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Abstract: It is important to predict snow disasters to prevent and reduce hazards in pastoral areas.
In this study, we build a potential risk assessment model based on a logistic regression of 33 snow
disaster events that occurred in Qinghai Province. A simulation model of the snow disaster early
warning is established using a back propagation artificial neural network (BP-ANN) method and is
then validated. The results show: (1) the potential risk of a snow disaster in the Qinghai Province is
mainly determined by five factors. Three factors are positively associated, the maximum snow depth,
snow-covered days (SCDs), and slope, and two are negative factors, annual mean temperature and
per capita gross domestic product (GDP); (2) the key factors that contribute to the prediction of a
snow disaster are (from the largest to smallest contribution): the mean temperature, probability of a
spring snow disaster, potential risk of a snow disaster, continual days of a mean daily temperature
below —5 °C, and fractional snow-covered area; and (3) the BP-ANN model for an early warning
of snow disaster is a practicable predictive method with an overall accuracy of 80%. This model
has quite a few advantages over previously published models, such as it is raster-based, has a high
resolution, and has an ideal capacity of generalization and prediction. The model output not only tells
which county has a disaster (published models can) but also tells where and the degree of damage at
a 500 m pixel scale resolution (published models cannot).
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1. Introduction

Snow disasters in pastoral regions are meteorological disasters that affect animal husbandry
because of heavy snow, sustained low temperatures, and prolonged snow cover. These disasters
are serious threats to animal production and lives in pastoral regions because pastures are covered
by snow, which makes livestock foraging difficult and can result in livestock deaths [1-3]. Snow
disasters generally begin in October and end in April of the following year in the Tibetan Plateau [4].
Spatially, snow disasters mainly occur in high-elevation and high-latitude areas, as well as in rich
natural grasslands, especially in Inner Mongolia, Xinjiang, Qinghai, Tibet, and other places [5]. Qinghai
Province is located on the northeastern part of the Tibetan Plateau and often receives heavy snowfall
in the winter and spring because of the influence of the plateau’s specific geographic environment
and climatic conditions. These conditions threaten the personal safety of herdsmen and their personal
properties. In addition, heavy snow restricts the normal process of animal husbandry [2,5-7]. Therefore,
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it is important to construct accurate risk assessments of snow-caused disasters and pre-disaster early
warning systems to prevent and reduce these disasters.

In recent years, many experts and scholars have examined various aspects of snow disaster
prediction (by calculating the probability of a snow disaster occurrence during a certain time and
in a specific area according to the existing data) and potential risk assessment (by simulating the
geographic position, spatial distribution, and hazard degree of a snow disaster that has not yet
occurred according to the simulation data) using remote sensing (RS) and geographic information
system (GIS) technologies. The studies mainly focused on snow disaster monitoring methods [8-10],
spatiotemporal analyses of the disaster-causing factors [7,11,12], snow disaster risk zoning and
evaluation [12-18], and snow disaster early warning modeling and hazard assessment [1,3,18-22].
Many of these studies are both qualitative and quantitative and span from hazard evaluations of snow
disasters to spatiotemporal early warning systems for snow disasters, as well as from single-factor
models to multi-factor models. These various methods provide a theoretical basis for snow disaster
early warning and hazard evaluation. Snow disaster early warning includes the probabilistic prediction
of the hazard area and intensity of a snow disaster that is most likely to occur in the near future. Some
studies only focused on assessing prior snow-caused disasters for the factors that caused the disasters
and the associated damages [2,7,18,23], the vulnerability and resilience of a hazard-bearing body [17,24]
and multi-factor, comprehensive early warning models [3,21,25]. However, only a few studies intended
to combine potential risk assessments of a certain area into an early warning model for snow-caused
disasters. The existing results of modeling a snow disaster for early warning purposes have some
inherent weaknesses. For instance, some models do not consider the effects of factors outside the
grassland animal husbandry system on snow disasters [26] and the effects of human intervention on
the degree of damage of snow disasters [21]. They also ignored the effects of herding, meteorological
factors, and other factors on snow disaster hazards [3]. The previous results of the simulation did
not agree with the actual situation [19] and did not evaluate deviations in estimated snow disaster
levels [25]. In summary, the existing models of snow disaster are generally associated with certain
limitations, and no study has provided raster-based temporal-spatial predictions of snow disasters
using machine learning methods.

