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Abstract: Plane segmentation is a basic task in the automatic reconstruction of indoor and urban
environments from unorganized point clouds acquired by laser scanners. As one of the most common
plane-segmentation methods, standard Random Sample Consensus (RANSAC) is often used to
continually detect planes one after another. However, it suffers from the spurious-plane problem
when noise and outliers exist due to the uncertainty of randomly sampling the minimum subset with
3 points. An improved RANSAC method based on Normal Distribution Transformation (NDT) cells
is proposed in this study to avoid spurious planes for 3D point-cloud plane segmentation. A planar
NDT cell is selected as a minimal sample in each iteration to ensure the correctness of sampling on the
same plane surface. The 3D NDT represents the point cloud with a set of NDT cells and models the
observed points with a normal distribution within each cell. The geometric appearances of NDT cells
are used to classify the NDT cells into planar and non-planar cells. The proposed method is verified
on three indoor scenes. The experimental results show that the correctness exceeds 88.5% and the
completeness exceeds 85.0%, which indicates that the proposed method identifies more reliable and
accurate planes than standard RANSAC. It also executes faster. These results validate the suitability
of the method.

Keywords: point cloud; plane segmentation; normal distribution transformation; RANSAC;
NDT features

1. Introduction

As laser scanning technologies have developed, they have been widely used in applications
such as 3D city modeling [1,2], road inventory study [3–5], Simultaneous Localization and Mapping
(SLAM) [6,7] and indoor mapping [8–10]. Being efficient and of high density, the point clouds captured
by airborne laser scanning (ALS), terrestrial laser scanning (TLS), and mobile laser scanning (MLS) can
be employed in fast monitoring of urban environments. The huge point-cloud data available from
indoor environments have inspired deep understanding of the data on the semantic level to meet the
demands of indoor mapping and reconstruction. Objects with planar surfaces such as ceilings, walls
and floors abound in indoor environments, and can semantically provide a compressive representation
of the point clouds; typically, the data-compression rate can reach over 90% [11,12]. The point clouds
of these types of objects have a planar geometric appearance, and the plane can be extracted. Plane
segmentation has been explored for years and is still a very hot and complex task in indoor mapping
and reconstruction. Both organized and unorganized point clouds have been the focus of much
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research. Organized point clouds resemble organized image-like structures, where the data are split
into rows and columns; therefore, it is easy to use the neighbor information in the organized structure.
In contrast, unorganized point clouds vary in size, density and point ordering, and the neighbor
information cannot be used directly. Therefore, plane segmentation for unorganized point clouds is
more complex. However, unorganized point clouds require less storage space and are more suitable
for high-density point-cloud storage. In this study, the input consists of unorganized point clouds
acquired by MLS in indoor environments, which require an efficient method for processing.

Point cloud segmentation plays an important role in point cloud processing [12,13]. As one of
the most important part of point cloud segmentation, plane-segmentation methods can be generally
classified into three categories [14,15]: region-based methods, Hough transform and Random Sample
Consensus (RANSAC). Region-based methods assume that neighboring points within the same region
have similar properties. Neighborhood information is used to combine nearby points that have similar
properties to obtain isolated regions [13,16]. Region-based methods are simple, but they have problems
with over or under segmentation, are very sensitive to noise and are time consuming [13]. When the
transitions between regions are smooth, finding a termination criterion for region-based methods
becomes difficult [17]. The Hough transform is a method for detecting parameterized objects and
is typically used to find lines and circles in 2D situations. For 3D point-cloud plane segmentation,
every point in the Hough space corresponds to a plane in the object space. First, the Hough space is
discretized and represented by an accumulator. Then, plane segmentation becomes a peak-detection
problem in the accumulator [15]. The Hough transform is robust for shape extraction even on noisy
datasets. However, it demands large amounts of memory and computational time [13]. The study by
Tarsh-Kurdi et al. [18] suggested that RANSAC would be more efficient than Hough transform. While
the RANSAC algorithm is effective in the presence of noise and outliers, it has the obvious drawback
that the planes detected by RANSAC may not belong to the same planar surface; spurious planes
may appear [19,20]. This often occurs in complex indoor environments when using the RANSAC
method to successively extract planes. RANSAC iteratively and randomly samples 3 points as a
minimum subset to generate the hypothesis plane and then tests all the remaining points in the point
cloud to detect the best plane, which is defined as the plane with the highest percentage of inliers;
however, there is uncertainty in the process of hypothesis generation. Even for the plane with the
largest percentage of inliers, the three randomly selected points may not belong to the same plane.
Some robust methods [20,21] have been adopted to address the spurious-plane problem; however,
these are all point-based, which is not efficient in an indoor environment.

