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Abstract: Quantifying vegetation fractional cover (VFC) and assessing its role in heat fluxes modeling
using medium resolution remotely sensed data has received less attention than it deserves in
heterogeneous urban regions. This study examined two approaches (Normalized Difference Vegetation
Index (NDVI)-derived and Multiple Endmember Spectral Mixture Analysis (MESMA)-derived
methods) that are commonly used to map VFC based on Landsat imagery, in modeling surface
heat fluxes in urban landscape. For this purpose, two different heat flux models, Two-source energy
balance (TSEB) model and Pixel Component Arranging and Comparing Algorithm (PCACA) model,
were adopted for model evaluation and analysis. A comparative analysis of the NDVI-derived and
MESMA-derived VFCs showed that the latter achieved more accurate estimates in complex urban
regions. When the two sources of VFCs were used as inputs to both TSEB and PCACA models,
MESMA-derived urban VFC produced more accurate urban heat fluxes (Bowen ratio and latent
heat flux) relative to NDVI-derived urban VFC. Moreover, our study demonstrated that Landsat
imagery-retrieved VFC exhibited greater uncertainty in obtaining urban heat fluxes for the TSEB
model than for the PCACA model.

Keywords: urban remote sensing; vegetation fractional cover; urban energy flux; PCACA model;
two-source energy balance model

1. Introduction

The urban heat island (UHI) is a phenomenon that leads to increased air or surface temperatures
in urbanized areas compared to temperatures in surrounding rural areas. Recently, there has been an
increasing trend in studies that quantify the urban heat island response to global environmental change,
requiring the surface heat flux in energy balance models of cities. To enhance the understanding
of energy and water exchanges across urban landscape environments, Grimmond et al. [1] and
Grimmond et al. [2] compared 33 urban energy balance models, and the results showed that the
models were most capable of modeling net all-wave radiation and least capable of modeling latent
heat flux. However, most of them are numerical microclimate models and not compatible with the
application of large-scale remote sensing data, considering the complex inputs of meteorological data
and urban surface geometric characteristics.
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To quantify global and regional energies, remote sensing data have been coupled with numerous
physical models to enhance modeling accuracy [3,4]. Various physical models, such as the big-leaf
theory models [5–7] and Surface Energy Balance System model [8,9], were developed to delineate
surface energy components across urban landscape environments. Moreover, the two-source energy
balance models, in which heat fluxes are calculated separately for each surface component (i.e., bare
land and vegetation), were established to delineate the surface energy balance with relatively
satisfactory accuracies [10–15]. In particular, Zhang et al. [16] and Zhang et al. [17] developed a
more convenient Pixel Component Arranging and Comparing Algorithm (PCACA) model based
on the two-layer model using a combination of land surface temperature (LST) and the vegetation
fractional cover (VFC) space. Kuang et al. [18] achieved using PCACA model to quantify the effects
of urban land-cover on surface heat flux regulation in Beijing. Recently, some improved temperature
decomposition methods based on PCACA model were further proposed [19–21] to estimate regional
heat fluxes.

VFC is a key input to remote sensing models of land surface energy balance in heterogeneous
areas because the vegetation coverage influences energy exchange processes and heat fluxes of land
surfaces. Considering surface energy balance models in urban landscape environments, sub-pixel
heterogeneities in vegetation cover distributions can significantly impact model partitioning of
available energy due to the nonlinearities inherent in land-atmosphere interactions. With respect to
some remote sensing-based urban thermal studies [14,22], the influence of vegetation coverage on
urban heat fluxes is generally evident in the determination of the associated heat flux component
using linear or non-linear combinations of each fraction of urban land cover (mainly urban vegetation
and non-vegetation). The effects of spatial heterogeneity resulting from mixed pixels of vegetation
cover and other land covers over heterogeneous regions on the surface heat fluxes have been assessed
by some studies using coarse resolution satellite imagery such as Moderate Resolution Imaging
Spectrometer (MODIS) and Advanced Very High Resolution Radiometer (AVHRR). Gibson et al. [23]
described the uncertainty related to VFC in the derivation of evapotranspiration using the Surface
Energy Balance System model. Kustas and Norman [24] reported that heat energy balance modeling
tended to be affected by landscape heterogeneity due to mixed pixel effects. However, satellite-based
quantification of the impact of sub-pixel VFC on energy budgets at the urban scale using medium
resolution imagery (i.e., Landsat) has received less attention than it deserves, particularly concerning
different energy flux models.

