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Abstract: Image registration is a basic but essential step for remote sensing image processing,
and finding stable features in multitemporal images is one of the most considerable challenges
in the field. The main shape contours of artificial objects (e.g., roads, buildings, farmlands, and
airports) can be generally described as a group of line segments, which are stable features, even in
images with evident background changes (e.g., images taken before and after a disaster). In this study,
a registration method that uses line segments and their intersections is proposed for multitemporal
remote sensing images. First, line segments are extracted in image pyramids to unify the scales of
the reference image and the test image. Then, a line descriptor based on the gradient distribution
of local areas is constructed, and the segments are matched in image pyramids. Lastly, triplets of
intersections of matching lines are selected to estimate affine transformation between two images.
Additional corresponding intersections are provided based on the estimated transformation, and an
iterative process is adopted to remove outliers. The performance of the proposed method is tested on
a variety of optical remote sensing image pairs, including synthetic and real data. Compared with
existing methods, our method can provide more accurate registration results, even in images with
significant background changes.
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1. Introduction

Image registration refers to the process of aligning two images of the same scene taken at different
times, from different sensors, or at different views [1,2]. It is the basis of remote sensing image
processing, and its result has been widely used in many areas, including image fusion [3], environment
monitoring [4], and change detection [5].

Existing image registration methods can be generally divided into two categories:
appearance-based methods and feature-based methods. Among appearance-based methods, the
most representative approaches are the cross correlation [6] and mutual information [7] methods.
These methods directly use the grayscale distribution information of an image in the registration
task; they have been extensively used in the area of medical image registration [8]. In feature-based
methods, significant features are extracted from images and then matched based on their similarities.
These features, which are extracted as shape contours [9], points [10], lines and curves [11], can be
more stable than grayscale information. Compared with appearance-based methods, feature-based
methods can achieve high-accuracy registration for images with significant differences in grayscale
at a lower computation cost. In the area of remote sensing image registration, images are typically
taken at different times; thus, difference in grayscale is relatively apparent. Therefore, most existing
registration methods for remote sensing images are based on various features.
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Among all the features used in image registration, point features are the most common. In 2004, a
method called scale-invariant feature transform (SIFT) [12] was proposed; since then, this method has
become the most popular point feature descriptor. SIFT extracts local extrema in scale space to achieve
scale invariance and then generates descriptors by using local gradient distribution information.
To improve robustness or reduce computation cost, various point feature descriptors [13–18] have
been proposed based on the SIFT descriptor. Bradley [19] proposed a registration method for
intensity-range images, where mutual information was combined with SIFT features. Although
these SIFT-like features have been widely used in a variety of areas, they continue to exhibit limits in
remote sensing images with evident background changes, which affect the location and description of
interest points. Therefore, other point features have been proposed in recent years, and shape context
(SC) [20] is one of the most well-known; SC uses the points relative to a reference point to generate
a descriptor called shape context. Huang and Li [21] first applied shape context to remote sensing
image registration. Subsequently, Jiang et al. [22] improved shape context to achieve rotation and
scale invariance. However, the performance of these shape context-based methods deteriorates when
geometric distortion is caused by a view change between the images. Arandjelović [23] proposed an
object matching method using boundary descriptors. The the local curvature maxima along a contour
were detected as boundary keypoints. Then, the local boundary descriptor was constructed using the
profile of boundary normals’ directions. Finally, the set of boundary descriptors is clustered, and an
object is represented. Evaluated on a large data set, this method can successfully match objects in
terms of view change. Whereas, since there are abundant objects in a remote sensing image, it might be
difficult to represent an object with a cluster of boundary descriptors. The incorrect shape components
in remote sensing images may also influence the effectiveness of this method.

Compared with point features, line features in an image contain more geometric and structural
information. Thus, registration methods based on line segments have attracted increasing attention in
recent years. Existing registration methods based on line segments can be divided into two classes:
descriptor-based methods and search-based methods.

In descriptor-based methods, the local appearance of a line segment must be described to match
lines with maximal similarity. Bay et al. [24] proposed a line-matching method that used a color
histogram to match lines and a topological filter to remove outliers. This method is capable of working
with a wide range of scenes based on line segments in color images. Wang et al. [25] proposed a line
descriptor called mean-standard deviation line descriptor (MSLD), which was constructed in a SIFT-like
manner. MSLD defines the local area of a line segment as a pixel support region (PSR) and then uses
the mean and standard deviation of the gradient in PSR to generate a line descriptor. An improved
descriptor, called line band descriptor (LBD) [26], was also proposed; it realized scale invariance by
using a scale-space line extraction strategy. Verhagen et al. [27] introduced a common method to
add scale-invariance to a line descriptor, and scale-invariant MSLD was presented in this manner.
Wang et al. [28] clustered line segments into local groups based on their spatial relations. A group
of line segments was called a line signature (LS). The similarity of LS features is determined by the
length and angle information of line segments, which is sensitive to endpoint changes. Fan et al. [29]
introduced a method called line matching leveraged by point correspondences (LP). In this method, an
affine invariance from one line and two coplanar points was used to improve the distinctiveness and
robustness of line matching. Arandjelović [30] proposed a frontal face recognition algorithm based on
edge information. This algorithm can robustly match frontal faces under extreme illuminations; but
the vertical symmetry of frontal faces which was used to remove false edges, might not be effective in
other scenarios. Shi and Jiang [31] proposed an automatic image registration method that utilized the
midpoints of line segments to generate shape context and describe shape contours (named RMLSM for
short). The experimental results showed that this method could be used in the registration of remote
sensing images with evident background changes. Nonetheless, the location of a midpoint is sensitive
to segment fragmentation, which limits the use of this method.
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Unlike descriptor-based methods, search-based methods typically use an iterative strategy to
register two images without describing line features. Coiras et al. [32] proposed an iterative method for
visual-infrared image registration that randomly selected three line segments at a time and used their
intersections to calculate the affine matrix between two images. An improved method was presented
by Li and Stevenson [33], who adopted a selective search strategy to reduce computation cost. Zhao
and Goshtasby [34] introduced a registration method for multitemporal remote sensing images. In this
method, four lines in each image are selected concurrently starting from the longest line segment to
estimate the homography parameters. Then, the parameters are refined by selecting more lines. This
method works efficiently when the scale difference between images is small.

