationship between
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the features and thus complete the separability analysis. Loading plots are dispersion graphs that
show the location of each feature in the space defined by the obtained principal components (PC),
also called factors. The coordinates of each feature in each PC represent the correlation of said feature
and each of the factors. In addition, the proximity between features indicates the degree of correlation
between them; therefore, when the correlation equals one, the points coincide. Visual analysis of
these graphs is useful for understanding how the features are grouped together. Once the groups of
features that provide the same information were identified, the most relevant textural feature of each
group was selected, i.e., the one providing the highest T. To carry out these feature selection analyses,
100 representative parcels for both Uprooted and Orchard classes were randomly selected from the
study parcels.

2.6. Parcel-Level Classification

A Discriminant Analysis classification algorithm was applied to identify uprooted parcels using
textural information. This classification algorithm involves creating a linear combination of textural
features that maximizes the discrimination between the Uprooted class and Orchard class, called
a discriminant function. The incorporation of the features in this function was performed with the
method, which can add as many textural features as desired to the discriminant function. Several
studies have successfully used this classification method in remote sensing [66,67].

The identification of uprooted parcels was carried out considering: (1) all calculated features;
and (2) the selected features after performing the t-test analysis and PCA. These two types of
classifications were performed using GLCM based textural features (H) and wavelet planes-based
features (W), both independently and in combination (H+W).

2.7. Performance Evaluation for Uprooted Parcel Identification

The automatically detected uprooted parcels were compared, parcel by parcel, with the ground
truth. Each parcel used in the study fell into one of the four categories shown in the confusion matrix
presented in Table 3. Quality indices for binary classification (see Table 4) were computed considering
the Uprooted class as positive class.

Table 3. Confusion matrix for binary classification.

Classified as Uprooted Classified as Orchard

GT Uprooted True Positive (TP) False Negative (FN)
GT Orchard False Positive (FP) True Negative (TN)

Table 4. Quality indices for binary classification.

Accuracy Precision True Positive Rate True Negative Rate

A =
TP + TN

TP + FP + FN + TN
P =

TP
TP + FP

TPR =
TP

TP + FN
TNR =

TN
TN + FP

3. Results

3.1. Feature Selection

3.1.1. Evaluation of GLCM Based Textural Features

(a) Redundancy study

The principal component analysis of GLCM based textural features extracted five principal
components that reproduce 93.32% of the original variability. Most of the variability of the data
is concentrated in the first three components; thus, visualization of loading plots formed by these
components will provide information about data redundancy (Figure 4).
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Entropy, dissimilarity, ASM and homogeneity are assigned to the first principal component (PC1),
which are divided into two groups. Entropy and dissimilarity (to a lesser extent) are on the negative
side of the axis, while ASM and homogeneity are on the positive side. Entropy and the group formed
by ASM and homogeneity are close to the axis; however, they are located in maximum opposing
positions, which indicate a strong negative correlation. On the other hand, dissimilarity is not very
close to the PC1 axis, nor it is in an extreme position, indicating that this feature correlates to some
extent with the second principal component. The axis of the second principal component (PC2) is
represented mainly by the contrast, with which it has a high correlation, and the axis of the third
principal component (PC3) is represented mainly by the features correlation and mean, which correlate
negatively. Standard deviation is not particularly correlated with any of the principal components.
In PC1, PC2 and PC3, the features extracted in different directions are highly correlated with each
other; thus, they are located at close positions.

(b) Separability Analysis

Figure 5A shows the values of T obtained for the different GLCM based features according to
the direction used to generate the GLCM. The axes of the diagram represent the studied directions
(0◦, 45◦, 90◦, 135◦, and All), while the lines that form a pentagon show the observed T for each feature.
These pentagons are different in shape and size, indicating that the discriminant power varies for each
feature, and in some cases, with the calculation angle. In addition, the pentagons intersect each other,
indicating that the T ranking is not maintained for all spatial relationships.