Therefore, a study is presented in this paper using RS and GIS technologies combined with the
statistic and climatic data of the Qinghai pastoral area with the following objectives: (1) to construct a
logistic regression model of the potential risk for snow disasters; (2) to establish a back propagation
artificial neural network (BP-ANN) early warning model for snow disasters; and (3) to assess the
accuracy of the snow disaster early warning results using known snow disaster cases. Through this
study, we hope to provide theoretical support for scientific early warning of snow disasters, disaster
prevention and reduction schemes, post-disaster rescue strategies, and post-disaster recovery plans.

2. Study Area and Data

2.1. Study Area

Qinghai Province (31°09' N-39°19" N, 89°35’ E-103°04’ E) is located on the northeastern edge
of the Qinghai-Tibet Plateau. The province has an average elevation of above 3500 m and an area of
721,200 km?. The topography and landforms in the area are complex. Notably, many mountainous and
low-lying terrain areas are located in the eastern part of the study area, and numerous plateaus and
basins exist in the northwest (Figure 1). Qinghai is characterized as a typical plateau continental climate
with low temperatures, large temperature variations between day and night, low and concentrated
rainfall, long hours of sunshine, and high solar radiation with large regional differences and significant
vertical variations. The grassland types are mainly alpine meadow and alpine steppe and account
for 81% of the total pasture area in the study area [27]. Grassland utilization is mainly dominated by
fenced grazing and four-season rotational grazing.
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Figure 1. The topography of the Qinghai Province and locations of meteorological stations.

2.2. Data

2.2.1. Remote Sensing Data

This study uses Moderate Resolution Imaging Spectroradiometer (MODIS) daily snow cover
products (MOD10A1 and MYD10A1) (500 m resolution) from the Terra and Aqua satellites between
2001 and 2015 and the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E)
daily snow water equivalent (SWE) products (25 km resolution) and snow depth data (25 km
resolution), which are derived from the long-term snow depth dataset of China developed by
Dr. Che Tao [28] from 1979 to 2014 (Heihe Planning Data Management Center) [29].

2.2.2. Meteorological Observation Data

Daily temperature, precipitation, snow depth, and wind speed data were collected at
meteorological stations and were obtained from the Chinese Meteorological Data Sharing Service
System (CMDS) [30] between 2000 and 2015. This study uses the widely applied ANUSPLIN 4.3
software [31,32], which was developed by Hutchinson (2004) [33] based on the thin plate spline theory
for climate data surface fitting to spatially interpret the observation data from meteorological stations
to obtain five indexes (continual days of mean daily temperature below 0 °C, continual days of mean
daily temperature below —5 °C, continual days of mean daily temperature below —10 °C, mean
temperature, and total precipitation) of weather conditions during a disaster with a spatial resolution
of 500 m.

2.2.3. Statistical Data

Statistical population and livestock data (i.e., quantity of livestock at the beginning of the year and
end of the year), socioeconomic data (i.e., per capita gross domestic product (GDP) and per livestock
GDP), and other data from each county-level administrative district in the Qinghai Province from 2000
to 2015 were obtained. The data were collected by the Statistics Bureau of Qinghai Province and were
interpolated into raster data (500 m resolution) using spatialization methods.
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Data from 33 typical cases (from China’s Meteorological Disaster Volume (Qinghai)) [34] were selected
from the snow disaster records in Qinghai Province from 2001 to 2007 as a sample set to train the
BP-ANN model. Accuracy evaluations of the early warning model were conducted based on two
additional snow disaster cases in 2008 and 2015 (Table 1). According to the statistics on meteorological
disasters, a spatial database was established containing the probability of a winter snow disaster
(from October to January of the next year), the probability of a spring snow disaster (from February to
May), and the mean annual probability of a snow disaster over 50 years (from 1961 to 2010).

Table 1. Typical cases of snow disasters in Qinghai.

Case Category Year Location Number of Events
2001  Tongde county 1
2002  Tongde county 1
2004 Delinha, Henan, Tianjun, Wulan, Xunhua, Zeku, Dulan, and Tongde counties 10

Machine Learning cases Banma, Chindu, Dari, Datong, Gangcha, Gonghe, Huangyuan, Qumalai,

2005 Tianjun, Tongde, Tongren, Xinghai, Yushu, and Zeku counties

2006  Tongren and Dulan counties 3
2007 Delinha and Xunhua counties 2
Validati 2008 Three Rivers Headwater Region 1
alidation cases 2015 Dulan and Wulan counties 1
2.2.4. Others

Digital elevation model (DEM) data with 90 m spatial resolution were obtained from the U.S.
Geological Survey (USGS) [35], and the slope data were extracted to analyze the effects of topographic
factors in the grazing region. Administrative division, grassland type, and seasonal grassland
utilization data in the study area were analyzed to remove the impacts of non-grassland and summer
pasture areas from the early warning results of snow disasters.

