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Abstract: Bamboo forests, especially the Moso bamboo forest (MBF) and the Lei bamboo forest (LBF),
have a strong carbon sequestration capability and play an important role in the global forest carbon
cycle. The leaf area index (LAI) is an important structural parameter for simulating the spatiotemporal
pattern of the carbon cycle in bamboo forests. However, current LAI products suffer from substantial
noise and errors, and data assimilation methods are the most appropriate way to improve the accuracy
of LAI data. In this study, two data assimilation methods (the Dual Ensemble Kalman filter (DEnKF)
and Particle filter (PF) methods) were applied to improve the quality of MODIS LAI time-series
data, which removed noises and smoothed the results using a locally adjusted cubic-spline capping
method for the MBF and LBF during 2014–2015. The method with the highest correlation coefficient
(r) and lowest root-mean-square error (RMSE) was used to generate highly accurate LAI products of
bamboo forests in Zhejiang Province. The results show that the LAI assimilated using two methods
saw greatly reduced fluctuations in the MODIS LAI product for both the MBF and the LBF. The
LAI assimilated using DEnKF significantly correlated with the observed LAI, with an r value of
0.90 and 0.95, and an RMSE value of 0.42 and 0.42, for the MBF and the LBF, respectively. The PF
algorithm achieved a better accuracy than the DEnKF algorithm, with an average increase in r of
8.78% and an average decrease in the RMSE of 33.33%. Therefore, the PF method was applied for LAI
assimilation in Zhejiang Province, and the assimilated LAI of bamboo forests achieved a reasonable
spatiotemporal pattern in Zhejiang Province. The PF algorithm greatly improves the accuracy of
MODIS LAI products and provides a reliable structural parameter for the large-scale simulation of
the carbon cycle in bamboo forest ecosystems.

Keywords: bamboo forest; MODIS products; dual ensemble kalman filter; particle filter;
LAI assimilation
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1. Introduction

The leaf area index (LAI) is defined as one-half of the total intercepting area per unit ground
surface area [1]. Variations in LAI time-series data can reflect the growth status of vegetation, and they
are always considered to be an important parameter and indicator in research focusing on carbon and
water cycling, and on the energy exchange of terrestrial ecosystems [2]. LAI acquisition is susceptible
to the spatiotemporal effects of discontinuities. Traditional field measurements provide only a small
area of LAI distribution and are time consuming. With the rapid development of remote sensing
technology, remote sensing observations have been applied to the dynamic monitoring of vegetation
characteristics and the estimation of LAI over large areas [3–6]. However, because of the impact of cloud
cover, aerosols, snow cover, and sensor failure, many satellite-based LAI products are characterized
by high noise, low accuracy, and large errors in the time series and spatiotemporal distributions;
thus, they cannot correctly reflect the process of plant growth continuity, thereby constraining the
widespread application of LAI products [7]. Data assimilation methods can incorporate observed
data and a dynamic model to determine an optimal solution between a model simulation and
observations, thereby improving the accuracy of remote sensing observational data and properly
addressing time-space discontinuities [8–10].

To study the data assimilation of coupled remote sensing data and radiative transfer for ecosystem
models, the Ensemble Kalman Filter (EnKF) and Particle Filter (PF) are important methods used to
obtain highly accurate LAI spatiotemporal distributions. The EnKF algorithm couples an ensemble
prediction and the Kalman filter, therein using ensemble methods to forecast state variable values and
the error covariance matrix of analysis values [11]. The EnKF algorithm does not need a tangent linear
operator or adjoint model equations, and reduces the computational burden [12]. The EnKF algorithm
has been applied to assimilate LAI for crops, grass, and deciduous broadleaf forests [13,14]. However,
the EnKF algorithm is based on the assumption of a Gaussian distribution, meaning that the posterior
density at every time step is a Gaussian distribution parameterized by a mean and a covariance; when
the errors conform to an unconventional distribution, the algorithm has difficulties in addressing a
nonlinear dynamic system [15,16].

The PF algorithm uses the Monte Carlo sampling method to approximate the probability
distribution of the posterior probability distribution of the state variables [17], and the method is
suitable for nonlinear and non-Gaussian systems. Compared with the EnKF, the PF is not affected by
the state variables and can effectively accommodate the propagation of non-Gaussian distributions
through nonlinear models; no complicated matrix inversion or transposition is required, resulting in
a high computational efficiency [18]. The PF has been widely used in geophysical systems [19], soil
moisture observations [20], soil hydraulics [21], and other fields [22]. However, due to suboptimal
sampling, the PF may suffer from certain problems such as particle impoverishment and sample size
dependency [23].