The main contribution of this paper is that the planar NDT cell is selected as a minimal sample
on the surface of the same plane to ensure the correctness of sampling. A primary plane is detected
first and the remaining points are tested against it to obtain a complete plane. The proposed method
can improve the correctness of plane segmentation and eliminate the spurious-plane problems of
standard RANSAC. An iterative reweighted least-squares (IRLS) approach is also used for plane fitting
to improve the reliability and accuracy of a detected plane.

The remainder of this paper is organized as follows. Related works are described in Section 2.
The proposed NDT-RANSAC method is described in Section 3. Experimental results on three indoor
MLS datasets are presented in Section 4, and conclusions are drawn in Section 5.

2. Related Works

2.1. NDT Methods

Because point-cloud data abound with geometric information, it is necessary to take neighbor
points into consideration during point-cloud processing. Point features are commonly used and
are calculated by the neighbors of each point. For example, the normal, curvature and roughness
features are used for point-cloud segmentation and compression. Methods based on voxel grids and
octrees [22,23] are often used to improve the efficiency of plane segmentation. The proposed method is
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based on Normal Distribution Transform (NDT) cells, which is a discrete representation of point-cloud
space that takes each cell into consideration rather than each point. NDT is a concept similar to
super-voxels and sub-windows.

Super-voxels was proposed by Ahmad et al. [24] and is used for point-cloud segmentation. First,
the 3D point cloud is segmented into voxels. Then, the voxels are characterized by several attributes,
transforming them into super-voxels. Finally, these are joined together using a link-chain method to
create objects.

Xiao et al. [12] proposed two complementary strategies, a named sub-window-based
region-growing algorithm for structured environments and a hybrid region-growing algorithm for
unstructured environments. A sub-window is a moving window suitable for organized point-cloud
representation. They classified the sub-windows into two categories based on their shapes: planar and
non-planar. The algorithms are faster than the point-based region-growing algorithms when a proper
window size is set.

NDT was first proposed by Biber and Strasser [25] for 2D point-cloud registration in 2013 and was
later extended to three dimensions [26]; however, to the best of our knowledge, very few works [27] use
NDT for point-cloud segmentation. The concept underlying NDT is to subdivide the space occupied
by the scan into a grid of cells (squares in 2D and cubes in 3D). A Probability Density Function (PDF)
is computed for each cell, based on the point distribution within the cell. The NDT feature is different
from the point-based feature because NDT considers points within a cell, while the point-based
feature takes the neighbors of a point into account. Additionally, unlike the sub-window approach,
NDT is suitable for both organized and unorganized point-cloud descriptions. There are two NDT
discretization strategies. One is to split the point cloud into a grid of regular size [28]. Another is to
construct a 3D-NDT that uses an irregular grid discretization, such as Octree discretization, which was
explored earlier by Magnusson [29].

2.2. RANSAC

RANSAC was introduced by Fischer and Bolles [30] in 1981 and is widely used for shape
detection [13,20,31]. The RANSAC algorithm mainly involves performing two iteratively repeated
steps on a given point cloud: generating a hypothesis and verification. First, hypothesis shapes are
generated by randomly selecting a minimal subset of n points and estimating the corresponding
shape-model parameters. A minimal subset contains the smallest number of points required to
uniquely estimate a model; for example, 3 points are needed to determine a plane. Then, the remaining
points in the point cloud are tested with the resulting candidate shapes to determine how many of
the points are well approximated by the model. After a certain number of iterations, the shape that
possesses the largest percentage of inliers is extracted and the algorithm continues to process the
remaining data. The plane is often fitted by the least-squares (LS) method, but this approach is often
not robust to outliers when detecting planes repeatedly.