3. Methodology

3.1. Process of a Snow Disaster Early Warning Model

A flow chart of a snow disaster early warning model is shown in Figure 2. We first construct a
logistic regression model to evaluate the potential risk associated with a snow disaster and calculate the
potential snow disaster risk using a correlation analysis, principal component analysis (PCA), and other
methods based on 33 typical snow disaster cases from 2001 to 2007 in Qinghai Province. Then, based
on a number of historical statistical factors, pre-disaster snow condition factors, and meteorological
factors during the disasters, key early warning factors of the snow disasters are selected as network
input parameters using the mean impact value (MIV) variable selection method. Finally, livestock
mortality is set as a network output parameter to train the BP-ANN early warning model of snow
disasters. Furthermore, we use the two verified snow disaster cases in mid-February 2008 and late
February 2015, to evaluate the early warning model. In each county-level administrative district,
livestock mortality (M) can be represented as follows:

M =Qq4/Q; ¢y

where Qy is the quantity of dead livestock in each snow-caused disaster and Q; is the quantity of
livestock at the beginning of the year.
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Figure 2. Flow chart of the snow disaster early warning model.
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3.2. Integrated Snow Cover Products

Based on snow cover products and SWE products as well as various composite rules and algorithm
models [36-38], we produce the composite MOD10A1 and MYD10A1 obtained at different times to
reduce some cloud cover based on characteristic cloud movement. Then, we mask the cloud pixel
through an adjacent temporal composite (i.e., if the pixel for a given day is classified as a cloud but in
the previous and following days, it is snow, then, the pixel is classified as snow; if the cloud pixel in
the previous and following days is land, the pixel is classified as land). Then, we use the snow line
approach (SNOWL), which is a method based on the aforementioned theory to assign and reclassify
the cloud pixel based on its elevation compared with snow and land in a given elevation zone [37].
Finally, a daily cloud-free snow cover product (500 m resolution) in Qinghai Province (2001 to 2015) is
produced by taking advantage of both the MODIS high spatial resolution and cloud transparency of
the downscaling AMSR-E SWE product (500 m resolution). For example, the cloud-free snow cover
product on 15 February 2008 and on 25 February 2015 in Qinghai Province is shown in Figure 3.
We re-sample the original SWE data using the neighbor interpolation method in the ArcGIS 10.2.
In addition, the fractional snow-covered area, snow-covered area, snow-covered days, and other factors
are calculated. The snow depth is one of the snow disaster early warning factors; we use a resampling
method to interpret it and obtain downscaling snow depth data with a 500 m spatial resolution.

(A) _ (B) ,_ A

A
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Figure 3. The cloud-free snow cover product on 15 February 2008 (A) and on 25 February 2015 (B) in
Qinghai Province.
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3.3. Potential Risk Assessment

This study collects 19 factors (average value of the 7 years (2001-2007)) about socioeconomic
factors, meteorological factors, remote sensing monitoring factors, and pastoral factors that influence a
snow disaster that occurs in Qinghai Province based on available research experience [12,13,15,17,39].
Then, the study determines the representation and operability (i.e., spatialization) of each factor and
constructs an indicator system of the snow disaster potential risk assessment (Table 2).

In this study, a logistic regression model is used to evaluate the potential risk of snow disasters in
pastoral regions of Qinghai Province based on existing studies [12,40]. The logistic regression model
was used to avoid subjectivity when the weight of each index was determined. Another advantage
of a logistic model is that independent variables can be either continuous, discrete, or non-normally
distributed [41,42].

If P is the probability of a snow disaster occurrence ranging from 0 to 1, then 1 — P is the
probability of a snow disaster not occurring. The natural logarithm of P/(1 — P) (In(p/(1 — p))) and
the associated linear regression equation are as follows:

Logit (P) =In(p/(1—p)) =a+Pix1+Paxa+-..... +BnXxn 2)
or
p— P (a+prxa+Poxat...... +Bnxn) 3)
T+exp(a+pixi+paxat--.... +Buxn)

where P is the probability of a snow disaster occurrence; «is a constant; B1, B2, ... , Bn are logistic
regression coefficients; and x1, X2, . .. , x» are key factors of the snow disaster risk.

Table 2. The indicator system of the potential risk assessment of a snow disaster.