Bamboo is a resource that is widely utilized by humans, and is used as a food and material source
by Asian people [24,25]. Bamboo forests are known as “the world’s second largest forest”, and are
widely distributed in tropical, subtropical, and warm temperate regions, from 46◦N to 47◦S [26,27].
Covering a total area of 3.15 × 107 ha, they account for 0.8% of the total global forested area [26].
The bamboo forests of China specifically contain approximately 500 bamboo species of 39 genera [28],
and the area of bamboo forest accounts for 2.97% of the total forest area in China [29]. Bamboo forests
(especially the Moso bamboo forest) have a high capacity for carbon sequestration [24,25,30], and thus
play a prominent role in the mitigation of global climate change [31,32]. However, the distribution of
bamboo forest is relatively scattered, and always mixed with other forest types. Moreover, the MODIS
LAI product cannot distinguish specific forest types and therefore, it cannot provide high-accuracy
parameters for simulating the carbon cycles of the various types of subtropical forest.

In this study, we assimilated MODIS LAI time-series data based on two methods (Dual EnKF
and PF) using MODIS LAI data (MOD15A2), MODIS reflectance data (MOD09A1), and canopy
bidirectional reflectance (CBR) data simulated by the PROSAIL model (PROSPTECT5 + 4SAIL) [33],
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for the Moso bamboo forest (MBF) and the Lei bamboo forest (LBF) during 2014–2015. Two assimilated
LAI time-series datasets were compared with observations and the method with the highest correlation
coefficient (r) and lowest root-mean-square (RMSE) was applied to assimilate the LAI of bamboo
forests in Zhejiang Province, based on the bamboo forest distribution map that was extracted from
Landsat 8 OLI data. The assimilated LAI time-series data can be used as an accurate input dataset to
greatly improve the accuracy of carbon cycle simulations for bamboo forests.

2. Materials and Methods

2.1. Study Area

Zhejiang Province is located on the southeast coast of China (27.10◦–31.18◦N, 118.02◦–123.17◦E)
(Figure 1). This area belongs to a subtropical monsoon zone and enjoys a temperate climate, with
well-marked seasons with substantial rainfall and sunshine. By the end of 2014, the province had
a total of 6.05 million hectares of forest land, a stumpage of 0.28 billion cubic metres, and a forest
coverage rate of 60.91% [34]. Additionally, the bamboo forest area in Zhejiang Province was 0.9 million
hectares, which accounted for 14.89% of the total forest area in the province [34].
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Figure 1. The study area and the sample plots of bamboo forest.

The MBF flux measurement site is located in Anji County, northwest of Zhejiang Province (30.46◦N,
119.66◦E). This area has a subtropical monsoon climate with distinct seasons and abundant rainfall;
the average January temperature is 2.5 ◦C, the average July temperature is 27.8 ◦C, and the average
annual precipitation is 1400 mm. The MBF is widely distributed across Anji County, covering an
area of 335,484 ha, which accounts for approximately 45% of the total forested area. The area (1 km
× 1 km) around the flux tower consists of the MBF. The average diameter of the bamboo at breast
height is 9.3 cm, and the canopy height is 12–18 m, with a sparse understory of shrubs and herbs. The
Moso bamboo shoots begin to break out from the soil in early March, and the high-growth stage is
completed after two to three months [35]. The leaf expansion period of new bamboo starts during the
late high-growth stage and is completed within 30 to 40 days [36]. New Moso bamboo changes its
leaves in the second year and then every two years after the first leaf changing period [37].

The LBF measurement site is located in the town of Taihuyuan, Lin’an (30.30◦N, 119.58◦E), which
is a well-known “Hometown of Bamboo” in China. Lin’an has a warm and moist subtropical monsoon
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climate; the annual average temperature is 16 ◦C, and the average annual precipitation is 1700 mm.
The bamboo forest area is 39,052 ha, of which LBF accounts for 19,020 ha. The LBF around the flux
tower is typically two to three years old, and it has an average height of 4.5 m, with few shrubs
distributed in the understory. Lei bamboo shoots start breaking out from the soil in mid-late February,
and they have completed the high-growth stage after approximately 53 days. The leaves of new Lei
bamboo start to expand during the late high-growth stage, completing in 15–21 days. Leaf changing
occurs every year in the LBF, typically in May and July.