RANSAC assumes that a model generated from a contaminated minimal sample will have low
support, thus making it possible to distinguish between correct and incorrect models [32–34]. Spurious
surfaces may appear when planes are repeatedly detected in succession (Figure 1). Various methods
have been adopted to address the spurious-plane problem and improve the robustness of RANSAC;
for example, MSAC and MLESAC [21] use loss functions rather than fixed thresholds to evaluate the
contribution of the inliers based on the point-to-plane distance. A soft-threshold voting function [20]
based on two weight functions is used to improve the segmentation quality, which considers both the
point-plane distance and the consistency between the normal vectors. However, it requires estimation
of the normal at each point, which is not efficient in high-density point clouds.

According to [32], the time complexity in RANSAC depends on the subset size, the inlier
ratio and the number of data points. RANSAC's runtimes can be prohibitively high in some cases.
Schnabel et al. [31] presented a more efficient RANSAC for point-cloud shape detection—including
plane shapes. Octree was used to establish spatial proximity among samples and its scoring function
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tests only a local subset of samples. Local sampling, by selecting points inside each node, is used to
avoid meaningless hypotheses. However, spatial proximity does not guarantee coplanarity; thus, the
technique does not work well for the spurious-plane problem.
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3.1. NDT Feature 

The 3D NDT discretizes the point cloud using a set of cells and models the observed points 
within each cell with a normal distribution. Each cell in the 3D grid is associated with a sampled 
mean μሬԦ and a covariance Σ representing the multivariate normal distribution	ࣨ(μሬԦ, Σ) [27]. Each 
cell contains at least α	(α > 3) points. The covariance matrix	Σ is a positive-definite matrix that can 
be used to describe the shape of each cell. The eigenvalues λ1 ≤ λ2 ≤ λ3 and the corresponding 
eigenvectors	eሬԦଵ, eሬԦଶ, eሬԦଷ of the covariance matrix Σ are computed for each cell. 

Figure 1. An example of a spurious plane. Two well-estimated hypothesis planes are shown in blue.
A spurious plane (in orange) is generated using the same threshold.

3. Proposed Methods

The proposed plane-segmentation method is described in detail in this section. The first step is to
calculate the NDT features by subdividing the point-cloud space into a grid of NDT cells and then
classifying the NDT cells into planar and non-planar cells. Then, an NDT-based RANSAC algorithm is
applied to obtain reliable primary planes. The aim of the probability analysis is to determine when the
iteration should stop. Afterward, an iterative reweighted least-square approach is used for normal
calculation and plane fitting. Finally, the remaining non-planar points are tested with the primary
planes to obtain complete planes. Alternatively, connected-component analysis can be utilized to
divide unconnected components into parts. The main steps involved in the NDT-RANSAC method
are depicted in Figure 2.

Remote Sens. 2017, 9, 433  4 of 16 

 

avoid meaningless hypotheses. However, spatial proximity does not guarantee coplanarity; thus, the 
technique does not work well for the spurious-plane problem. 

 
Figure 1. An example of a spurious plane. Two well-estimated hypothesis planes are shown in blue. 
A spurious plane (in orange) is generated using the same threshold. 

3. Proposed Methods 

The proposed plane-segmentation method is described in detail in this section. The first step is 
to calculate the NDT features by subdividing the point-cloud space into a grid of NDT cells and then 
classifying the NDT cells into planar and non-planar cells. Then, an NDT-based RANSAC algorithm 
is applied to obtain reliable primary planes. The aim of the probability analysis is to determine when 
the iteration should stop. Afterward, an iterative reweighted least-square approach is used for 
normal calculation and plane fitting. Finally, the remaining non-planar points are tested with the 
primary planes to obtain complete planes. Alternatively, connected-component analysis can be 
utilized to divide unconnected components into parts. The main steps involved in the 
NDT-RANSAC method are depicted in Figure 2. 

 
Figure 2. The main steps of the NDT-RANSAC method. 	 ௝݀ is the distance from the point to the 
plane and ߠ௝ is the angular differences of the points’ normals to the plane. ∆d and ∆θ represent 
point-plane distance threshold and the consistency threshold between the normal vectors, 
respectively. 