In the present study, a novel registration method for optical remote sensing images is proposed.
The method is called registration with line segments and their intersections (or RLI, for short). First,
line segments are extracted in the image pyramid. These segments will be used to estimate and unify
the scales of the reference image and the test image. The problem of segment fragmentation becomes
negligible when the scales of the two images are at close levels. Second, a novel line descriptor is
introduced, and the line segments are matched in image pyramids based on the distances of the
descriptors. The local area near a line segment remains relatively stable; therefore, this descriptor
can obtain a robust description of a line feature. Lastly, a triplet of intersections of matching lines
is selected to estimate the affine parameters between images, and the registration result is refined
through an iterative process. The experimental results demonstrate that the proposed RLI method can
register optical remote sensing images with high accuracy.

2. Methodology

The flowchart of the proposed RLI method is presented in Figure 1. The core steps can be
divided into four aspects: line feature detection, line segment matching, affine model calculation
with intersections, and accuracy evaluation. These four aspects are described in detail in the
succeeding sections.

Test
image

Reference
 image

Line segment 
detection

Line segment 
detection

Local descriptor 
construction

Local descriptor 
construction

Line matching in 
image pyramid

Estimation of affine 
parameters 

Refinement of 
registration result
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Line feature detection

  Line segment matching

 Affine model calculation 
with intersections

  Accuracy evaluation

Figure 1. Flowchart of the proposed method.
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2.1. Line Segment Detection

Segment fragmentation is a common problem for line detection algorithms, and it has a significant
influence on the results of image registration. If the scales of the reference and test images are
estimated, then we can unify the scales of these two images via downsampling to overcome the
segment fragmentation problem. Thus, we propose a strategy for unifying the scales of images via an
image pyramid. First, line segments are extracted from the image pyramid. Second, local descriptors
for line segments from different scales are generated. Third, the scales of the two images are estimated
by calculating the Euclidean distances of the descriptors. Lastly, the scales of the two images are unified
into the same level, and the line segments are matched based on the distances of their descriptors.
The image pyramid line segment detection method is presented in this section.

In this study, we assume that all the input images contain a considerable amount of artificial objects
(e.g., roads, buildings, farmlands, and airports) that can be detected as line segments. To overcome the
problem of segment fragmentation, an image pyramid that consists of n octaves is used. In this image
pyramid, each octave is generated by downsampling the original input image with a series of scales,
and the first octave is established as the input image. Furthermore, each octave has only one layer;
such a scenario differs from the traditional Gaussian pyramid. We can obtain the multi-resolution
representation of an image by using this image pyramid.

To detect line segments, EDLines [35] algorithm is used in this paper. EDLines is an automatic
line segment detection algorithm with no requirement for parameter tuning, and it is one of the
state-of-the-art line detection algorithms [36]. It can obtain meaningful and accurate segments by
using a false positive control criterion named the Helmholtz principle [37]. Thus, EDLines is suitable
for extracting line segments from the main shape contours in remote sensing images. As shown in
Figure 2, EDLines algorithm is applied to each octave image in the image pyramid.

...

Scale

LineScale[1]={                                          }

LineScale[2]={                                       }

LineScale[3]={                                    }

LineScale[4]={                               }

LineScale[n]={                          }

Figure 2. Illustration of line segment detection in an image pyramid. The first octave is the input image,
and the other octave images are downsampled from it. Line segments detected from the ith octave
image are represented as LineScale[i].

Although EDLines algorithm can obtain meaningful segments as mentioned above, there still
exists segment fragmentation in practice. In this study, a line-merging procedure is performed
according to the parallel relation and distance of the line segments. The underlying idea of line-merging
procedure is to merge two segments that lie on one line belonging to the same shape contour. This
procedure can reduce the number of segments by an average of 20%, thereby not only helping improve
segment quality but also reduce computation cost. It is worth mentioning that the proposed RLI can
work without this line-merging procedure. Then, all the remaining line segments from the ith octave
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of the pyramid are represented as LineScale[i]. The descriptor for each segment and the image pyramid
line matching method are introduced in the following sections.

2.2. Line Segment Matching

In this section, a novel line descriptor based on the distribution of local gradient information
is proposed. Unlike descriptors with fixed widths of sub-regions, such as MSLD [25] and LBD [26],
the proposed descriptor divides the local area into a series of bands (sub-regions) with gradually
changing widths. The center band of this descriptor has the minimal width, and the peripheral
bands have the maximal widths. Thus, the widths of bands change gradually, and we called it line
descriptor with gradually changing bands (LDGCB). The LDGCB descriptor is more distinctive than
traditional descriptors.