Variable Type Code Variable Name Unit
Al Per capita gross domestic product Yuan
A2 Gross regional domestic product Yuan
A. Socioeconomic factors A3 Net income of farmers and herdsmen Yuan
A4 Density of population No./km?
A5 Highway density km/km?
B1 Precipitation mm
B2 Average wind speed m/s
B. Meteorological factors B3 Annual mean temperature °C
B4 Slope °
B5 Probability of anterior winter snow disaster %
C1 Maximum depth cm
C. Remote Sensing c2 Mean snow depth cm
o C3 Number of snow-covered days d
Monitoring factors
C4 Percentage of snow-covered grassland %
C5 Percentage of snow-covered area %
D1 Livestock stocking rate Su/ha
D2 Inventories at the beginning of the year No.
D. Pastoral factors D3 Inventories at the end of the year No.
D4 Area ratio of farmland %

3.4. Snow Disaster Early Warning

Based on the 33 typical snow disaster cases from 2001 to 2007 in Qinghai Province, 13 snow
disaster early warning factors (Table 3) are chosen based on previous studies, data availability, and the
results of risk evaluation in the study area. They include three historical statistical factors (V2-V4), four
snow condition factors (V5-V8) before snow disasters occur, and five meteorological factors (V9-V13)
during snow disasters. The snow disaster risk factor (V1) is the P value (Equation (3)), the probability
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of a snow disaster occurrence, obtained based on the logistic regression model in Section 3.3. V1 is also
one of the five key factors used for the BP-ANN model for a snow disaster early warning (Section 3.4).

Table 3. Factors of a snow disaster early warning.

Variable Type Variable Code Variable Name Notice
Snow disaster risk factor Vi Potential snow disaster risk Spatial resolution of 500 m
V2 Probability of a winter snow disaster These factors were calculated according
Historical statistical factors V3 Probability of a spring snow disaster to the yearly records of meteorological
V4 Mean annual probability of a snow disaster  disasters from 1951 to 2000
V5 Fractional - d
. ractiona’ Snowcovere T aved These factors were calculated from 15
Snow condition factors Vo6 Snow-covered days (SCDs) .
before a disaster V7 Snow depth days before the disaster to the day of
V8 Snow-covered area the disaster
Continual days with the mean daily
\& °
temperature below 0 °C
Continual days with the mean daily These factors were calculated from the
Weather condition factors V1o temperature below —5 °C day of the disaster until 15 days after
during a disaster Continual days with the mean daily the disaster
Vi1l s
temperature below —10 °C
Vi2 Mean temperature
Vi3 Total precipitation

BP-ANNSs are multilayer, feed forward networks trained by back propagation error algorithms.
The first BP-ANN was originally proposed by Werbos in 1974 [43], and BP-ANNs were popularized
by Rumelhart in 1986 [44]. Currently, it is one of the most widely used neural network models in the
medical, environmental, and technological fields, among others [45-52]. The method uses gradient
descent to continuously adjust the network’s weight and threshold value through back propagation,
which minimizes the network error. The topological structure of a BP-ANN model includes an
input layer, hidden layer, and output layer. Additionally, a network can contain multiple hidden
layers capable of dealing with the problem of linear inseparability [53]. In this paper, the BP neural
(Back-propagation neural network) program for computing was Matlab 6.5 software.

The MIV method is used to select variables in this study and to determine the input terms that
have significant impacts on the results. Dombi et al. (1995) [54] and others suggested using the MIV
method to reflect the change in the weight matrix of a neural network. Additionally, the MIV method
is considered one of the best indexes for evaluating the variable correlation in a neural network [55],
and it has been used to determine the effects of the input neuron on the output neuron. The sign of
the output neuron represents the relevant direction, and the absolute value represents the relative
importance. The calculation process is as follows:

(1) Train the model. After training is finished, every input variable Pj (G=1,2,3,...,n) from the
training samples P would increase or decrease by 10% *P to obtain two new training samples Pj;
and Pj.

(2) Use the two new cases as the simulation samples in the well-trained model. This yields two new
middle-stage variables A;; and Aj>. Then, calculate the difference between A;; and A;; to account
for the impact value of the input variables.

(3) Next, the MIVs are obtained using the impact values divided by the number of samples #.

(4) Finally, sort the input variables from large to small according to the sizes of their absolute
values and choose the first m independent variables as input feature variables according to
Equations (4) and (5) for usage in the BP-ANN (in the next step).

m n
Nm=Y_|MIV|/Y |MIV| )
i=1 i=1
Nm > 85% (5)

where 77, is the cumulative contribution rate of each independent variable; m is the number of variables
selected; and 7 is the total number of variables.
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3.5. Hazard Evaluation Standard for Snow Disasters

Based on Guo et al. (2012) [56], we classify snow disasters into four levels: light, moderate, severe,
and extremely severe disasters (Table 4).

Table 4. Standards of snow disaster levels (Guo et al., 2012).