3.1. NDT Feature 

The 3D NDT discretizes the point cloud using a set of cells and models the observed points 
within each cell with a normal distribution. Each cell in the 3D grid is associated with a sampled 
mean μሬԦ and a covariance Σ representing the multivariate normal distribution	ࣨ(μሬԦ, Σ) [27]. Each 
cell contains at least α	(α > 3) points. The covariance matrix	Σ is a positive-definite matrix that can 
be used to describe the shape of each cell. The eigenvalues λ1 ≤ λ2 ≤ λ3 and the corresponding 
eigenvectors	eሬԦଵ, eሬԦଶ, eሬԦଷ of the covariance matrix Σ are computed for each cell. 
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3.1. NDT Feature

The 3D NDT discretizes the point cloud using a set of cells and models the observed points within
each cell with a normal distribution. Each cell in the 3D grid is associated with a sampled mean

→
µ

and a covariance Σ representing the multivariate normal distribution N (
→
µ , Σ) [27]. Each cell contains

at least α (α > 3) points. The covariance matrix Σ is a positive-definite matrix that can be used to
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describe the shape of each cell. The eigenvalues λ1 ≤ λ2 ≤ λ3 and the corresponding eigenvectors
→
e1,
→
e2,
→
e3 of the covariance matrix Σ are computed for each cell.

• If λ2/λ3 ≤ te, the distribution of the NDT cell is linear.
• If it is nonlinear and λ1/λ2 ≤ te, the distribution of the NDT cell is planar.
• If no eigenvalue is 1/te times larger than another one, the distribution of the NDT cell is spherical.

When te ∈ [0, 1] is set to an appropriate, the NDT cells can be classified as linear, planar or
spherical. The covariance ellipsoid [35,36] is used to describe the appearance of NDT cells (Figure 3),
where each axis of the ellipsoid represents a principal component and the square root of the eigenvalues
corresponds to three semi-axes’ length of ellipsoid. The eigenvalues λ1, λ2, λ3 correspond to the third
axis, the second axis and the first axis of the ellipsoid, respectively. In other words, the magnitudes
of the ellipsoid axes depend on the variance of the data. Focusing on planar surfaces in this paper,
te is given a small value to classify NDT cells as planar or non-planar. The te value constrains the
ratio between third axis and second axis, for example, if te = 1/25 = 0.04, the ratio between third axes
and second axes is 1/5; if te = 1/100 = 0.01, the ratio between third axis and second axis is 1/10. We
recommend te < 0.04 empirically. The smaller the te value is, the more flat the NDT cell is.
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Due to the existence of measure errors, the setting of parameter te should consider the noisy level
of plane surfaces in point cloud and the NDT cell size in practice. The following empirical equation
can be adopted to choose a proper te and cell size s.( ε

s

)2
< te < 0.04 (1)

where ε is the noise level of a measured plane (the average point distance to the plane, which depends
on the accuracy of laser range scanner and can be roughly estimated from the point cloud). An indoor
scene from Possum’s Dataset [36] is shown in Figure 4a, the point cloud is discretized into NDT cells
(Figure 4b). The surface edges are classified as non-planar cells. The working details of the NDT
Feature Calculation are described in Algorithm 1.

By calculating the NDT feature of each cell, the planar NDT cells can be marked. Cells on the
surface edges are classified as non-planar cells (Figure 5). When a minimal subset for a plane is
randomly selected, a point on the surface of this plane is more likely to be selected, resulting in the
omission of less important planes and, thus, reducing the probability of extracting spurious planes.
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Algorithm 1. NDT Feature Calculation.

Input: P: an unorganized point cloud;
s: cell size;
te: a threshold to classify cells as planar or non-planar
Initialize:
A← ∅ ; // NDT cell list
Q← ∅ ; // planar NDT cell list
P′ ← ∅ ; // remaining points
for each point pi in P

Subdivide the space occupied by the scan into a grid of cubes A;
Calculate the encoding of each point pi, which indicates the index of the cell;

end for
for each cell in A

Calculate the mean
→
µ of the points in each cell;

Calculate the covariance Σ of each NDT cell;
Eigen-decomposition for Σ, get the eigenvalues λ1 ≤ λ2 ≤ λ3 and the corresponding eigenvectors

→
e 1,
→
e 2,
→
e 3 of Σ;

if λ1/λ2 ≤ te
Add cell into Q;

else if
Add points into P′;

end if
end for
return Q
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3.2. NDT-RANSAC Plane Segmentation

NDT cells are suitable for plane segmentation based on the following two assumptions. First,
most NDT cells located on planar surfaces have a planar appearance. Second, NDT cells from the same
surface have similar plane parameters. These assumptions are similar to those in [12,31].