Remote sensing provides a useful data source for quantifying VFC over large areas; however,
many remote sensing data are not fine enough to retrieve VFC with very satisfactory results over
regional landscapes [25]. Based on the resolutions of most operational satellite sensors such as
Landsat and ASTER, spatial resolution limitations are evident in the context of characterizing VFC
because complex urban landscape environments generally exhibit a mix of urban vegetation cover and
impervious surfaces. To retrieve urban vegetation fractional coverage, the dimidiate pixel model
has been performed with the image bands (or band math), such as the Normalized Difference
Vegetation Index (NDVI) [26–28] and variations [29,30]. NDVI-derived method was extensively
used to determine the VFC factor in urban heat flux assessments over regional areas [18,31–33].
However, satellite image-based vegetation indices were found to have low correlations with the VFC
in heterogeneous landscapes such as dry lands or urban areas due to the sensitivity of vegetation to
surface environmental conditions [34,35]. Spectral Mixture Analysis (SMA) is a sub-pixel classification
technique, in which the spectrum collected by a sensor is assumed to be a linear or nonlinear
combination of the spectra of components within the studied pixel level [36]. Linear SMA was
efficient in estimating the percentage of ground cover, such as vegetation cover and impervious
surfaces [37–40]. While these two methods (NDVI-derived and SMA-derived) were applied to urban
environments to obtain VFC, very few studies have attempted to quantitatively evaluate their relative
accuracies and associated roles in estimating urban heat fluxes [18,41].



Remote Sens. 2017, 9, 455 3 of 20

Considering VFC is a key input parameter in the energy balance model and the effects of remote
sensing VFC on the urban heat flux estimation have not been fully assessed, this research evaluated how
the application of two different VFC retrieval models (NDVI-derived method and Multiple Endmember
Spectral Mixture Analysis (MESMA)-derived method) affected the accuracies of the model estimates
of surface heat fluxes in a heterogeneous urban environment. For this purpose, two urban heat fluxes
models that used MESMA-derived and NDVI-derived VFC as inputs, the TSEB and PCACA models,
were implemented across the urban landscape of Beijing, China. Moreover, inter-comparable studies
of how the two different remote sensing-based urban heat flux models (TSEB and PCACA) with
different physical basis depend on VFC were also conducted in our research. Thus, the Bowen ratio
and latent heat fluxes were calculated based on four methods: (1) TSEB combined with NDVI-derived
VFC; (2) TSEB combined with MESMA-derived VFC; (3) PCACA combined with NDVI-derived VFC;
and (4) PCACA combined with MESMA-derived VFC.

2. Study Area and Data

2.1. Study Area

Beijing (located at 39◦28′N–41◦05′N and 115◦25′E–117◦30′E) is the capital city of China (Figure 1)
and selected for our research. This city exhibits high northwestern and low southeastern terrain and is
surrounded by mountainous areas to the west and plains to the east and south. Beijing has experienced
significant urban sprawl in recent decades. Quantification of urban thermal environments in Beijing is
of great significance for sustainable urban development and residential comfort. By quantifying and
comparing remote sensing-based energy balance models over Beijing, we can better understand the
key surface factors that drive inter-model discrepancies.
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Figure 1. The left is the location of study areas in the China. The right map is the Landsat 5 TM true
color composition imagery of Beijing, overlaid with the field measurements and meteorological station
sites (listed in Table 1).

2.2. Datasets

2.2.1. Remote Sensing Data

To quantify the urban heat fluxes, one cloud-free Landsat 5 TM image (22 September 2009) of
Beijing was used. In addition, a QUICKBIRD image that covered the Beijing region was collected on
1 October 2009 and employed as a reference dataset for the identification of field data. To retrieve the
atmospheric profile for estimating Landsat LST, we collected TERRA/MODIS remote sensing images
(MOD021KM and MOD03, obtained online at http://daac.gsfc.nasa.gov/data/dataset/MODIS/),
which have the same acquisition date as the Landsat TM imagery.

http://daac.gsfc.nasa.gov/data/dataset/MODIS/
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One Landsat scene available from 22 September 2009 may be insufficient, therefore ten Landsat
TM/ETM images collected on 17 April 2001, 12 April 2002, 6 July 2004, 6 May 2005, 22 May 2005,
27 March 2008, 14 May 2008, 2 April 2010, 5 June 2010 and 21 June 2010 over Beijing area were used to
supplement the comparative analysis.

2.2.2. Ground Data

To validate the remote sensing-retrieved heat fluxes, eddy flux measurements of the latent heat
flux (LE), sensible heat flux (H) and Bowen ratio (H/LE) were obtained from the work of [18]. In their
study, LE and H recorded at five sites were used, as shown in Table 1. The observation instruments
were installed approximately 20–30 m above the ground, with average values collected at half-hour
intervals. Meteorological data from 20 meteorological stations in Beijing were collected based on [18].

In addition, eight field observations (BA1–BA8, in Table 1) collected in Beijing region during 2001
to 2010 were used for further accuracy comparison analysis. More detailed descriptions about the
experiment sites can be found in [42,43].

Table 1. Descriptions of ground observation sites and field observations collected at Landsat passing.