2.2.1. Construction of Local Descriptor

Let L denote a line segment with length N in an octave image. Centered on L, a rectangular
region, which is also known as the support region, is chosen as the local neighborhood of line segment
L. Then, we divide this region into m banded sub-regions {B1, B2, . . . , Bm}, which are parallel with
L, and the corresponding widths are {w1, w2, . . . , wm}. Figure 3 presents an example of the banded
sub-regions of line segment L, where m = 5 and {w1, w2, . . . , w5} = {3, 2, 1, 2, 3}.

Motivated by MSLD, the gradient information is used to determine two critical directions of a line
segment. The orthogonal direction d⊥ is defined as the average gradient orientation of all the pixels
on segment L, and the direction dL is defined as the counterclockwise orthogonal direction of d⊥. For
each pixel in the rectangular support region, the corresponding gradient g is decomposed into the

following two directions g =
(
gT · dL, gT · d⊥

)T ∆
=
(

gdL , gd⊥

)T , thereby obtaining rotation invariance.

w3

d  

dL

w1

w2

w4

w5

G1N
B1

B2

B3

B4

B5

L

Figure 3. Illustration of the banded sub-regions of line segment L. The small arrows represent the
gradients of the pixels. The direction d⊥ is defined as the average gradient orientation of all the pixels
on segment L, and the direction dL is defined as the counterclockwise orthogonal direction of d⊥. The
entire support region is divided into m banded sub-regions with gradually changing widths.

To emphasize the importance of center sub-regions, a Gaussian function with weighting coefficient
fg = (1/

√
2πσ)e−d2/2σ2

, is applied to all the rows of the support region, where d is the distance from
the row to line L, and σ is equal to the half width of the entire support region. location changes along
direction d⊥ cause boundary effects; hence, a simple method is provided to reduce these effects. A pixel
with gradient g is given in sub-region Bi. Then, g can affect the nearest two sub-regions Bi−1 and Bi+1,
with the weighting coefficients ( f1 and f2). We denote the distances from this pixel to the centers of



Remote Sens. 2017, 9, 439 6 of 19

Bi−1 and Bi+1 as d1 and d2, respectively. We can then obtain the coefficients f1 = d2/ (d1 + d2) and
f2 = 1− f1.

Let Gij denote the gradient distribution of the jth column in sub-region Bi. The variable Gij is a
4D vector, calculated by accumulating all the gradients in this column along four directions as follows:

Gij =
(

G1
ij, G2

ij, G3
ij, G4

ij

)T
∈ <4, (1)

where

G1
ij = ∑

gdL
>0

gdL , G2
ij = ∑

gdL
<0
−gdL , G3

ij = ∑
gd⊥>0

gd⊥ , G4
ij = ∑

gd⊥<0
−gd⊥ . (2)

A description matrix of the gradient distribution, called the band gradient matrix (BGM),
is constructed by crossing all columns in sub-region Bi as follows:

BGMi =
(

Gi1 Gi2 . . . GiN

)
∈ <4×N . (3)

The mean and standard deviation of each row in BGMi are computed and denoted as two
4D vectors, i.e., MT

i and ST
i , respectively. After crossing all the BGMs, we obtain a vector with 8m

dimensions as follows:

LDGCB =
(

MT
1 , MT

2 , . . . , MT
m, ST

1 , ST
2 , . . . , ST

m

)T
∈ <8m. (4)

Similar to MSLD, the first half and the second half of LDGCB are normalized separately, thereby
guaranteeing that both parts will have equal distinctiveness. A threshold of 0.4 is empirically
applied to each element of LDGCB to improve its robustness against nonlinear illumination. Lastly, a
renormalization process is performed, and a unit LDGCB descriptor is generated.

2.2.2. Line Segment Matching in Image Pyramids

Line segments and descriptors are generated as discussed in the previous sections. In this section,
we present a method to unify the scales of the reference image and the test image, as well as to match
line segments at a unified scale. The influence of segment fragmentation is significantly reduced
using this method, thereby allowing the registration method to work with a wide range of scale
changes. To achieve this goal, the scales of two input images should be first estimated by comparing
the Euclidean distances of local descriptors from different octaves of the image pyramid.

Let It (x, y) denote the test image and Ir (x, y) denote the reference image. These two images of
the same scene, are taken at different times, and the ground truth scale between It (x, y) and Ir (x, y)
is denoted as sT . An image pyramid IPt that consists of N octaves is constructed based on It (x, y),
and the scale between two adjacent octaves is s. The original test image is denoted as IPt

1, and the ith
octave is denoted as IPt

i. Thus, the scale between IPt
i and IPt

1 is equal to si−1. The image pyramid
IPr based on Ir (x, y) is constructed in the same manner. In this study, we set N = 5 and s = 0.8.

The concept of scale estimation originates from the fact that the distances between tentatively
matched descriptors are minimal, when the scales of two images are at the same level. Thus, we can
regard the scale with minimal distances as the estimated scale between two images. In this study,
descriptors from any octave are tentatively matched with descriptors from the first octave of the
other image pyramid. Therefore, 2N − 1 candidate scales, i.e.,

{
s−N+1, s−N+2, . . . , 1, . . . , sN−2, sN−1} ,

are observed from the image pyramids. In each candidate scale, the top M least Euclidean distances of
the tentatively matched descriptors are accumulated. The scale with the minimal sum of Euclidean
distances is denoted as ŝ, which is the estimated value of the scale between two images. In this paper,
the recommended value range of M is 60 ∼ 120, and we use M = 100 among all experiments. The
qualitative sensitivity analysis of M is given in Section 3.4.3.
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An example for scale estimation is provided in Figure 4, where the ground-truth scale between
It (x, y) and Ir (x, y) is sT = 0.66. Evidently, the estimated scale is ŝ = s2 = 0.64, which is the
closest among the nine candidate scales. Furthermore, the sum of the top 100 least distances between
tentatively matched descriptors in this estimated scale is significantly smaller than the others, as shown
in Figure 4b.
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Figure 4. Illustration of scale estimation in image pyramids. (a) Test image (left) and reference image
(right); (b) Sum of the top 100 least Euclidean distances in nine scales.