NDT-RANSAC randomly samples a minimal subset of one cell from the planar NDT cells. The
normal of the cell is used as the plane parameter. Then, two thresholds are applied, which consider both
the gravity distance from the point to the plane and the angular differences of the cells’ normals to the
plane. If the distance and angular differences are smaller than given thresholds, the cells can be treated
as being on the candidate plane. When the data consists of inliers and outliers, traditional RANSAC
assumes that the distribution of inlier data can be explained by some set of model parameters, while
outliers are data that do not fit the model. However, if the randomly selected minimal set contains
outliers, spurious planes appear. When the points in an NDT cell have a planar appearance, they are
likely from the same plane; thus, the cell selected as a minimal subset is suitable and intuitive, which
makes the detected plane reliable. The working details of NDT-RANSAC are described in Algorithm 2.
The NDT-cell-based method consumes less time than the point-based method because it does not need
to estimate the normal of every point. Instead, the time consumption depends on the cell size and
point density. The larger the NDT cells and the higher the density in each cell, the smaller the time cost.

Algorithm 2. NDT-RANSAC Plane Segmentation.

Input: Q: planar NDT cell list
P′: non-planar points
kmax, η, ∆d, ∆θ

Initialize: Ψ← ∅ : plane surface
while (k < kmax)

randomly sample a cell c; then, its gravity g and normal n are used as plane parameter
// Calculate the support set Ik
for each cell qi in Q

di = ‖(gi − g)·n‖;
θi = ni·n;
if di < ∆d and θi < ∆θ

add qi to Ik;
end if

If | Ik| > Imax then
θ∗ = θk, I∗ = Ik;
recompute kmax from Equation (3) using P(n) = | Ik|/N;

end if
k = k + 1;

end while
refine plane Ψ;
for each point pj in P’

dj = ‖
(

pj − g
)
·n‖;

θj = nj·n;
if dj < ∆d and θj < ∆θ

add points in plane Ψ;
End if

end for

3.3. Probabilities

The maximum number of iterations depends on the a priori probability of sampling inliers over
the data. Given a point cloud P, N planar cells are classified and a plane ψ contains n cells. A minimum
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subset needs one cell to determine a plane. Then, P(n) of the data are inliers, which means that
the probability of randomly selecting each cell in plane ψ in a candidate experiment is P(n) = n

N .
Therefore, the probability of not finding any inliers after k iterations is (1 − P(n))k.

P(n, k) = 1− (1 − P(n))k (2)

To ensure with confidence η that an outlier-free cell is sampled in NDT-RANSAC, we must process
at least k candidate samples, where

k ≥ ln(1 − η)

ln(1 − P(n))
(3)

The calculation of k is almost the same with standard RANSAC [20,31,37], the difference is
P(n) =

( n
N
)3 for standard RANSAC. The parameter η lies usually between 0.90 and 0.99 [37]. The

asymptotic complexity of NDT-RANSAC is O(TC) = O
(

1
P(n)C

)
when the cost of each step is C. To

continually detect m planes, the iteration terminates when the size of the remaining planar cells’ is
insufficient to ensure the sampling of the cell with confidence η, i.e., when

P(n, k)m < η (4)

3.4. IRLS Normal Calculation and Plane Fitting

It is well known that least-squares plane fitting is not robust to outliers. In this section, we
introduce an iterative reweighted least-squares (IRLS) method using the M-estimator for plane fitting.
Given a surface point cloud, the plane-fitting problem can be described as fitting a set of N data
points P = {xi}N

i =1 to a plane model. Let ri be the distance of the ith point to the plane. The
standard least-squares method tries to minimize ∑

i
ri

2, but when outliers exist in the data, it becomes

unstable [38]. Outliers have such a strong effect on the minimization that the estimated parameters
are distorted. The M-estimator is often used to reduce the effect of outliers. It replaces the squared
residuals ri