Level Snow Disaster Level Livestock Mortality (%)
1 Light disaster <5
2 Moderate disaster 5-20
3 Severe disaster 20-30
4 Extremely severe disaster >30

4. Results

4.1. Potential Snow Disaster Risk in Qinghai Province

After principal component analysis of the 19 parameters (Table 2), five key factors (maximum
snow depth, slope, SCDs, annual mean temperature, and per capita GDP) that influence snow disasters
are selected. A logistic regression model is ultimately obtained to comprehensively evaluate the
potential risk of snow disasters in Qinghai and the parameters of the model (Equation (3)) are shown
in Table 5.

Table 5. The parameters of a logistic regression model (Equation (3)).

Model Parameters Value Factors Factor Name
« —12.60 X1 slope
B1 0.60 X2 Snow-covered days (SCDs)
B2 2.54 X3 annual mean temperature
B3 3.07 X4 maximum snow depth
B1 1.72 X5 per capita GDP
B1 7.84

Figure 4 shows the spatial distribution of various risk factors related to snow disasters in the
study area. As shown in Figure 4A, large slope areas are mainly concentrated around mountains in
Qilian, Kunlun, Tanggula, Bayan Har, and Amnye Machen of Qinghai Province. Figure 4B shows that
the annual mean SCDs is generally low in the study area and high in some localized areas (especially
Delingha and Tianjun). As shown in Figure 4C, eastern Qinghai Province, the Qaidam Basin and its
surrounding area have high annual mean temperatures between 0 °C and 9.27 °C. Other areas have low
annual mean temperatures between —13.97 °C and 0 °C. Figure 4D shows that the areas with deeper
snow cover (between 10 mm and 26 mm) in Qinghai are mainly distributed in Tianjun, Qilian, Yushu,
Nanggian, Zaduo, Gande, and Dulan counties, while the snow depths in Haixi Prefecture, Golmud
City, and the eastern agricultural regions are shallow (between 0 mm and 10 mm). Additionally,
Figure 4E shows that the per capita GDP levels in the southern and southeastern parts of Qinghai
Province are low, while the GDP levels in Haixi Prefecture are high.

The probability of a snow disaster in the study area is calculated according to Equation (3) and
Table 5 and classified using the natural breaks (Jenks) method. Because of the very low probability of
snow disasters occurring in non-grassland areas and areas with slopes greater than 50°, these areas are
removed from the final results of the snow disaster risk (Figure 5). Overall, the comprehensive results
of snow disaster risk in Qinghai suggest that the risk is higher in the south and lower in the north.
High-risk areas (P > 0.17) are mainly concentrated in southern Qinghai, especially in the southeastern
Yushu Prefecture and the central Guoluo Prefecture. At the county scale, the snow disaster risk is
high in Golmud and Delingha cities and Chenduo, Yushu, Nanggian, Dari, Gande, Magqin, Dulan,
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and Menyuan counties. Based on the topographic and geomorphic conditions, the snow disaster risk
in the Qaidam Basin in northwestern Qinghai and the agricultural areas in eastern Qinghai are low
(0.03 < P < 0.08), while the risks in the Qilian Mountains, Kunlun Mountains, Tanggula Mountains,
Bayan Har Mountains, Amnye Machen, and other high mountain areas are high. The risk in other
areas are intermediate (0.08 < P < 0.17).

(A) Slope (B) Snow covered days (C) Mean annual temperature

Value ) Value (Days) Value (C)

High : 28.00 Low: 0 High : 330.67 Low: 0 High : 9.27 Low :-13.97

(D) Maximum snow depth (E) Per capita GDP (F) Administrative division

Delinha Tianj "
I Gingehi Mengyuan

ulan

075150 300

Value (mm) Value (Yuan) = Guoluo p == Hainan | k|
- - _ 3 Haixi prefecture ™8 Yushu prefecture 0 Xining

High : 26.00 Low:0 High : 42072 Low : 2489 == Haibei prefecture ™8 Huangnan prefecture =9 Haidong

Figure 4. The spatial distributions of risk factors: slope (A); snow-covered days (B); mean annual
temperature (C); maximum snow depth (D); and per capita GDP (E); as well as the administrative
divisions in Qinghai Province (F).
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Figure 5. Potential snow disaster risk at 500 m pixel scale resolution in Qinghai (white spaces are
non-grassland areas and slopes >50°).