ID Sites Latitude/
Longitude

Land-Cover
Types

Validation
Purposes LANDSAT Date

B1 Kexue Nanli
39.99 Built-up

areas
ET/LST 22 September 2009

116.38

B2 Olympic Forest Park 40.02 Urban park ET/LST 22 September 2009
116.4

B3 Mi Yun
40.63

Orchard ET/LST 22 September 2009
117.32

B4 Da Xing 39.62 Cropland ET/LST 22 September 2009
116.43

B5 Xiang He 39.78 Cropland ET/LST 22 September 2009
116.95

B6 Ecological Research
Center

40.02 Built-up
areas

LST 22 September 2009
116.34

B7
Institute of

Atmospheric Physics
39.97 Built-up

areas
LST 22 September 2009

116.37

B8 Botanical Teaching
Garden

39.87 Built-up
areas

LST 22 September 2009
116.43

BA1 Shun Yi
40.20 Winter

wheat
ET/LST 17 April 2001

116.56

BA2 Xiao Tang Shan 40.16
Bare soil ET/LST 12 April 2002

116.43

BA3 Xiao Tang Shan
South-1

40.17
Maize ET/LST 7 June 2004116.44

BA4 Xiao Tang Shan
North-1

40.18
Grassland ET/LST 7 June 2004116.44

BA5 Xiao Tang Shan
South-2

40.17
Bare soil ET/LST 5 June 2005, 22 May 2005

116.44

BA6 Xiao Tang Shan
North-2

40.18
Grassland ET/LST 5 June 2005, 22 May 2005

116.44

BA7 Mi Yun 40.63
117.32

Orchard,
Maize ET/LST 27 March 2008, 14 May 2008,

5 June 2010, 21 June 2010

BA8 Da Xing 39.62
116.43 Cropland ET/LST 14 May 2008, 2 April 2010,

5 June 2010, 21 June 2010

To obtain the critical coefficients for the NDVI-derived VFC retrieval method and evaluate the
precision of VFC images retrieved from Landsat TM, 150 sample plots were randomly selected in
Beijing, and the corresponding reference VFC values were digitized using high-resolution QUICKBIRD
imagery and Google Earth™ imagery. Specifically, reference fractions of urban vegetation abundance
were obtained by manually digitizing 150 sample plots in the high-resolution imagery. Eight sites and
field-measured VFC data from [18] were also used in this study. Among the 158 selected sites, 38 sites
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were used to retrieve the required coefficients for the NDVI-derived approach, and the other 120 sites
were used to validate the Landsat TM VFC.

In addition, subsets of 10 and 23 sample plots located at the centers of pure water bodies and
pure dry, bare lands (impervious surfaces and dry bare soil) were identified from the high-resolution
QUICKBIRD and Google Earth™ images. Their corresponding Landsat TM LSTs were used to calibrate
the input parameters of the PCACA model.

2.2.3. Image Pre-Processing

The collected Landsat images were first geo-referenced to the Universal Transverse Mercator
(UTM) coordinate system using high-resolution Google Earth™ images. The RMSEs of the rectification
were all less than one pixel for all the Landsat images. The atmospheric correction was applied to the
visible and near infrared bands of Landsat imagery using the Fast Line-of-Sight Atmospheric Analysis
of Spectral Hypercubes (FLAASH) module [44] in ENVI 4.8 software.

In this study, the land surface temperature (LST) was derived from the Landsat thermal infrared
band, as described by Jiménez-Muñoz and Sobrino [45]. Land surface emissivity, which is necessary
for retrieving LST, was obtained with NDVI thresholds method [46]. The accuracy of Landsat derived
LST was assessed with the 26 field observations listed in Table 1. It is observed that a better agreement
existed between the estimates and the measurements, and the Landsat estimation achieved an RMSE
of 1.57 K and a MAE of 0.68 K.

Surface land cover maps were generated using image classification of Landsat TM/ETM images.
This study utilized a non-parametric supervised classification based on support vector machine
classifier [47]. Six predominant land cover types (i.e., forest, crops/grassland, bare soil, lawn,
impervious surfaces and water bodies) were identified. High-resolution data sources including
QuickBird and Google Earth™ were used to assess the classification results. The statistical measures
involving overall accuracy (OA) and Kappa statistic (KC) were calculated. All of the images achieved
acceptable results with the OA higher than 85% and KC higher than 0.90, meaning that the resultant
Landsat classifications are reliable for further analysis.