2 by another function of the residuals, yielding

min
N

∑
i=1

$(ri) (5)

where $ is a symmetric, positive-definite function with a unique minimum at zero that is chosen to be
less increasing than square. The plane-fitting problem then becomes the following IRLS problem:

min
N

∑
i=1

w
(

ri
k−1

)
ri

2 (6)

where the superscript k indicates the iteration number. The weight w
(

ri
k−1

)
should be recomputed

after each iteration for use in the next iteration.
For plane fitting, the distance from a point to the plane is

ri = ‖(xi − x)·n‖, ‖n‖ = 1 (7)

where n is the normal of the plane and x is the mean of the point cloud. The plane-fitting problem is a
constrained least-squares problem. We use the Lagrange multiplier method:

n = argmin
N

∑
i=1

w‖(xi − x)·n‖2 + λ
(

n2 − 1
)
= w

((
X− X

)
·n
)T((X− X

)
·n
)
+ λ

(
nTn− 1

)
(8)
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To find the minimum, we take the derivative and set it to zero. Thus, we obtain

w
(
X− X

)T(X− X
)
·n− λn = 0, and C = w

(
X− X

)T(X− X
)

(9)

Therefore, the solution is to find the eigenvalues and eigenvectors of C. The details of the IRLS
algorithm are given in Algorithm 3, and the convergence threshold is γ < 10−6. The Welsch weighted
function [39] w(r) = exp

(
− r2

kWu
2

)
, kWu = 2.985 is utilized in this study. Figure 6 shows an example of

LS plane fitting result and IRLS plane-fitting result, the latter is more robust to outliers.
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Algorithm 3. IRLS Plane Fitting.

Input: PΨ: points on a detected plane
kiter: maximum number of iterations
γ: threshold to terminate iterations
Initialize:
nold ← ∅ ; // last normal
Calculate the mean X of the plane point cloud PΨ;
Calculate the covariance C of the plane point cloud;
Eigen-decomposition of C, get the eigenvalues λ1 ≤ λ2 ≤ λ3 and the corresponding eigenvectors

→
e 1,
→
e 2,
→
e 3

of C;
n =

→
e 1; // take

→
e 1 as the normal parameter of the plane;

for k = 1 to kiter
nold = n;
ri = ‖(xi − x)·n‖;
Calculate Welsch function w(ri);

Xk =
w(X−X−Xk−1)

∑ w ;

C = w
(
X− X− Xk

)T(X− X− Xk
)
;

Eigen-decomposition of C, the corresponding eigenvector of the smallest eigenvalue is used as plane
parameter n;

convg = max(abs(nold − n)./abs(nold));
if convg < γ then

Terminate iterations;
end if

end for
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3.5. Connected-Component Analysis

The RANSAC method will extract a plane with many unconnected sub-regions. It is necessary
to use connected-component analysis to divide such components into parts. A morphologic
connected-component analysis is adopted with a threshold to find a sufficiently large plane and
filter the points that are too far away.

3.6. NDT Cell Size

Xiao et al. [12] took structured and unstructured environments into consideration in their work.
However, we make no such distinction; instead, we uniformly consider an unstructured environment.
In practice, given a cell size s for high-density TLS and MLS point clouds, the minimum number of
points α in a cell has no effect on the algorithm because it is easy to satisfy. However, for an uneven
point cloud with a density that is not very high, the minimum number of points α (for example,
10 points) will distinguish the sparse points. In this case, the minimum number of points α should be
properly set. The bounding box of the point cloud is calculated and the space is divided into cubes
of fixed cell size s based on the bounding box. Due to the nature of laser scanning, nearby points
are dense while distant points are sparse. Inevitably, some cells will contain fewer than 10 points.
When the point cloud is sparse in local space, a nearest-neighbor searching strategy is adopted in our
method, which calculates the cell’s geometric features based on the neighboring points of the cell. This
nearest-neighbor searching strategy extends the scope of the NDT cell. More points will be used to
calculate the geometric features of the cell. We extend the size to at most two times larger than the
cell itself.