After the scale estimation process, we can unify the scales of the test and reference images by
selecting the corresponding octave images. Let Lt and Lr denote the test and reference line segments,
respectively, detected from the octave images in the aforementioned estimated scale. Then, these line
segments are tentatively matched based on the LDGCB descriptor. Lastly, the candidate matching
results are arranged in ascending order of the nearest neighbor distance ratio (NNDR), which is
represented as CML =

{(
L1

r , L1
t
)

,
(

L2
r , L2

t
)

, . . . , (Ln
r , Ln

t )
}

. The matches with low NNDR are more
likely to be correct than those with high NNDR.

Compared with close-range images, remote sensing images are sensed from a considerably larger
area, and thus, the same type of objects may occur more than once in an image. An effective method to
select correct matches is necessary in the area of remote sensing image registration considering the
influence of repeated objects. Hence, an iterative process that aims to improve registration accuracy is
introduced in the next section.

2.3. Affine Model Calculation with Intersections

Images are sensed remotely with minimal viewpoint changes; hence, the transformation model
between two remote sensing images can be approximated to the affine model [38]. The line equations of
corresponding lines are generally used to calculate the affine model. However, the intersection points
of matching lines have at least two advantages over line equations, namely, lower computation cost and
easier outlier removal. Thus, the intersection points of matching lines are selected as tentative matching
points in this study, and an iterative process is used to calculate the transformation parameters.

Let T denote the affine model between images. The calculation process for the affine model is
divided into two steps: (1) the estimation of affine parameters and (2) the refinement of the registration
result. In Step (1), the affine model is estimated iteratively using three intersection pairs at a time,
and the final estimated model is denoted as T̂. In Step (2), additional intersections are provided as
candidate matching points, thereby refining the affine model T̂. Before these two steps, an intuitive
and effective similarity metric is addressed.

2.3.1. Similarity Metric

The number of matched pixels (NMP) is proposed as a similarity metric in [39]; that is, it indicates
the number of matched pixels between two edge images transformed via affine transformation T.
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NMP is an intuitionistic reflection of the similarity between images, and a high value of NMP suggests
a good estimated value of T. Nevertheless, this similarity metric frequently fails in the field of remote
sensing image registration, in which the high resolution of images typically leads to considerable
difficulty in matching pixels directly.

To adapt to high-resolution remote sensing images, an improvement to NMP called score of
nearest pixels (SNP) is proposed. The implementation of SNP is as follows. A pixel p (x, y) is given in
the test edge image, and p (x, y) is transformed into T̂ (p (x, y)) by affine model T̂. Then, the nearest
point of T̂ (p (x, y)) is identified as p′ (x, y) in the reference edge image, and the distance between
T̂ (p (x, y)) and p′ (x, y) is denoted as nearestDist (x, y). The SNP of p (x, y) is computed as follows:

snp (x, y) =


10, i f {nearestDist (x, y) < 1}
3, i f {1 ≤ nearestDist (x, y) < 2}
1, i f {2 ≤ nearestDist (x, y) < 3}
0, else

(5)

where the maximal sensitive distance is three pixels. The final SNP is determined by crossing all the
pixels in the test edge image as follows:

SNP = ∑ snp (x, y). (6)

The idea of parameter settings of SNP metric comes from 2D Gaussian distribution model, as
shown in Figure 5. Given 2D Gaussian distribution

G (x, y) =
1

2πσ2 e−(x2+y2)/2σ, (7)

where σ is equal to one pixel, about 68% of values are within one pixel; about 95% of the values
are within two pixels; and about 99.7% are within 3 pixels [40]. Then, taking the probabilities of
different distances as weights, the parameters of SNP are set to integers {10, 3, 1, 0} for calculating
easily. This scoring model (as shown in Figure 5b) not only emphasizes the importance of matched
pixels (within one pixel), but also extends the sensitivity range to three pixels. Thus, the proposed SNP
metric can sufficiently describe similarity in high-resolution images by scoring the nearest edge pixels
based on their distance.

10 3 1

(a)                                                 (b)

Figure 5. Illustration of the proposed similarity metric (i.e., score of nearest pixels (SNP)). (a) 2D
Gaussian distribution model; (b) The scoring model for SNP metric.

In order to reduce the computation cost of calculating the similarity metric, the distance
transform [41] is used. In this paper, the distance transform is applied to the reference edge image.
The result is a grayscale image, in which each pixel is assigned to the distance of its nearest edge pixel.
Distance transform is computed only once for each image pair to be registered, thereby reducing the
computation cost efficiently.
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2.3.2. Estimation of Affine Parameters

As mentioned in Section 2.2.2, the tentatively matched lines with low NNDR are more likely to be
correct than those with high NNDR. Therefore, a new set of candidate matches with NNDR less than
0.75, is empirically selected from CML and denoted asML.