3. Method Description

The NDVI-derived model and MESMA-derived model were employed to predict surface VFC.
Two models (TSEB model and PCACA model) with different physical basis were then used to
investigate the urban heat flux. The overall flowchart is given in Figure 2.
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3.1. Vegetation Coverage Retrieval

3.1.1. NDVI-Derived Method

The present study calculated the VFC with a simple and extensively used model, which obtains
the VFC using a predefined function of the NDVI values. This model can be described as follows:

VFC = (
NDVI − NDVIs

NDVIv − NDVIs
)

k
(1)

where NDVIv and NDVIs are the NDVI values of fully vegetated areas and bare land, respectively.
NDVIv and NDVIs are required coefficients and generally depend on the specific research region.
The coefficient k is a function associated with the vegetation distribution. k is set to 1 in this study, as
suggested by [18,22,26,27].

In the retrieval of VFC by the NDVI-derived method, mean Landsat TM NDVI values at 23 selected
bare land locations (8 bare soil and 15 impervious surfaces) were computed and considered as NDVIs,
and the value was set to 0.06. To estimate NDVIv, Equation (1) was implemented to fit the VFC values
collected from high-resolution data and their corresponding values of NDVI − NDVIs at 38 sample
sites (introduced in Section 2.2.2). The fitted value of NDVIv − NDVIs = 0.60, and NDVIv was set to
0.66. It should be mentioned that NDVIv across the Beijing region was somewhat low in present study
mainly due to the complex surface characteristics. Similar results were also found in some prior studies
that focused on the VFC derivations over urban regions or desert regions, such as NDVIv = 0.60,
in Beijing, China [18]; NDVIv = 0.63, in north China [48]; and NDVIv = 0.61, in central New Mexico,
USA [27]. Therefore, the value of NDVIv reported by our study was reasonable and acceptable.

3.1.2. MESMA-Derived Method

Multiple endmember spectral mixture analysis (MESMA) [49–51] is an improved and widely
used algorithm based on the linear SMA. Unlike other simple linear spectral mixture analyses,
MESMA can unmix each pixel with different combinations of represented endmembers. The main
advantage of MESMA is that it is able to overcome the limitation of using the fixed types and
numbers of endmembers to model all pixels. MESMA mainly involves three steps. In the first
step, the representative endmembers containing unique spectral reflectance were selected. Three major
representative categories of urban land cover types (vegetation, soil and impervious surfaces with
high-albedo and low-albedo) were identified based on VIS theory [52]. Water and wetland area were
not considered and masked out in the pre-process procession due to the non-availability of MESMA
model for water regions. Then, with these collected endmembers, a linear spectral unmixing analysis
with full abundance constraints (Equations (2) and (3)) was performed to estimate fractional land
covers in an iterative manner.

R =
n

∑
k=1

fkRk (2)

n

∑
k=1

fk = 1, fk ≥ 0 (3)

where k is the number of endmembers, fk is the fraction of endmember k, and Rk is the reflectance of
endmember k.

In the process of implementing MESMA, a series of simple linear spectral mixture analysis
models were used to diversify the combinations of endmembers. For each pixel, one-, two-,
and three-endmember combinations were used to determine the optimal candidate model. An optimal
candidate model generates a realistic range of fractions (0–100%) and does not exceed an RMSE
threshold (0.025). The corresponding estimated results of MESMA were combined into one image with
several associated bands. Each band represents the areal fraction of each endmember of vegetation,
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bare soil and impervious surfaces. VFC can be obtained as the sum of all the abundance bands
of vegetation.

This study established a spectra library consisting of 28 spectra. Specifically, some major candidate
imagery endmembers were first identified using the Pixel purity index approach in combination with
an N-dimensional visualizer. Then, the optimal representative endmembers were chosen from the
diverse collected endmembers. The high-albedo and low-albedo impervious surface categories each
included 6 distinct endmember spectra, and the vegetation (grassland/lawn and forest) and bare soil
categories included 6/5 and 5 spectra, respectively. The reflective spectra of the collected endmembers
are displayed in Figure 3. With the selected endmember spectra, MESMA was implemented to obtain
VFC. In the process of MESMA, a large number of combination models were applied to unmix each
pixel in a cyclical manner. The associated details of MESMA model parameterization are shown in
Table 2.
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Table 2. Details of the MESMA model parameterization.

Data Type of Combination Number of Models Total

Landsat TM
one-endmembers 28
two-endmembers 313 2087

three-endmembers 1746

3.2. Urban Heat Flux Retrieval

3.2.1. TSEB Model

An advanced two-source urban heat flux algorithm [14,15] is applied to delineate heterogeneous
urban areas. This model can decompose the heat flux within a mixed pixel into sub-component heat
fluxes of vegetation and non-vegetation.