4. Experimental Section

The method was tested on three datasets of indoor scenes. The Room-1 dataset corresponding
to L9 room from the Rooms UZH Irchel dataset [40] was acquired using a Faro Focus 3D laser range
scanner and has a high density of 91,352 points/m2. The scene itself is of a simple room with some
furniture inside. The other two datasets captured by an MLS device were obtained from [41]. In these
two datasets, the main sensor of the MLS device was a laser rangefinder (Hokuyo UTM-30 LX)
mounted on a tilting unit. The local densities of the point clouds are uneven and are sparser than
those of Room-1. These two scenes are complex; each contains a room, a corridor and some furniture.
Clutter and occlusion are present in the datasets. In addition, a Faro Focus 3D laser range scanner is
more accurate than a UTM-30 LX laser rangefinder. The basic parameters of the datasets are listed in
Table 1. The algorithm was implemented in C++. All experiments were performed on a 2.30 Hz Intel
Core i5-4670T processor with 8 GB of RAM.

Table 1. Description of the dataset.

Test Sites Length (m) Width (m) Height (m) Points Average Density (Points/m2)

Room-1 7.0 5.4 3.2 11,050,391 91,352
Room-2 8.6 10.2 2.8 367,602 1486
Room-3 7.7 9.7 2.8 367,602 1745

To evaluate the quality of our proposed method for plane segmentation, we compared the
calculated metrics of the individual planes with those of the ground-truth planes and calculated the
metrics completeness, correctness and quality to evaluate the proposed method.

Completeness =
TP

TP + FN
(10)

Correctness =
TP

TP + FP
(11)
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Quality =
TP

TP + FN + FP
(12)

True Positive (TP): the number of planes detected both in the reference data and segmentation.
False Positive (FP): the number of detected planes not found in the reference. False Negative (FN): the
number of undetected ground-truth planes.

The reference backgrounds of the datasets were manually obtained based on the initial
segmentation. The maximum-overlap metric [20,42] was used to find the correspondences between
the reference and the plane-segmentation results. In this case, only one-to-one correspondences were
considered in our experiments. The TP values in the reference and segmented data are always the
same. To clearly illustrate the ability of our method to deal with spurious planes, we divided the FP
into spurious planes (SFP) and non-spurious planes. The spurious planes do not correspond to any
ground-truth plane, while non-spurious planes do correspond to ground-truth planes but are smaller
than the given area threshold (i.e., 50% overlap). An evaluation metric called the spurious-plane rate
(SR) was introduced to evaluate spurious planes in the segmentation results in this study:

SR =
SFP

TP + FP
(13)

For comparison, the standard RANSAC and NDT-RANSAC methods were applied to the three
datasets. The parameters of the algorithm are specific to the density of the testing data but were
always chosen to obtain the best results. The experiments are performed 30 times for each dataset.
The parameters and thresholds adopted for Room-1 are as follows: s = 0.5 m, α = 10, te = 0.01, η =

0.99, ∆d = 0.08 m and ∆θ = 15◦. The segmentation result is shown in Figure 7, where the planar and
non-planar NDT cells are colored in red and blue, respectively. For clarity, we removed the ceiling and
floor of the room. It can be seen that the plane edges are classified as non-planar cells. Figure 7b shows
the NDT-RANSAC plane-segmentation result using different colors.
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Figure 7. (a) The NDT cell-classification result of Room-1. The planar and non-planar NDT cells are
colored in red and blue, respectively; (b) The NDT-RANSAC plane-segmentation result.

In order to accommodate the noise level of Room-2 dataset, the te value is set to be greater than
Room-1. The parameters and thresholds for the dataset were set as follows: s = 0.5 m, α = 10,
te = 0.02, η = 0.99, ∆d = 0.076 m and ∆θ = 15◦. In this experiment, only large-area planes are
extracted and verified as background planes (for example, those with areas of at least 1 m2). A typical
segmentation result for Room-2 is shown in Figure 8b). Different color represents different plane
segment. Figure 9 shows a NDT cell-classification result and a plane-segmentation result for Room-3.
The plane segments are shown in different colors. The parameters for this dataset were set to the same
values as for Room-2.
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5. Discussion

The experimental results were analyzed statistically, and the statistics on completeness,
correctness, SR and quality of plane segmentation are shown in Figure 10a–c using boxplot. The
average percentage values are summarized in Table 2.