Correlation, ASM and entropy are the features that show the highest T, while ASM and entropy
provide comparable values for all given spatial directions; correlation shows a slight decrease in
T for 135◦ and 45◦. On the other hand, dissimilarity and standard deviation show the lowest T,
with dissimilarity meeting the equal means assumption for all angles and standard deviations for
45◦. In general, pentagons tend to be regular and do not have a noticeable orientation toward any
given direction, indicating analogous separability in all spatial relationships. However, for contrast,
correlation and dissimilarity, there is a decline in T for 135◦ and 45◦. In homogeneity, there is also
a slight variation in separability for these two spatial relationships, showing a slight increase for 135◦

and a decrease for 45◦.
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The results of the studies of relevance and redundancy justify choosing entropy, contrast and
correlation in the spatial direction All as representatives of GLCM based textural features.Remote Sens. 2017, 9, 492  12 of 22 
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3.1.2. Evaluation of Textural Features Based on Wavelet Planes

(a) Redundancy Study

The position of the variables in the factorial space is explained in the two-dimensional graph of
factor loadings of the first and second component (Figure 6). There are two clear groups of variables
along the axis representing the first principal component (PC1) and the area adjacent to the axis.
On the positive side of this axis are maximum and range (and standard deviation to a lesser extent),
while minimum is on the negative side. The fact that both sets are close to the axis and in maximum
opposing positions indicates that they are negatively correlated. Meanwhile, standard deviation is the
only feature with weight in the second principal component (PC2), indicating that it provides different
information than the features grouped along the first principal component.

(b) Separability analysis

Figure 5B shows the T obtained for the studied features by varying the wavelet plane used for
calculation. The axes of the diagram represent each of the three wavelet planes and their sum wavelet
plane, while lines show the observed T for each feature. These lines have different diamond size and
shape and do not intersect, indicating that although the discriminatory power varies in each plane,
the T ranking is maintained.

Standard deviation is the feature with the highest T, while maximum has the lowest T. Rhomboids
point towards plane 3; this is particularly noticeable for maximum and minimum, which show higher
values of T in this plane and therefore higher discriminant power of the same. The distance between
the classes Uprooted and Orchard increases for all the textural features in plane 3; the separability
decreases slightly for plane 2 and more pronouncedly for plane 1. These results suggest that, in regard
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to differentiating between Uprooted and Orchard classes, 0.25 m resolution images have high frequency
or detail components that may be considered as noise. The detail that is eliminated in plane 1, when
going from 0.25 m to 0.5 m resolution, corresponds to small structures, which are not representative
of the main texture. However, when going from 1 m to 2 m, the detail corresponds to larger
structures or textures to differentiate, making plane 3 more appropriate for differentiating between the
defined classes.

The studies of relevance and redundancy justify choosing the minimum and standard deviation
in plane 3 as representatives of all extracted wavelet plane-based features.
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3.2. Parcel-Level Classification

Table 5 shows the results of a comparison between automatic classifications and the ground truth.
Texture features (Tex) are known to be useful in the identification of uprooted parcels. The highest
TNR is provided by Tex_Total_H+W, with 0.9, while the maximum TPR is 0.849, which is achieved with
Tex_Sel_W. The highest accuracy and precision are obtained with Tex_Sel_H+W, reaching A = 0.881
and P = 0.516.

Table 5. Classifications and their results in terms of accuracy, precision, true positive rate and true
negative rate.

Number of Features Name A P TPR TNR

All
features

GLCM 40 Tex_Total _H 0.876 0.504 0.741 0.896
Wavelet 16 Tex_Total_W 0.838 0.416 0.722 0.855

GLCM+Wavelet 56 Tex_Total_H+W 0.871 0.489 0.672 0.900

Selected
features

GLCM 3 Tex_Sel_H 0.866 0.477 0.757 0.881
Wavelet 2 Tex_Sel_W 0.789 0.355 0.849 0.780

GLCM+Wavelet 5 Tex_Sel_H+W 0.881 0.516 0.803 0.892

3.3. Effectiveness of Textural Feature Selection

In this section, the effectiveness of textural feature selection is studied; thus, classifications that
use all textural features (Total) and classifications that only consider features selected in Section 3.1
(Sel) are compared.
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Classifications performed using all wavelet features, Tex_Total_W, provided a greater accuracy
and true negative rate than classifications considering only the selected features. However, the
approach Tex_Sel_W achieves the highest true positive rate values of the entire study, reaching 0.849.
Classifications produced using GLCM based textural features follow this behavior as well: They
provide better accuracy and true negative rate values in Tex_Total_H classification and a superior true
positive rate in Tex_Sel_H, with 0.757. When using both GLCM and wavelet based textural features,
the explained pattern changes. By using textural features separately, Sel classifications only show
higher values of true positive rate; however, by combining both feature types, Sel classification also
achieves higher accuracy than Total.

All classifications performed using only selected features provide higher true positive rates than
classifications performed with all the calculated textural features. This justifies the extraction of only
entropy, contrast, correlation, minimum and wavelet standard deviation. Reducing the calculation of
features to only the relevant and non-redundant features greatly decreases the calculation time and
simplifies data management.