For single observation angle satellite data, it is impractical to accurately separate the component
surface temperatures of the vegetation and the impervious surface within the complex mixed pixels.
Thus, the sensible heat flux H is obtained using an alternative effective resistance approach:
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H = ρCp
Ts − Ta

VFC× Ra_veg + (1−VFC)× Ra_non−veg + Rs
(4)

where ρ is the air density, Cp is the specific heat of air at constant pressure, Ts is the remote sensing
surface temperature from Landsat imagery and Ta is the atmospheric temperature. Ra_veg and
Ra_non−veg are the aerodynamic resistance values of vegetated and non-vegetated areas, respectively,
which are retrieved using the following equation:

Ra =

ln
(

Zm−d
Z0m

)
× ln

(
Zh − d

Z0h

)
k2u

(5)

where Zm is the height of wind measurements, Zh is the height of humidity measurements, d is the
zero-plane displacement height, Z0m is the roughness length governing momentum transfer, Z0h is the
roughness length governing transfer of heat and vapor, k is the von Karman’s constant and u is the
wind speed (m s−1) at a given height based on meteorological data.

Rs is the resistance to heat flow in the boundary layer immediately above the soil surface and can
be computed using the following equation:

Rs =
1

a + bus
(6)

where a is the free convective velocity, b is a coefficient that represents the typical soil surface roughness,
and us is the wind speed over the soil surface at a height of 0.05–0.2 m. As suggested by Kustas and
Norman [53] and Weng, Hu, Quattrochi and Liu [14], a and b are set to 0.004 m/s and 0.012, respectively.

LE is given using the following equation:

LE = VFC× LEveg + (1−VFC)× LEnon−veg (7)

where LEveg and LEnon−veg are the latent heat fluxes in vegetated and non-vegetated areas, respectively.
These variables were computed as follows:

LEveg =
ρCp

γ ×
eo − ea

Ra_veg + rs_veg

LEnon−veg =
ρCp

γ ×
eo − ea

Ra_non−veg + rs_non−veg

(8)

where ea is the atmospheric water vapor pressure in hPa, eo is the saturation vapor pressure in hPa
and is calculated using Equations (9) and (10) [5,7]. γ is the psychometric constant.

eo = 1013.25 exp(13.3185tR − 1.9760tR
2 − 0.6445tR

3 − 0.1299tR
4) (9)

tR = 1.0− 373.15
T

(10)

In Equations (9) and (10), T is the atmospheric temperature in kelvin and rs_veg and rs_non−veg are
the stomata resistance values in vegetated and non-vegetated areas, respectively. rs_veg and rs_non−veg

were obtained using the simple approach reported by Kato and Yamaguchi [5].
By dividing sensible heat flux H by latent heat flux LE, we can obtain the Bowen ratio.

β =
H
LE

(11)

In the TSEB model, the required parameters involving roughness lengths, including d, Z0m and
Z0h, have important influences on the results. Typical values of d, Z0m and Z0h for specific surface
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land types are alternatively used in this study. The reference classifications of the surface types
were obtained using the SVM method. Based on existing studies in the Beijing [54,55], the required
parameters are listed in Table 3.

Table 3. Parameters used for surface coverage types.

Land Cover Z0m (m) Z0m/Z0h d (m)

Water 0.3 × 10−4 0.32 0
Bare soil 0.001 50 0

Crop field 0.12 100 0.02
Lawn 0.001 50 0.13
Forest 0.5–1.0 1000 4

Urban areas 1 1000 5

3.2.2. PCACA Model

The PCACA model uses a combination of LST versus VFC trapezoid method and a Bowen ratio
energy balance method to partition surface temperature and surface net radiation of mixed pixels,
subsequently estimating various heat components.

As a method that is based on the trapezoid approach, PCACA assumes that the LSTs of mixed
pixels all exist within the space constructed by VFC and LST. In Figure 4, the wet edge of the trapezoid
is related to surface conditions of maximum LE (or potential evapotranspiration). In contrast, the dry
edge represents minimum LE (or zero evapotranspiration). Accordingly, if the endpoints of the two
edges are selected and the associated positions are determined, we can fix the shape and structure of
the trapezoid. Furthermore, the Bowen ratio and surface heat flux can be calculated.

In urban regions, LSTsw and LSTsd represent the endpoints of water bodies and dry, bare lands,
respectively. LSTvd and LSTvw represent dry, full canopy green spaces and water-saturated soils,
respectively. As described by previous studies [16,17,56], the Bowen ratio of each pixel can be
retrieved through the linear interpolation between wet and dry edges of the trapezoid using the
following equation:

β ≈
[

LST − LSTmin

LSTmax − LST

]
VFC

(12)

where LSTmin and LSTmax are the intersections between VFC and the wet edge and dry edge,
respectively. LSTmin and LSTmax in Figure 4 can be represented by the following equations:

LSTmax = kdry ×VFC + LSTsd
LSTmin = kwet ×VFC + LSTsw

(13)

where kdry and kwet are the slopes of the dry and wet edges. Substituting LSTmin and LSTmax in
Equation (12) into Equation (13) yields the following expression.