As shown in Figure 10a, the NDT-RANSAC shows a better result than RANSAC in the experiment
of Room-1. The average correctness increased from 37.3% to 98.3%, respectively, for this dataset and
the completeness increased from 52.5% to 85.0%, respectively. It also showed a smaller fluctuation
than standard RANSAC. The experimental results of Room-2 and Room-3 are shown in Figure 10b,c.
Comparing the results from RANSAC and NDT-RANSAC, the average correctness increased from
45.9% to 90.4%, respectively. NDT-RANSAC achieved a high rate of completeness (98.1%)—higher than
that of the standard RANSAC method (70.1%). In the experiment of Room-3, the proposed method
achieved 88.5% correctness and 94.6% completeness, higher than the standard RANSAC method,
which obtained 49.5% correctness and 71.4% completeness; thus, the proposed method improves the
quality of plane segmentation. All the three experiments showed that the proposed method achieves
higher average correctness and completeness than does standard RANSAC. However, comparing
Figure 10a–c, the range of correctness and completeness values increased because the point clouds of
Room-2 and Room-3 are noisier than that of Room-1.
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Table 2. Percent averages of plane-segmentation results and average computing times on three datasets.

Dataset Method Correctness SR Completeness Quality Time (s)

Room-1
RANSAC 37.3% 62.7% 52.5% 26.3% 333.72

NDT-RANSAC 98.3% 0 85.0% 83.8% 7.43

Room-2
RANSAC 45.9% 54.1% 70.1% 38.3% 5.57

NDT-RANSAC 90.4% 0 98.1% 88.7% 5.03

Room-3
RANSAC 49.5% 50.5% 71.4% 40.9% 5.29

NDT-RANSAC 88.5% 0 94.6% 84.3% 2.46

The SR values of NDT-RANSAC for all three experiments are 0, which clearly shows that surplus
planes have been eliminated in the experiments. However, the proposed method still finds some FP
planes. The reason is that some detected planes are small (with overlap less than 50%) or have a low
point density. The sparsity of the point cloud influences the segmentation results. If a larger value of α
is used, correctness will improve, but completeness may decrease. Moreover, the experiments indicate
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that for a larger cell size, the correctness will improve but the completeness may decrease. A smaller
cell size requires more computer time and the plane surface will be divided into more pieces, making
the plane discontinuous. This is because a small cell size increases the differences between the cells’
normals. When the size is too large, large-area planes will be identified but small planar surfaces will
be ignored. This occurs because the minimum object size is larger than the cell size, which requires
further consideration.

The average execution times are also shown in Table 2. It can be drawn that the proposed method
reduced the time consumption for all three datasets. The processing time of Room-1 was 7.43 s, which
reduced by over two orders of magnitude compared to the standard RANSAC. This result shows the
advantage of our method in processing high-density point clouds. The processing time of Room-2
reduced from 5.57 s to 5.03 s. The processing time of Room-3 reduced from 5.29 s to 2.46 s. The
improved time consumption occurs because the number of NDT cells is quite small compared to
the number of points, which significantly reduces the computing time of the verification step during
the iterations.

6. Conclusions

This paper presented a Normal Distribution Transformation Feature-based RANSAC
(NDT-RANSAC) for 3D point-cloud plane segmentation. In this approach, a 3D unorganized point
cloud is represented with a set of NDT cells. The NDT cells are classified into planar and non-planar
cells based on the NDT features of each cell. A planar NDT cell is selected as a minimal sample in
each iteration to ensure the correctness of sampling on the surface of the same plane. Selecting the
planar cell as a minimal subset is both suitable and intuitive, and it achieves a primary-to-secondary
plane-segmentation approach. The method was tested on three datasets of indoor scenes. The results
show that the proposed method is both efficient and fast and that it can improve the correctness and
completeness of plane detection in indoor MLS point clouds while simultaneously eliminating the
possible surplus-plane problems of standard RANSAC. NDT-RANSAC has advantages in processing
3D point clouds in complex indoor environments with clutter and occlusion, and it is suitable for
indoor mapping and reconstruction. Moreover, it can also be used for organized point clouds.

However, the proposed method requires experience to select optimal cell sizes for different
environments. Future work will include irregular NDT cells and a progressive strategy for NDT
plane segmentation.
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