4.2. Snow Disaster Early Warning Model Based on the BP-ANN

This study uses the MIV method (Section 3.4) to calculate the MIVs (Table 6) of 13 independent
variables (Table 3) by using the livestock mortality as the dependent variable. The first five independent
variables (V12, V3, V1, V10, and V5) whose cumulative contribution to absolute values of MIVs are
greater than 85% are used as input factors for the BP-ANN training, testing, and validation. Livestock
mortality is used as the only network output. The model also includes ten hidden layers based on
empirical equations [57]. The most suitable structure of the BP-ANN model for predicting livestock
mortality was believed to be the 5-10-1 structure. The transfer function of the hidden layer is a
log-sigmoid function and the function of the output layer is a purelin function. The adopted network
training algorithm is the Levenberg-Marquardt algorithm (trainlm).

BP-ANN modeling results (simulated livestock mortality) are compared with the actual livestock
mortality in three different datasets: training (23 samples), testing (5 samples), and validation
(5 samples), as shown in Figure 6a—c, respectively. It is found that the actual livestock mortality
and simulated livestock mortality exhibit high determination coefficients (0.90, 0.64, 0.45, respectively)
and small root mean square error (RMSE) values (0.0269, 0.0238, 0.0877, respectively). If all samples are
used to build the BP-ANN model, a similar good result can be achieved (R2 of 0.66 and RMSE of 0.0419,
Figure 6d). In BP-ANN, the validation dataset is a set of examples used to determine the network
structure or control the complexity degree of the model, and the fitting capability of the validation
dataset (Figure 6¢) did not influence the performance capability of the BP-ANN model. The training
dataset is a set of examples used for learning and the testing dataset is a set of examples used only
to assess the generalization performance of a model. Based on an evaluation of R> and RMSE of the
training dataset and testing dataset, the BP-ANN model is a good predictor of the livestock mortality
with ideal certainty, as expected. Overall, the five key variables are used to build a reasonable and
effective BP-ANN model for the study area.
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Table 6. Selection of the back propagation neural network variables.

. Mean impact Cumulative . Cumulative

Variable values(MII)Vs) Abs (MIVs) Contribution Rate (%) Variable MIVs Abs (MIVs) Contribution Rate (%)
V12 —0.0189 0.0189 204 V4 —0.0020 0.0020 94.9
V3 —0.0166 0.0166 38.3 \E} —0.0012 0.0012 96.2
Vi 0.0160 0.0160 55.6 V8 0.0011 0.0011 97.4
V10 0.0148 0.0148 71.6 Vi1 0.0010 0.0010 98.5
V5 —0.0123 0.0127 85.4 V2 0.0010 0.0010 99.5
v7 —0.0045 0.0045 90.2 V6 —0.0008 0.0008 100
V13 0.0023 0.0023 92.7
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Figure 6. Back propagation artificial neural network (BP-ANN) simulated versus actual livestock
mortalities: (a) simulation based on the 23 training samples; (b) test simulation of the established
model using the five testing samples; (c) validation simulation of the established model using the five
validation samples and (d) simulation based on all 33 samples.

4.3. Accuracy Assessment of the Snow Disaster Early Warning Simulation

To assess the accuracy of the established BP-ANN early warning model, two additional snow
disaster cases in 2008 and 2015 are used (i.e., the five key factors V12, V3, V1, V10, and V5 of each
case) to obtain corresponding network outputs (livestock mortality values). These outputs are the
predicted values and are compared with the corresponding actual livestock mortality of each case.
Figures 7 and 8 are the model outputs of the livestock mortality (at 500 m pixel size) of the 2008 and
2015 cases, respectively, according to the standard levels of snow disaster classification given in Table 3.

The levels of snow disaster simulation results in the 2008 (Figure 7) case suggest that the severe
disaster area was relatively small (5294 km?) and concentrated locally in Zeku and Dari counties.
This area accounted for 2.48% of the total pasture area in the winter and spring in the study area.
The moderate disaster level was mainly distributed in the Three Rivers Headwater Region (especially
in southeastern Yushu Prefecture, northwestern Guoluo Prefecture, and northwestern Huangnan
Prefecture), with a hazard area of 42,390 km?, accounting for 19.84% of the total pasture area in the
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winter and spring of the study area. The area of light snow disaster was 165,985 km? and was mainly
concentrated in southwestern Yushu Prefecture, eastern Haixi Prefecture, and eastern Qinghai Province.
This area accounted for 77.67% of the pasture area in the winter and spring of the study area.

Overall, moderate and light snow disasters areas were prevalent in the Three Rivers Headwater
Region, and the simulated results agreed well with the reported actual hazard scenario. According to
the disaster volume records and the relevant literature data, during this 2008 snow disaster event, heavy
snowfall mainly affected the three Prefectures of Yushu, Guoluo, and Huangnan, and killed 181,500,
116,700, and 40,600 domestic animals, respectively, in each prefecture [58]. In addition, according to
the Landsat 7 TM false color image (Figure 9A) of a snow disaster in mid-February 2008, most areas in
southern Guoluo Prefecture were covered by snow; this could verify the simulated results of the snow
disaster on a small scale as well.