β =
−kwet ×VFC− (LSTsw − LST)

kdry ×VFC + (LSTsd − LST)
(14)

To determine appropriate LSTmin and LSTmax for the PCACA method, we must identify
appropriate wet and dry edges in the complex urban regions using the Landsat-based VFC/LST
spaces. Selecting accurate hot and cold endpoints is difficult because of the constraint information
derived from one thermal band. In this study, we did not focus on the procedures used to identify
extreme pixels. Following previous studies [16,17], LSTsd and kdry were retrieved using LST values
from representative bare land in the study area, and LSTsw and kwet from the Landsat images were
based on the LST values of several water districts in the study regions.
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Figure 4. The trapezoid of vegetation fractional cover/land surface temperature (VFC/LST) space, in
which v and s denote vegetated areas and bare ground, respectively, and d and w denote extremely
dry and extremely wet areas, respectively.

In the implementation of the PCACA model, 10 water bodies in Beijing were selected, and
their mean Landsat TM LSTs were calculated. We considered the water surface temperature to be
LSTsw = 20.0± 0.5 oC. Average values of 23 Landsat TM LSTs of built-up, pavement and dry, bare soil
regions in the study area were used to determine the dry surface temperature LSTsd = 38.2± 0.9 oC.
When obtaining values of LSTsw and LSTsd, kdry and kwet were estimated through fitting Equation (13)
using a combination of VFC and LST. kdry and kwet were set to −4.76 and 0.51, respectively, in our
study. With these calculated coefficients, the Bowen ratio was estimated from VFC and LST in each
pixel using the following formula.

β =
−0.51×VFC− (20.0− LST)
−4.76×VFC + (38.2− LST)

(15)

Then, based on Equations (1) and (12), LE can be obtained using Equation (16).

LE =
Rn − G
1 + β

(16)

In this study, Rn and G are estimated according to the work of [6,14].

4. Results

4.1. Performance of VFC Estimations

The resultant VFCs were validated using the independent dataset (N = 120) that is introduced in
Section 2.2.2. The VFC maps derived from the two remote sensing methods are shown in Figure 5,
and the scatter plots of estimated VFC versus reference VFC are given in Figure 6. Through checking the
accuracy of NDVI-derived VFC, an adjusted R2 of 0.86 was obtained. The regression analysis displayed
an adjusted R2 of 0.91 based on the results of the MESMA-derived method. For comprehensive analysis,
urban landscape was subdivided into two categories: pixels were classified as less-developed areas
when the VFC were larger than or equal to 30%, whereas those pixels of less than 30% were considered
developed areas. The statistical results for the overall study area and two categories are illustrated in
Table 4. The RMSE-based and MAE-based accuracies achieved using the MESMA-derived approach
were 1.61% and 1.03% better, respectively, than those of the NDVI-based approach.
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Figure 5. The VFC maps based on: (a) Normalized Difference Vegetation Index (NDVI)-derived
method; and (b) Multiple Endmember Spectral Mixture Analysis (MESMA)-derived method.
Detailed VFC maps in the urban region (blue box) based on: (c) NDVI-derived method;
and (d) MESMA-derived method.

The resultant VFCs were approximately similar for the NDVI-derived and MESMA-derived
methods in non-urban regions. Specific differences in the estimated VFCs obtained using these
two methods were observed in urban regions. As shown in Figure 5, the spatial VFC patterns of
trees and grasslands located in medium-high VFC areas (i.e., urban parks and residential areas)
matched relatively well between the two methods. However, some small patches of grass/shrubs and
trees located in low VFC areas, e.g., in the city center and the southern portions of built-up regions,
were confused with impervious surfaces and resulted in obvious differences in estimated VFCs using
the two methods. The better performance of the MESMA-derived method relative to that of the
NDVI-derived method is also displayed by the red circles in scatter plots in Figure 6.
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Table 4. Comparisons of VFC estimation accuracy for NDVI-derived and MESMA-derived methods.

Error Assessment NDVI-Derived (%) MESMA-Derived (%)

RMSE
Overall 7.19 5.58

Less developed areas 5.68 4.7
Developed areas 9.65 8.35

MAE
Overall 5.82 4.79

Less developed areas 5.32 3.91
Developed areas 8.4 7.09

The performance of VFC retrieval was examined by comparing the frequency plots of estimated
VFC values based on the NDVI-derived and MESMA-derived models. Figure 7 shows that the
frequency profiles of the modeled VFC results are similar in non-urban regions, with a total bias of
only 0.92. Conversely, the discrepancy between the NDVI-derived and MESMA-derived histograms
in urban regions was relatively large, with a total bias of 3.12, indicating that the effectiveness of
urban VFC retrieval varied between the two approaches. These deviations agree with the results of the
conducted accuracy evaluations and scatter plots in Figure 6.Remote Sens. 2017, 9, 455  13 of 20 
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Figure 7. Normalized frequency plots of the two estimated VFCs in: (a) urban regions; and
(b) non-urban regions (Note that the x-axis is from 0.02 to 0.98).