An iterative process is adopted to estimate the affine model between images. In each iteration,
a triplet of matching line segments is selected fromML, and the affine parameters are determined
based on their intersections. All the intersections must be located in a rectangular region around the
image with an area that is three times larger than the image area. If this location constraint is not
satisfied, then this iteration is skipped.

Figure 6 illustrates the process where triplets of intersections are generated from matching lines
ML. At first, a triplet match {L1

t , L2
t , L3

t } ∼ {L1
r , L2

r , L3
r} is chosen to generate intersections. Since the

intersection of L2
r and L3

r does not satisfy the location constraint (colored red in Figure 6b), this iteration
is skipped. Then, {L1

t , L2
t , L4

t } ∼ {L1
r , L2

r , L4
r} is selected, and all the three corresponding intersections

satisfy the location constraint. This triplet of intersections is used to estimate the affine parameters.
Another feasible triple match is {L2

t , L4
t , L5

t } ∼ {L2
r , L4

r , L5
r} in this example. The location constraint

in this paper is effective, because intersections not satisfying the location constraint often come from
low-quality line pairs with long distances (such as L2

r and L3
r ) or close directions (such as L1

r and L5
r ).

1 1

2

2

4
4 3

3

5
5

(a) (b)

Figure 6. Illustration of generating intersections using matching lines. (a) Test image with several
line segments; (b) Reference image with corresponding line segments. The location constraint of
intersections is marked as a red rectangular area (only shown in reference image in this example).
Intersections satisfying the constraint are in green, otherwise in red.

An updating strategy of SNP is used in the iterative process, and its implementation is described
as follows. The current maximal value of SNP is denoted as MAXSNP. If SNP is greater than MAXSNP
in an iteration, then we update the value of MAXSNP and the estimated affine model T̂. After the
iteration, the affine model between two images is estimated as T̂. In the ideal situation, the estimated
affine model T̂, which is determined from a single triplet of matching line segments, can be regarded
as the final affine model. In reality, however, many line segments in CML can be utilized to improve
the accuracy of registration. Therefore, additional corresponding segments are provided to refine the
affine transformation in the succeeding section.
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2.3.3. Refinement of Registration Result

In this section, additional corresponding intersections are provided to the candidate matching
points based on the estimated affine model T̂. Subsequently, T̂ is refined by removing the outliers.

To determine which intersection pair can be added as a candidate match, a simple method is
introduced in this study. First, each two corresponding lines of CML intersect at (pr, pt), and the
projected distance of this point pair is calculated as

∥∥∥T̂ (pt)− pr

∥∥∥
2
. Second, the intersection pairs

with projected distances greater than four pixels are removed. Lastly, all the remaining point pairs
are arranged in ascending order of the projected distance, and the top 100 point pairs are stored as
candidate matching points, i.e., CMP =

{(
p1

r , p1
t
)

, . . . ,
(

pN
r , pN

t
)}

, where N ≤ 100.
The affine parameters are refined iteratively based on the SNP similarity metric, and the least

squares method is used to calculate the affine model in each iteration. In each iteration, we remove the
point pair (starting from the point pair with the maximum projected distance) if the similarity metric
is improved without this point pair, and then update the affine parameters T̂ and SNP metric. The
iteration is terminated when the similarity metric is no longer updated.

After the iteration, all the preserved point pairs are stored in a set of matching pointsMP , and
the final affine model is calculated fromMP using the least squares method.

2.4. Accuracy Evaluation

To evaluate the performance of the proposed RLI method, three types of criteria are used in this
study, namely, number of correct matches, precision, and root-mean-square error (RMSE), which are
expressed as follows:

Correct Matches = true positives, (8)

Precision =
true positives

true positives + f alse positives
, (9)

RMSE =

√√√√ 1
N

N

∑
i=1

∥∥T
(

pi
r
)
− pi

t
∥∥2

2. (10)

The true positives refers to the number of correct matches in the final matching results, whereas
f alse positives refers to the number of false matches in the final matching results. The image pairs are
first registered by an expert, and then the ground truth affine models are generated. A point pair is
considered a correct match when its projected distance is less than three pixels.

3. Experiment and Results

In this section, the performance of the proposed RLI method is evaluated on a series of synthetic
and real remote sensing image pairs, and then compared with the performances of RMLSM [31],
SIFT [12], MSLD [25] and LP [29]. The parameter setting, data sets, and experimental results are
presented as follows.

3.1. Parameter Setting

The VLFeat [42] implementation of SIFT is adopted is this study, and the threshold of the matching
criterion NNDR is set to 0.6. The implementation of RMLSM, MSLD and LP is based on the source
codes of the original authors. The EDLines [35] algorithm is used to detect line segments with the
default parameters.

In the proposed LDGCB descriptor, two parameters, namely, the number of sub-regions m and
their widths {w1, w2, . . . , wm}, are used. These parameters are selected based on an experiment on
seven image pairs. The total number of correct matches and the dimension of the descriptor are
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provided in Table 1. The ideal parameter leads to a considerable number of correct matches with low
descriptor dimensions. In this study, we set m = 9, {w1, w2, . . . , wm} = {8, 7, 6, 5, 3, 5, 6, 7, 8}, which
results in a 72-dimensional descriptor. It is worth mentioning that there might be better parameters of
descriptors and the current choice of these parameters can be seen a trade-off between performance
and time cost.

Table 1. Total number of correct matches with different parameters.