3.4. Comparison of Textural Feature Performance

In Table 5, textural features based on GLCM and wavelet transforms can be compared. When
analyzing these two different approaches, GLCM features provide better values of the true negative
rate than wavelet features in both Total and Sel classifications. The combination of GLCM and wavelet
features (H+W) increases TNR in the two cases. The evaluation of the remaining performance measures
reveals better values when using GLCM based features in Total and Sel classifications. The only quality
measure in which wavelet features gives better values is the true positive rate with selected features.

4. Discussion

4.1. Optimisation of the Uprooted Detection Process

The present study shows that the selection of features that maximized discrimination between
Orchard and Uprooted classes improved the results. The highest values for true positive rate
are obtained using only the selected features, indicating better identification of uprooted parcels
when using this methodology. The finding that better results were achieved using fewer features is
particularly interesting because it decreases the time needed to extract textural information. Reducing
the computational cost is very important for extrapolating methodologies developed in pilot areas
to large tracts of land. This applies especially when working with very high-resolution images such
as orthophotos, when reducing the process time and computing resources can make the difference
between efficiency and ineffectiveness of a methodology. The feature selection involves reducing the
number of calculated features from 56 to 5, which means a decrease of approximately 91% of the
features. In this case, calculation and exporting (into a format compatible with standard statistical
analysis programs) only the selected features saves near 90% of processing time.

The classification based on the selected features achieved an uprooted identification rate (i.e., true
positive rate) over 80%, an orchard identification rate (i.e., true negative rate) close to 90% and a general
accuracy of over 88%. Although other studies centered in the identification of uprooted orchard were
not found, several authors have proposed approaches to automatically identify permanent crops
using VHR imagery. In those studies permanent crops were detected as target class [4,34,37,68] or in
a multi-class Land Use/Land Cover (LULC) approach [69] using different combinations of spectral
and textural information. This fact allows indirectly comparing the results of our investigation with
the obtained in previous studies.

Kass et al. [4] compared the performance of QuickBird images and orthophotos to identify
orchards and vineyards using GLCM textural features, resulting in a high overall accuracy, 92% and
88% using QuickBird and orthophotos respectively, in line with our findings. The user´s accuracy
obtained by the orchard class reached values close to 90% with QuickBird images and close to 80%
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with orthophotos. They stated that the application of their methodology to the orthophotos alone
resulted in a lower accuracy but still acceptable. Consequently, they considered orthophotos as
an alternative source of information for this kind of detection, especially when QuickBird data were
not available. Warner and Steinmaus [34] performed a spatial classification of orchards and vineyards
with high spatial resolution IKONOS panchromatic imagery. They compared the performance of
GLCM and spatial autocorrelation-based features. The latter classification resulted in an estimated
accuracy of 95%. By comparison, a maximum likelihood classification of co-occurrence texture
bands had a lower accuracy (86%). Similarly, the investigation performed by Akar and Güngör [37]
aimed to determine the extent and distribution of hazelnuts and tea grown areas using spectral
information and textural features derived from GLCM and Gabor filter. The source of information
was WorldView-2 images. Results showed that integrating spectral data and texture information
provided accuracies of 83.54% and 87.89% when textural features derived from GLCM and Gabor filter
were used respectively. The accuracy increased by combining different groups of texture variables.
Finally, the work of Ruiz et al. [70] analyzed textural features based on GLCM, energy filters and
edgeness factor, Gabor filters, and wavelet transform to classify VHR imagery in different types of
landscapes. In their study, Ruiz et al. [68] identified citrus orchards in a multi-class LULC approach.
The combination of the four types of textural features reached 80% producer´s accuracy and 86%
user’s accuracy. The authors concluded that the combination of GLCM based features with any of the
other methods, energy filters, Gabor filters or wavelets, produced a significant increase in the overall
accuracy levels, especially with the latter. This is probably due to the complementary condition of the
methods based on wavelet filtering with respect to the direct statistical method based on the GLCM.

The results of the methodology proposed in this paper are consistent with other studies, both in
accuracy and general conclusions. This fact ensures the potential and usefulness of the orthophoto as
source of information in automatic RS procedures.