4.2. Performance of Urban Heat Flux Estimations

The in situ measurements from the five sites (B1–B5) listed in Table 1 were used to validate the
Landsat TM-retrieved Bowen ratio and latent heat flux. The Bowen ratio maps derived from two
remote sensing heat flux models are shown in Figure 8. The LE maps derived from remote sensing
heat flux methods are shown in Figure 9. There are obvious spatial differences between the model
results using the different retrieved VFCs as driving parameters, particularly in urban regions where
some residential evaporation occurred.

Figure 10a,b illustrates the statistical results for all the five sites put together, based on the TSEB
model using NDVI-derived VFC and MESMA-derived VFC as the driving parameter, respectively.
The statistical results for all the five sites put together, based on the PCACA model using NDVI-derived
VFC and MESMA-derived VFC as the driving parameter, respectively, are illustrated in the Figure 10c,d.
Furthermore, the differences in heat flux maps based on the PCACA model using the two different
VFC sources were relatively similar (see Figure 10g,h), while the TSEB model yielded some substantial
differences (see Figure 10e,f).
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Figure 8. Bowen ratio maps of the NDVI-derived and MESMA-derived methods based on the PCACA
and TSEB models: (a) NDVI–TSEB; (b) MESMA–TSEB; (c) NDVI–PCACA; and (d) MESMA–PCACA.Remote Sens. 2017, 9, 455  14 of 20 
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Figure 9. LE maps (in Wm−2) based on the NDVI-derived and MESMA-derived methods
and the PCACA and TSEB models: (a) NDVI–TSEB; (b) MESMA–TSEB; (c) NDVI–PCACA;
and (d) MESMA–PCACA.
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Figure 10. Comparisons of estimated Bowen ratio and LE (in Wm−2) with measured Bowen
ratio and LE by the flux towers B1–B5 (listed on Table 1): (a,e) NDVI–TSEB; (b,f) MESMA–TSEB;
(c,g) NDVI–PCACA; and (d,h) MESMA–PCACA.

The spatial patterns of LE are also illustrated along with a histogram that shows the frequency
distribution of LE values within the model domain. As shown in Figure 11, different models exhibited
different capabilities of capturing the frequency distribution of urban LE estimation. The discrepancies
in LE distributions between the two studied models, in terms of both overall magnitude and spatial
differences, were larger in urban regions relative to those in non-urban regions. The distributions
of the modeled LE results are similar in non-urban areas, with overall bias values of 7.3 Wm−2 and
4.0 Wm−2 based on the TSEB model and PCACA model, respectively. However, a larger difference
was observed in urban regions, with overall bias values of 58.8 Wm−2 and 13.9 Wm−2 based on the
TSEB model and PCACA model, respectively. The deviations in the estimated urban LE obtained from
both TSEB and PCACA models could be attributed to the differences in the response to urban VFC
retrieval. For the TSEB approach, VFC was a critical factor that dominated the pixel-level-combined
heat flux. While for the PCACA model, these uncertainties were caused by the spatial context between
VFC and LST. This further demonstrated that accurate VFC data is particularly important in enhancing
the estimation of urban heat fluxes. Similar finding was observed in the study of [57], which used
Surface Urban Energy and Water Balance model to delineate neighborhood scale energy components
and demonstrated the importance of vegetative cover in simulating urban energy terms.
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Figure 11. Frequency plots of estimated LE data based on the NDVI-derived and MESMA-derived
models: (a,c) urban region; and (b,d) non-urban region.

Based on Landsat TM/ETM data, latent heat fluxes on 17 April 2001, 12 April 2002, 6 July 2004,
6 May 2005, 22 May 2005, 27 March 2008, 14 May 2008, 2 April 2010, 5 June 2010 and 21 June 2010
were further calculated and analyzed. Since only one or two stations were available per image for the
BA1–BA8 sites, these additional images and field data were only used for a single accuracy comparison
analysis. It should be noted that, for sites BA1–BA8, there is one or more available images that could
be used. Comparisons of the estimated LE with measured fluxes are shown in Figure 12.

It is observed that RMSE value was 63.1 Wm−2 for TSEB model when using the NDVI-derived
VFC, while this value was 58.3 Wm−2 for PCACA model. The MAE value was 58.6 Wm−2 for TSEB
model when using NDVI-derived VFC; and this value was 53.1 Wm−2 for PCACA model. On the
other hand, when using MESMA-derived VFC, the RMSE of LE was 57.3 Wm−2 for TSEB model, while
this value was 54.6 Wm−2 for PCACA model. The MAE value was 50.8 Wm−2 for TSEB model when
using MESMA-derived VFC; and this value was 48.2 Wm−2 for PCACA model.