Based on the simulation results in 2015 (Figure 8), the area of severe snow disasters was small
and mainly concentrated in northern Dulan County and some areas of Wulan County, encompassing a
hazard area of 9124 km?, which accounted for 5.04% of the total pasture area in the winter and spring
in the study area. Moderate snow disasters mainly occurred in central Hainan Prefecture and eastern
Haixi Prefecture, with a hazard area proportion of 8.96%. The area of light snow disasters was the
largest with an area of 155,556 km?, and accounted for 85.99% of the total pasture area in the winter
and spring. This level was mainly distributed in southeastern Yushu Prefecture, northeastern Guoluo
Prefecture and most areas of Huangnan Prefecture. Based on the overall analysis of the study area,
the damage caused by the snow disaster was still mainly classified in the light disaster level with some
moderate and severe snow disasters mainly distributed in Dulan and Wulan counties.

Overall, the simulation results agreed well with the actual snow disaster scenario. According to a
government report, the 2015 heavy snowfall occurred in the eastern region of Haixi Prefecture and
caused severe snow disasters in the local areas of Wulan County and Dulan County. These disasters
affected more than 8000 herdsmen in the six villages and towns of Dulan County and killed more than
20,000 domestic animals [59]. In addition, according to the Landsat 8 OLI false color image (Figure 8B)
of a snow disaster in late February 2015, partial areas in Dulan County were covered by snow, and this
could verify the simulated results of the snow disaster on a small scale as well.

To further validate the accuracy of the simulation results, actual livestock mortality reported in
the three Prefectures (Guolu, Yushu, and Huangnan) of the 2008 case and the two counties (Dulan and
Wulan) of the 2015 case are compared with the simulated livestock mortality in the corresponding
prefecture or county (Table 7). For the 2008 and 2015 cases, the model accuracy was 76% and 85%,
respectively, with an overall accuracy of 80%.

Table 7. Accuracy assessment of the simulated livestock mortality from the snow disaster early
warning model.

Cases In Mid-February 2008 In Late February 2015
Disaster areas Guoluo Yushu Huangnan Dulan Wulan
Prefecture Prefecture Prefecture County County
8:;‘;32’;2 ?Zﬁ:i’gﬂgﬂ? 200.6 270.3 2125 23.6 1443
Number of livestock deaths (10%) 116.7 181.5 40.6 1.4 0.6
Actual livestock mortality (%) 0.0582 0.0671 0.0191 0.0593 0.0416
Simulated livestock mortality (%) 0.051 0.0414 0.0148 0.0709 0.0462
Average accuracy (%) 76 85

Overall accuracy (%) 80
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Landsat 8 OLI false color image of a snow disaster in late February 2015 (B), and the administrative
divisions in Qinghai Province (C).

5. Discussion

An early warning of snow disaster plays an important supporting role in disaster prevention
and reduction in pastoral areas. With the development of high-resolution earth observation systems,
simulations of snow disasters for early warning has improved from analysis of a single hazard event
to comprehensive evaluations of various concurrent or connected disasters. This study analyzes the
key factors that affect the risk assessment of snow disasters in Qinghai Province. A logistic regression
method is used to construct a regression model of risk evaluation of snow disasters. The BP-ANN
network, which is based on historical statistics, grassland husbandry information, snow remote sensing,
and meteorological observations of 33 typical snow disaster cases, was trained to establish a snow
disaster early warning model. The network has ideal predictive capability and generalization capacity
to meet the requirements of snow disaster simulation for early warning.

The results (Figure 5) show that the high-risk areas of a snow disaster in Qinghai are mainly
concentrated in the southern part of the region (Chenduo, Yushu, Nangqian, Dari, Gande, Magin
counties, and other places). Additionally, the Kunlun Mountains, Bayan Har Mountains, and Amnye
Machen area are prone to snow disasters (especially on both sides of the Bayan Har Mountains).
These results agree with the results of Hao et al. (2006) [5]. The northwest Qaidam Basin and
eastern agricultural regions are low-risk areas, and this finding agrees with previous results [12,13,17].
According to geographic and climate conditions, socioeconomic conditions, and snow monitoring in
the study area, this study focused on 19 factors (Table 2) that affect snow disaster risk assessment to
construct a logistic model for evaluating the snow disaster risk based on a raster (a 500 m cell size).
The model can reflect the distribution of the potential risk of a snow disaster. This study uses the
natural breaks (Jenks) grading method to determine levels of the snow disaster risk [12,13], and the
method produces satisfactory results. Although the approach is based on inherent natural grouping
in the data, it can appropriately group similar values, maximize the difference between categories,
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and accurately reflect the links between data. However, the method lacks general applicability; thus,
the scientific grading method is suitable for snow disaster risk evaluation, but other applications must
be explored in later studies.