4.2. Error Sources

There are several issues that can be identified as possible sources of classification errors. First,
the lack of agreement between image boundaries and the cartography could produce objects that are
not representative of reality during the parcel level segmentation process. For this reason, it is very
important to have high quality cartography and a correctly geo-referenced image. Second, the existence
of two different land uses in one single parcel is infrequent but adds complexity to the technique, as it
could be solved by refining the initial segmentation using multi-level segmentation [71,72]. Third,
the Uprooted class is very heterogeneous because after the removal of the trees, the land use can be
diverse. In some cases, the new texture of the parcel can be similar to the texture presented by the
Orchard class. This may lead to misclassification (false negatives). Fourth, Orchard class is more
homogeneous than the Uprooted class; however, false positives can be obtained when there is low
contrast between the trees and ground (e.g., there is grass within the trees), when the trees are very small
(i.e., distribution pattern is negligible) or when the trees are randomly located throughout the parcel
(Figure 7). In randomly distributed parcels, false positives occur due to the lack of a regular texture.
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4.3. Automatic Identification of Uprooted Parcels as an Aid to Photointerpretation

The automatic detection methodology of uprooted orchards presented in this paper does not
aim to completely replace photointerpretation in the updating process of agricultural databases,
since it restricts the automatic identification to parcels that are classified with high certainty [9].
This methodology is proposed to serve as a phase of the updating process, incorporated therein to
reduce the number of parcels that must be photointerpreted.

Photointerpretation should fit as much as possible to incorrectly classified parcels, i.e., false
positives and false negatives. For example, Table 4 shows classifications in which the percentage
of correctly classified parcels is near 85%. In such cases, photointerpretation should be limited to
incorrectly classified parcels, which account for approximately 15%.

In reality, when updating, there is no ground truth. Therefore, the delimitation of these false
positives and negatives can be performed using the probability of group membership. When classifying
a parcel using discriminant analysis, the probabilities of group membership for all the classes
(Uprooted/Orchard) are obtained. These probabilities can provide significant information about
the confidence for the attribution of a case to a class [73]. The expected confidence for an assignment is
higher when the probability of membership in the class is high [74]. If a parcel has similar membership
to both classes, this indicates an unstable classification [75]. On the contrary, if a parcel has similar
membership to both classes, this indicates an unreliable classification. Candidates for revision belong
to this last case.

Figure 8a shows a histogram of the probability of membership in the Uprooted class provided
by the classification Tex_Sel_H+W (the histogram of the probability of membership in the Orchard
class is opposite to that of the Uprooted class). The parcels classified as uprooted have a membership
probability in the Uprooted class that is higher than 0.5, while the parcels classified as Orchard
have a membership probability in the Uprooted class that is lower than 0.5. In this figure, parcel
accumulation at the extremes of the graphic can be observed. These parcels have been classified as
uprooted (high probability area) or orchard (low probability area) with a high degree of confidence.
The parcels located in the area close to 0.5 have been assigned to both classes with a low degree of
confidence. When confronting the histogram of probability of membership in the Uprooted class with
the ground truth (Figure 8b), confusion between classes can be observed in the central part of the
figure. Parcel candidates for revision are located in the central part of the graphic.



Remote Sens. 2017, 9, 492 17 of 22

Remote Sens. 2017, 9, 492  17 of 22 

 

the classes Orchard or Uprooted that are barely discriminable between them only by their texture, 
such as those presented in Figure 7. In the example shown in Figure 8, if the post-classification review 
threshold is set at 0.9, these problematic parcels that are incorrectly classified and not included in the 
post-classification photointerpretation phase involve an error in the methodology of 3%, while, if the 
post-classification review threshold is fixed at 0.7, this error reaches 7%. This means that 3% or 7% of 
the study parcels would be incorrectly classified in the whole study area. The review threshold must 
be set by the technician depending on the admissible error of the database. 

 
Figure 8. (a) Histogram showing the probability of membership in the class Uprooted obtained with 
Tex_Sel_H+W. (b) Histogram showing the probability of membership in the class Uprooted obtained 
with Tex_Sel_H+W confronted with the ground truth. 

5. Conclusions 

The usefulness of GLCM and wavelet based textural features calculated from orthophoto at 
parcel-level for automatically detecting uprooted parcels by means of discriminant analysis 
classification algorithm has been demonstrated. The obtained classification results, which achieved a 
true positive rate of over 80% and an accuracy of over 88%, justify the use of the orthophoto as an 
alternative information source to satellite imagery that can be used to differentiate between uprooted 
parcels and orchards. In Spain, where the PNOA provides annual orthophoto coverage for 
topographic mapping development, this is an interesting finding from both a technical and economic 
point of view. Many countries acquire orthophotos periodically for topographic and cadastral 
purposes. The use of orthophotos in automated RS applications, such as the one presented in this 

Figure 8. (a) Histogram showing the probability of membership in the class Uprooted obtained with
Tex_Sel_H+W; (b) Histogram showing the probability of membership in the class Uprooted obtained
with Tex_Sel_H+W confronted with the ground truth.