We also checked the determination coefficients (R2) of the fields with respect to the combination of
B1–B5 sites and BA1–BA8 sites. The R2 was 0.66 and 0.70 for TSEB model when using the NDVI-derived
VFC and MESMA-derived VFC, respectively. Concerning the PCACA model, the R2 values for the
resultant LE values were 0.72 and 0.73 for the NDVI-derived VFC and the MESMA-derived VFC
respectively. Overall, results demonstrated that LE was produced with obvious errors when using the
NDVI-derived VFC while this was improved when using the SMA-derived VFC.
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Figure 12. Scatter plots of estimated and measured LE (in Wm−2) by the flux towers BA1-BA8 (listed on
Table 1): (a) NDVI–TSEB; (b) MESMA–TSEB; (c) NDVI–PCACA; and (d) MESMA–PCACA.

5. Discussion

When combined with medium-resolution spatial and spectral features, MESMA-derived
method achieved more accurate VFC values in complex urban regions than NDVI-derived method.
In particular, the NDVI-derived approach obviously underestimates low VFC areas as compared
to estimates using the MESMA approach, especially in complex urban regions where partial cover
conditions are more prevalent. This underestimation is mainly associated with the complexity of bare
land (bare soil and impervious surfaces) spectra. For the sparsely vegetated areas, the performance of
the NDVI-derived method decreases because NDVI is more sensitive to vegetation spectra over
high-level bare land areas. This finding is supported by previous studies [58,59] that reported
relatively lower vegetation coverages in metropolitan areas (Phoenix and Manaus) would result
in estimation difficulties. It should be stressed that for a substantial part of urban thermal studies,
the NDVI-derived method was commonly used due to its simplicity and ease of implementation.
However, based on the above context, MESMA-derived VFC was found more prospective in studies of
urban thermal environments.

Through the investigation we could see that the LE differences between two VFC sources were
obvious in local urbanized regions, especially in areas with high-intensity impervious surface pixels
(low-intensity urban vegetation) for which only a smaller fraction of the energy translates into
evaporation and transpiration. In some regions such as the city center and the southern portions
of built-up areas in Beijing, LE was detected using the MESMA-retrieved VFC and was ignored
based on the NDVI-retrieved VFC. This can be attributed to the fact that VFC was more likely to
be underestimated using the NDVI-derived method in sparsely vegetated areas dominated by light
impervious surfaces and soil. In particular, when NDVI-derived VFC was used as input data, latent
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heat flux was seriously underestimated and even considered as non-existent over high-level impervious
surfaces (VFC less than 10%).

Clear dissimilarities were also observed in the frequency distributions of LE estimates between
those of TSEB and PCACA models using the same VFC in urban and non-urban regions. Moreover,
the discrepancies in the TSEB model-retrieved heat flux values using MESMA VFC versus NDVI VFC
inputs were nearly one to two times larger than those of the PCACA model. This may be because that
PCACA model could partially counteract the effects of miscalculated VFC on LE estimations using
the constraint of spatial context of them. The results of our study are supported by some previous
studies [18,60], which have reported that the VFC-LST methodology could be used in complex urban
scenes and produce acceptable results.

On the other hand, although previous studies have focused on the validation and applicability of
remote sensing-based urban heat flux models, there is no comparative analysis regarding different
urban heat flux models. In present study, PCACA model, a typical VFC-LST based trapezoid model that
does not require a large number of relative parameters which cannot be retrieved by remote sensing,
can be more suitable to delineate urban surface LE and with higher accuracy. In addition, while the
TSEB and PCACA models provided acceptable performances with the available remote sensing and
meteorological data, the applications of these models needs to be further assessed by invalidating with
other experimental sites (i.e., URBANFLUXES (http://urbanfluxes.eu/)) or comparing with other
urban energy models. Some effectively neighborhood scale urban climates models, such as [61], should
be considered in further work.

6. Conclusions

This study investigated the fractional abundance of urban vegetation based on the heterogeneous
pixels of Landsat imagery. A comparative analysis between NDVI-derived and MESMA-derived urban
VFC illustrated that the latter achieved more accurate VFC values in complex urban regions. Moreover,
MESMA-derived VFC could result in more accurate urban LE estimates relative to NDVI-derived
VFC when used as input to both the TSEB and PCACA models. Our study suggests that the
MESMA-retrieved VFC, which has not been sufficiently investigated in previous urban thermal
environment studies, should be given more attention.

When using the different remote sensing-based VFC driver maps, PCACA model produced
smaller differences on the output LE maps over both urban and non-urban regions. However, obvious
bias was observed using the TSEB model in both urban and non-urban regions, particularly in the
former. Accordingly, PCACA model may be an alternative for remote sensing-based urban heat flux
studies that focus on quantitative comparative analyses in complex study regions.
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