Parameter Setting Total Correct Matches Descriptor Dimension

m = 3
{w1, w2, w3} = {4, 3, 4} 407 24
{w1, w2, w3} = {5, 3, 5} 502 24
{w1, w2, w3} = {6, 5, 6} 541 24

m = 5
{w1, w2, . . . , wm} = {5, 4, 3, 4, 5} 898 40
{w1, w2, . . . , wm} = {6, 5, 3, 5, 6} 965 40
{w1, w2, . . . , wm} = {7, 6, 5, 6, 7} 997 40

m = 7
{w1, w2, . . . , wm} = {6, 5, 4, 3, 4, 5, 6} 1212 56
{w1, w2, . . . , wm} = {7, 6, 5, 3, 5, 6, 7} 1325 56
{w1, w2, . . . , wm} = {8, 7, 6, 5, 6, 7, 8} 1328 56

m = 9
{w1, w2, . . . , wm} = {7, 6, 5, 4, 3, 4, 5, 6, 7} 1350 72
{w1, w2, . . . , wm} = {8, 7, 6, 5, 3, 5, 6, 7, 8} 1524 72
{w1, w2, . . . , wm} = {9, 8, 7, 6, 5, 6, 7, 8, 9} 1496 72

m = 11
{w1, w2, . . . , wm} = {8, 7, 6, 5, 4, 3, 4, 5, 6, 7, 8} 1433 88
{w1, w2, . . . , wm} = {9, 8, 7, 6, 5, 3, 5, 6, 7, 8, 9} 1613 88
{w1, w2, . . . , wm} = {10, 9, 8, 7, 6, 5, 6, 7, 8, 9, 10} 1579 88

3.2. Data Sets

The test data sets are composed of two types of images, i.e., synthetic and real multitemporal
remote sensing images, with a ground sample distance (GSD) ranging from 0.5 m to 231.65 m, and
their characteristics are provided in Table 2. The examples of synthetic images are shown in Figure 7,
and the real image pairs are shown in Figure 8.

Table 2. Characteristics of data sets.

Types No. Location Image Size Bits GSD(m) Date Sensor Notes

Synthetic images 1-1 Iran 1600× 1133 11 0.5 2009 WorldView-1 Panchromatic
1600× 1133 11 0.61 2009 QuickBird RGB

Real images

2-1 Pakistan 1598× 1181 11 2 2010 QuickBird Post-flood
1773× 1336 11 2 2007 QuickBird Pre-flood

2-2 Fukushima 584× 584 8 10 2011 SPOT4 Post-tsunami
584× 584 8 10 2009 SPOT4 Pre-tsunami

2-3 Myanmar 1800× 1200 8 231.65 2008 Aqua Pre-flood
1800× 1200 8 231.65 2008 Aqua Post-flood

2-4 Chile 2284× 1856 11 0.61 2010 QuickBird Post-tsunami
1827× 1821 11 0.61 2010 QuickBird Pre-tsunami

To test robustness on the aspects of scale, rotation, illumination and cloud cover, a series of
synthetic images are generated from Data set 1-1. Each type of challenging condition is composed of
six synthetic images and an original image. Figure 7 shows several examples of the synthetic images.
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Figure 7. Examples of synthetic images. (a) Panchromatic satellite image from WorldView-1; (b) the
corresponding RGB image of (a) from QuickBird; (c) synthetic image with a scale ratio of 0.4;
(d) synthetic image with a rotation angle of 45◦; (e) synthetic image with considerably higher brightness
than the original image; (f) synthetic image with mass cloud patches.
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Figure 8. Illustration of real image pairs. (a–d) show the image pairs from Data set 2-1 to Data set 2-4.

3.3. Experimental Results

In this study, the EDLines algorithm is used to detect line segments in an image pyramid. Then,
the proposed LDGCB descriptor is constructed, and the lines are tentatively matched in a unified
scale. Lastly, the intersections of matching lines are used to estimate and refine the affine model.
Figure 9 shows the experimental results of the synthetic images in terms of RMSE and number of
correct matches.
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Figure 9. Performances of the proposed RLI method in terms of root-mean-square error (RMSE)
and number of correct matches over synthetic images under conditions of (a) scale, (b) rotation,
(c) illumination, and (d) cloud cover.

Figure 9a presents the performances of RLI and RLI without an image pyramid (marked as RLI-S).
From image No. 1 to No. 7, the scale ratio between the synthetic image and the original image varies
from 1.0 to 0.4. As expected, the image pyramid improves robustness against scale changes. In practice,
if the scale ratio between two images are known to be close to 1 (as prior knowledge), the RLI method
can work without image pyramids. Figure 9b shows the results of the images with rotation angles
varying from 0◦ to 90◦. RMSE remains stable in this test, and the number of correct matches performs
well when the rotation angle is 0◦ or 90◦, where no aliasing of the line segments occurs. Figure 9c
shows the performance against image illumination changes. To evaluate this effect, we transfer the
original image into HSV color space [43] and then change the value to simulate illumination changes.
The simulated illumination varies from half to twice the original illumination. The results show that
the proposed method is relatively robust to illumination changes within a certain range. Figure 9d
illustrates the effect of cloud cover. Six synthetic images are generated by adding randomly distributed
patches of clouds, and the number of patches varies from 60 to 360. The proposed method can
accurately register images with a mass of clouds given the effectiveness of the local descriptor.

Table 3 shows the comparative experimental results of RLI and four other algorithms on real
remote sensing image pairs, with respect to the number of correct matches, precision, and RMSE. As
for RLI, the projected distances of corresponding intersections are shown in Table 4. The matching
intersection points of the proposed RLI method are shown in Figure 10.