In summary, existing models of a snow disaster generally have certain limitations [3,19,21,25,26].
The BP-ANN method is widely used in many fields and can approximate any nonlinear function
while providing clear physical and conceptual results based on a flexible and changeable topological
structure [44,46]. Additionally, the method is widely applicable and effective, and it provides a strong
nonlinear mapping capacity. Thus, it is ideal for studies in the field of natural disasters [18,60-66].
The overall accuracy of the snow disaster early warning model based on the BP-ANN method in this
study reached 80%. Compared to the multivariate model of nonlinear regression (accuracy of 86%)
for snow disaster early warning in the pastoral areas on the Qinghai-Tibet Plateau [21] and the snow
disaster multi-index evaluation model (accuracy of 76%) under natural conditions [26], the BP-ANN
early warning model has a similar high accuracy, but the accuracies of these two studies [21,26] only
considered two states: disaster or no disaster. Therefore, their accuracies are very qualitative, unlike
this study, in which we use the livestock mortality, a quantitative assessment. In addition, in our
model, the risk assessment factor (i.e., probability of a snow disaster occurrence) is one of the five
key factors used for the simulation for an early warning. This, however, was not considered in these
previous studies. The third improvement of our modeling is that our model is built totally on a grid
(500 m in this case), unlike the previous studies that were only based on resolution at the county level.
This greatly improves the resolution and accuracy of a snow disaster warning. In previous studies, one
can only predict whether a county has a disaster or not, while in this study, we not only know which
county has a disaster, but also know where it occurs and the degree of damage at the 500 m pixel scale.

All the advantages mentioned above do not mean that our model has no limitations and
deficiencies. Notably, the approximation and generalization ability of the network model is closely
related to the learning samples, which are particularly reflected in the neural network. If the set of
samples is poorly representative with conflicting and redundant samples, the network may not perform
adequately [52]. Furthermore, although detailed information from 71 cases of snow disasters from 1951
to 2008 were considered in the disaster level standards in Guo et al. (2012) [56], the degree of reduction
in snow disasters was not considered. The overall degree of reduction in snow disasters in recent
years was due to many factors such as policy support, technical development, increasing herdsman
knowledge regarding disaster prevention, and improved infrastructure. Hence, the snow hazard
rating standards (Table 3) used in this study must be further revised and improved. Due to current
limitations on obtaining snow hazard information (i.e., where, when, and how many livestock died),
the accuracy of our model is satisfactory for local areas, but assigning warning levels for the entire
study area (such as at the Qinghai Province level) is still associated with a certain degree of uncertainty.

6. Conclusions

In this study, with the MODIS daily snow cover products (MOD10A1 and MYD10A1), the AMSR-E
daily SWE products, and the long-term snow depth dataset, we first constructed 19 indicators of
potential snow disaster risk and 13 indicators of snow disaster early warning by effectively integrating
the correlative statistical data. Furthermore, based on a risk analysis and the factors that influence snow
disasters in pastoral areas of the Qinghai Province, a snow disaster model for early warning based
on the BP-ANN machine learning method at a 500 m spatial resolution is developed and validated.
The main conclusions are as follows:

(1)  The potential risk of snow disasters in Qinghai Province is overall high in the south and low in
the north, with some exceptions. The crucial factors that affect the spatial distribution and the
risk of a snow disaster are maximum snow depth, slope, SCDs, annual mean temperature and
per capita GDP. Among these key factors, maximum snow depth, slope, and SCDs show similar
spatial distribution as the potential risk map, while annual mean temperature and per capita
GDP show the opposite distribution compared with the potential risk map of snow disasters.
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®)

The key factors that influence the simulation of a snow disaster for early warning in the study
area are the five factors listed in order: mean temperature (V12), probability of a spring snow
disaster (V3), potential snow disaster risk (V1), continual days with the mean daily temperature
below —5 °C (V10), and fractional snow-covered area (V5). Of these, the potential snow disaster
risk (V1) is the output of the logistic regression modeling result. This is the first time that V1 is
included in the simulation of snow disasters for early warning.

Validation results suggest that the BP-ANN approach is an ideal method for simulating a snow
disaster for early warning. Although the approach is better and more advanced than the previous
approaches, this method has limitations and deserves further attention and improvements.
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