The number of parcels that need to be revised depends on a chosen threshold value: the harsher
the threshold, the greater the number of parcels to revise. For example, setting a threshold at
0.9 involves the review of all the parcels with a probability of membership that is less than 0.9 in
both classes (probability of membership in the Uprooted class between 0.1 and 0.9). In the example,
this decision involves a 60% reduction in the photointerpretation. If the threshold is fixed at 0.8,
the photointerpretation decreases by 75%, while, if it is fixed at 0.7, this percentage reaches 85%.
Not many studies have addressed this issue so it is not easy to set a threshold based on literature;
however, as an example, if the threshold is set at 0.7, and extrapolating the results of this study to
the total Orchard Register of Navarra 2006, it will be possible to reduce the photointerpretation from
2,3000 parcels to less than 3500.

In general, the obtained precision is lower than accuracy, true positive rate and true negative
rate. Precision indicates over-classification in the Uprooted class, i.e., a proportion of the parcels
classified as uprooted actually are not. In the example shown in Figure 8b (P = 0.516), 49.4%
of the parcels classified as uprooted are actually orchards. However, as observed in this figure,
the over-classification in the Uprooted class does not involve a large proportion of all study parcels.
Moreover, a large number of these parcels will be reviewed and re-assigned to their correct class during
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the post-classification review, based on their probability membership values. In this example, setting
the review threshold at 0.9 would imply the photointerpretation and correct identification of more
than 90% of the over-classified uprooted parcels. If the threshold is fixed at 0.8, the photointerpretation
and re-assignation of the over-classified uprooted parcels decreases to 68%, while, if it is fixed at 0.7,
this percentage reaches 51%. The truly problematic parcels are those that are incorrectly classified
and also exhibit membership probability values outside the review threshold. These are parcels of
the classes Orchard or Uprooted that are barely discriminable between them only by their texture,
such as those presented in Figure 7. In the example shown in Figure 8, if the post-classification review
threshold is set at 0.9, these problematic parcels that are incorrectly classified and not included in the
post-classification photointerpretation phase involve an error in the methodology of 3%, while, if the
post-classification review threshold is fixed at 0.7, this error reaches 7%. This means that 3% or 7% of
the study parcels would be incorrectly classified in the whole study area. The review threshold must
be set by the technician depending on the admissible error of the database.

5. Conclusions

The usefulness of GLCM and wavelet based textural features calculated from orthophoto
at parcel-level for automatically detecting uprooted parcels by means of discriminant analysis
classification algorithm has been demonstrated. The obtained classification results, which achieved
a true positive rate of over 80% and an accuracy of over 88%, justify the use of the orthophoto as
an alternative information source to satellite imagery that can be used to differentiate between uprooted
parcels and orchards. In Spain, where the PNOA provides annual orthophoto coverage for topographic
mapping development, this is an interesting finding from both a technical and economic point of view.
Many countries acquire orthophotos periodically for topographic and cadastral purposes. The use of
orthophotos in automated RS applications, such as the one presented in this article, could extend the
utility of these datasets, which are freely available in most cases, and thus reduce the need to purchase
satellite imagery for this particular application.

The proposed methodology could facilitate the updating procedure of the analyzed agricultural
database by reducing the number of fields to photointerpret by 60–85%, depending on the membership
threshold value selected, and could be easily adopted by different stakeholders and could increase
significantly the efficiency of agricultural database updating tasks. The approach allows visualizing
the results in a GIS environment, facilitating the location of the parcels to be photointerpreted.

While this study focuses on the identification of uprooted orchards, it can also be applied to locate
other permanent crops because they often have a regular plantation pattern that can be represented by
textural features. The identification of uprooted vineyards, citrus groves or olive groves helps with the
maintenance of the Permanent Crops Inventory, which helps to meet the requirements of the European
Common Policy for subsidy assignation.
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Abbreviations

The following abbreviations area used in this manuscript in order of appearance

AGDBs Agricultural geographical databases
SIFT Scale-Invariant Feature Transform
GLCM Grey Levels Co-occurrence Matrix
VHR Very High Resolution
UAV Unmanned Aerial Vehicle
GIS Geographic Information System
RS Remote Sensing
PNOA National Plan of Aerial Orthophotography
DMC Digital Mapping Camera
U Uprooted class
O Orchard class
GT Ground Truth
H GLCM based features
W Wavelet plane based features
ASM Angular Second Moment
PCA Principal Component Analysis
PC Principal Component
TPR True Positive Rate
TNR True Negative Rate
A Accuracy
P Precision
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