Figure 11 shows the registration results (fusion images of test and reference images) for three real
image pairs, in which Figure 11a corresponds to MSLD on Data set 2-1, Figure 11b corresponds to
SIFT on Data set 2-2, Figure 11c corresponds to LP on Data set 2-3, and Figure 11d–f correspond to RLI
on these three data sets. For each registration result, a sub-region of the fusion image is enlarged for
visual assessment. The enlarged sub-region explicitly shows the registration result on the main shapes
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of objects, such as roads and coastlines. Evidently, the proposed RLI method can align the main shapes
in the images with high accuracy.

(a) (b)

(c) (d)

Figure 10. Matching results of the proposed method on real image pairs. The lines connect matching
intersection points on (a) Data set 2-1; (b) Data set 2-2; (c) Data set 2-3; (d) Data set 2-4.

Table 3. Experimental results of real remote sensing images.

Method Criteria Data Set 2-1 Data Set 2-2 Data Set 2-3 Data Set 2-4

RLI
Correct matches 88 9 11 8

Precision (%) 100 100 100 100
RMSE 1.14 0.97 0.44 1.06

RMLSM
Correct matches 20 31 65 21

Precision (%) 87.0 88.6 95.6 63.6
RMSE 1.19 1.08 0.80 1.24

MSLD
Correct matches 39 13 33 16

Precision (%) 60 37.1 61.1 45.7
RMSE 1.41 1.55 0.86 1.38

SIFT
Correct matches 163 44 151 12

Precision (%) 71.5 59.5 64.8 18.5
RMSE 1.33 1.60 0.82 1.30

LP
Correct matches 21 9 29 6

Precision (%) 34.4 31.0 87.9 24.0
RMSE 1.21 1.28 1.18 1.20

Table 4. Projected distance distribution of corresponding intersections of RLI.

Projected Distance Data Set 2-1 Data Set 2-2 Data Set 2-3 Data Set 2-4

[0, 1] 72 4 10 3
(1, 2] 16 2 1 5
(2, 3] 0 3 0 0

(3,+∞) 0 0 0 0
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(a) (b) (c)

(d) (e) (f)

Figure 11. Illustration of the registration results. (a) Results of mean-standard deviation line descriptor
(MSLD) on Data set 2-1; (b) results of scale-invariant feature transform (SIFT) on Data set 2-2; (c) results
of line matching leveraged by point correspondences (LP) on Data set 2-3; (d) results of RLI on Data set
2-1; (e) results of RLI on Data set 2-2; and (f) results of RLI on Data set 2-3.

3.4. Sensitivity Analysis

3.4.1. Types of Images

In general, the performance of a registration method is greatly effected by the types of test and
reference images. In this paper, the intersections of matching lines are used to calculate the affine
parameters between two images. Intersections are meaningful and effective when the line segments
come from coplanar objects even in images with significant background changes, which has been
confirmed by the experiments.

However, if there is significant displacement of the scene in images, it is difficult to register those
images by applying rigid transformation model like affine function. Rather, non-rigid model such
as piecewise linear function [44,45] is suitable. Moreover, the intersections of non-coplanar lines are
meaningless and cannot be used to register images with displacement of the scene. Thus, in this paper,
we focus on the registration of satellite remote sensing images, where the affine model is suitable.

3.4.2. Parameters of Local Descriptor

The performance of local descriptor determines the number of corresponding lines. Generally
speaking, more corresponding lines can lead to a better registration result. In the proposed LDGCB
descriptor, two parameters, namely, the number of sub-regions m and their widths {w1, w2, . . . , wm},
are used. These parameters are selected based on an experiment as shown in Table 1. In this study,
we set m = 9, {w1, w2, . . . , wm} = {8, 7, 6, 5, 3, 5, 6, 7, 8}, which results in a 72-dimensional descriptor.
This choice is good, and the current descriptor can obtain abundant correct matches in remote sensing
images. Moreover, since the space of possible choices of parameters is really large, and there might be
better choices of these parameters.
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3.4.3. Parameters of Scale Estimation

In order to improve the robustness against scale changes, the scale ratio between two images is
estimated using image pyramids. The scale with minimal difference between descriptors is treated as
the closest scale. Thus, the sum of top M least distances of tentatively matching descriptors is chosen
for scale estimation. If M is too small, the scale estimation is easily effected by stochastic factors. If it
is too large, the sum of descriptors can be less discriminative because of the influence of incorrect
matches. In practice, since the performances of a descriptor varies significantly in different scales,
the scale estimation can be carried out in a wide range of M. In this paper, the recommended value
range of M is 60 ∼ 120, and we use M = 100 among all experiments.

3.4.4. Parameters of Similarity Metric

The parameters of the proposed SNP similarity metric are motivated by 2D Gaussian distribution
model (shown in Figure 5). For a 2D Gaussian distribution, the three-sigma rule [40] expresses a
conventional heuristic that “nearly all” values (99.7%) are within three standard deviations of the mean.
In this paper, we extend the traditional NMP (number of matched pixels) metric [39] to SNP (score of
nearest pixels). The sensitive distance of SNP is set to three pixels, which is treated as a three-sigma
area. Then, taking the probabilities of different distances as weights, the parameters of SNP are set to
integers {10, 3, 1, 0} for calculating easily. This scoring model not only emphasizes the importance of
matched pixels (within one pixel), but also extends the sensitivity range to three pixels. In practice,
the extension of sensitive range makes the metric more suitable for large-size images, and a narrow
sensitive range is more suitable for small-size images.

4. Discussion

A novel registration method for multitemporal optical remote sensing images based on line
segments and their intersections is proposed in this study. The performance of RLI is investigated
through a variety of experiments on synthetic and real remote sensing images, and the qualitative
sensitivity analysis is given in this paper.

The validity of image pyramid line segment detection is proven using the first group of synthetic
images. The RLI method achieves robustness against scale changes by unifying the scales of images.
All the experimental results on synthetic images shows that RLI is robust to scale, rotation, illumination,
and cloud cover, thereby indicating that RLI can be used to register images with evident background
changes (e.g., images taken before and after a disaster).

In this study, real remote sensing image pairs present considerable challenges to a registration
method, and their characteristics are as follows. The high-resolution images (with 2 m GSD) in
Data set 2-1 are taken by QuickBird at different times, and the background is influenced by floods
in Pakistan. The runways in the airport are preserved completely, which can be detected as line
features. The images in Data set 2-2 are taken by SPOT4 before and after a tsunami, and they are
medium-resolution images (with 10 m GSD). Certain objects in this image pair are damaged by the
tsunami. Furthermore, excessive cloud cover is present in this data set. Data set 2-3 corresponds to
the MODIS Flood Maps from Aqua satellites. This data set is composed of low-resolution images
(with 231.65 m GSD) before and after the Myanmar floods. The flooded regions are shown in red, the
original water regions are shown in blue, land is gray, and clouds are white. Although the background
changes considerably in this data set, the main shapes of the objects remain stable. Data set 2-4 are
high-resolution remote sensing images (with 0.61 m GSD) taken by QuickBird. There are significant
geometric distortions and background changes in this data set. This data set is the most challenging
one among all the four real data sets.

As shown in Table 3, RLI outperforms other methods on these challenging real data sets. RMLSM
performs the second best among all methods. However, influenced by the geometric distortions, its
precision decreases on Data set 2-4. The average RMSE of RLI on real image pairs is 0.90, whereas
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those for RMLSM, MSLD, SIFT, and LP are 1.08, 1.23, 1.26 and 1.22, respectively. Furthermore,
the precision of RLI remains at 100% on all the data sets, thereby indicating that all the output matches
are correct correspondences.

The main reasons for the good performance of RLI are analyzed as follows. (1) When faced with
background changes in images, the main shape contours of artificial objects are more stable than
point features; these shape contours can be extracted as a group of line segments; (2) The proposed
local descriptor is more distinctive and detailed than MSLD; (3) The RLI method can register images
with high accuracy by using the intersection points of matching lines to estimate and refine the affine
parameters through an iterative process. In practice, our method can also be used to register general
images with coplanar lines under affine transformation.

In this study, the use of an iterative strategy for result refinement improves the accuracy of the
registration results. However, this process leads to a rapid increase in computation cost when an image
is large. Our next work will focus on improving the speed of image registration under the precondition
of high accuracy.

5. Conclusions

A registration method based on line segments and their intersections has been proposed for optical
remote sensing images in this study. First, the EDLines algorithm is used to detect line segments.
To improve robustness against scale changes, the scales of the test image and the reference image
are unified into the same level with the use of image pyramids. Then, a novel line descriptor is
introduced based on the local gradient information of a line segment, and line segments are matched
according to the distances of descriptors. Lastly, triplets of intersection points of matching lines are
selected to estimate affine parameters, and the registration result is refined through an iterative process.
The experimental results of the synthetic image pairs show that the RLI method is robust to scale,
rotation, illumination, and cloud cover. Four challenging real image pairs are selected to analyze the
performance of RLI, and the results indicate that RLI outperforms four other methods in terms of
RMSE and precision.

In this study, the problem of line-based registration is solved by combining line segments and their
intersection points. The stability of line features and the validity of calculating affine transformation
via intersection points have been proven by the experimental results, even in images with significant
background changes.

In the future, a more robust line segment detector, which can extract complete line segments
in disaster images, should be investigated. In addition, the computation speed of the proposed
registration method should be improved.
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23. Arandjelović, O. Object matching using boundary descriptors. In Proceedings of the British Machine Vision
Association Conference (BMVC), Guildford, UK, 3–7 September 2012; pp. 1–11.

24. Bay, H.; Ferraris, V.; Van Gool, L. Wide-baseline stereo matching with line segments. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), San Diego, CA,
USA, 20–25 June 2005; Volume 1, pp. 329–336.

25. Wang, Z.; Wu, F.; Hu, Z. MSLD: A robust descriptor for line matching. Pattern Recognit. 2009, 42, 941–953.
26. Zhang, L.; Koch, R. An efficient and robust line segment matching approach based on LBD descriptor and

pairwise geometric consistency. J. Vis. Commun. Image Represent. 2013, 24, 794–805.
27. Verhagen, B.; Timofte, R.; Van Gool, L. Scale-invariant line descriptors for wide baseline matching.

In Proceedings of the IEEE Winter Conference on Applications of Computer Vision (WACV), Steamboat
Springs, CO, USA, 24–26 March 2014; pp. 493–500.

28. Wang, L.; Neumann, U.; You, S. Wide-baseline image matching using line signatures. In Proceedings of the
IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan, 29 September–2 October 2009;
pp. 1311–1318.



Remote Sens. 2017, 9, 439 19 of 19

29. Fan, B.; Wu, F.; Hu, Z. Line matching leveraged by point correspondences. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), San Francisco, CA, USA, 15–17 June 2010;
pp. 390–397.
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