2.2. Datasets and Processing

2.2.1. Satellite Data

The MOD15A2 and MOD09A1 for Zhejiang Province during 2014–2015 were downloaded from
NASA’s website (https://ladsweb.nascom.nasa.gov). The original data were reprojected to the WGS84
coordinate system and resampled to 1 km based on the nearest neighbour method using the MODIS
Reprojection Tool v4.1. The locally adjusted cubic-spline capping (LACC) method was applied to
remove noise in MODIS LAI time-series data [38,39]. The LAI time series of the two flux sites were
extracted using the ENVI v5.1. The first (RED) and second (NIR) band of the MOD09A1 dataset
were used as observations to optimize the parameters for the canopy reflectance simulation using the
PROSAIL model and were used as inputs for LAI assimilation.

Landsat 8 OLI images used for extracting the bamboo forest distribution in Zhejiang Province
from June to November in 2014 were downloaded from the United States Geological Survey website
(https://earthexplorer.usgs.gov). Details about the selected Landsat images are shown in Table 1.
The Landsat images were spatially calibrated, mosaicked, and rectified to the WGS-84 coordinate
system. The rectified images were subject to further atmospheric correction using the Fast line-of-sight
atmospheric analysis of the hypercubes algorithm [40] and were terrain corrected using ASTER
GDEM [41].

Table 1. Details of the Landsat 8 OLI images.

Worldwide Reference
System Path/Row Date Solar Azimuth

Angle (◦)
Solar Elevation

Angle (◦)
Cloud Cover

(%)

118/39 13 June 2014 104.06 69.06 10.03
118/40 13 June 2014 100.12 69.12 6.05
118/41 13 June 2014 96.19 69.09 7.94
119/39 22 July 2014 109.15 66.46 2.31
119/40 22 July 2014 105.69 66.66 3.09
119/41 22 July 2014 102.21 66.78 4.02
120/39 11 June 2014 104.49 69.09 1.03
120/40 11 June 2014 100.55 69.17 0.09

2.2.2. Measurement of LAI

Ground LAI data were collected at the two flux sites for each month. The LAI time series of the
MBF extended from spring 2014 to the end of 2015, while that of the LBF extended from winter 2014 to
the end of 2015. The LAI was calculated using the LAI (2000G)-LogCI algorithm in the WinSCANOPY
v2009a (Regent Instruments Inc., Québec, QC, Canada), based on the canopy images taken in the field
using a digital camera with a fish-eye lens. Taking the flux tower as the centre, five observation centres
(star in Figure 2) were set across an area of 1 km × 1 km. The LAI of each observation centre was
calculated by averaging the LAI observations at the observation centre and in four directions (east,
south, west, and north) (black point in Figure 2). Finally, the average value of the five observation
centres was calculated as the actual LAI. The plot design of the LAI measurements is shown in Figure 2.

https://ladsweb.nascom.nasa.gov
https://earthexplorer.usgs.gov
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2.2.3. Measurement of Bidirectional Reflectance

The leaf bidirectional reflectance (LBR) and canopy bidirectional reflectance (CBR) were measured
using a FieldSpec Pro spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA).
This spectroradiometer has a spectral range of 350 nm to 2500 nm, with a resolution of 3 nm
(350–1000 nm) and 10 nm (1000 nm–2500 nm), and a sampling interval of 1.4 nm (350–1000 nm)
and 2 nm (1000–2500 nm) [42].

The LBR was measured directly using the leaf clip of the analytical spectral device at a sample
culm next to each of the flux towers. The detailed measurement process was as follows: First, healthy
bamboo around the flux tower was selected, and the canopy of the bamboo was averagely divided
into three layers (upper, middle, and lower) [43–45]. Second, the spectra of three healthy growth
sunlit leaves in each layer were measured, and each leaf was measured 10 times. The average value of
90 measurements was calculated as the LBR [44]. The measurement of each leaf was accomplished
within one minute, and the white reference measurement and instrument setting optimization were
applied prior to the leaf spectrum measurement. The measured LBR was used when optimizing the
parameters of the PROSPECT model (leaf scale).

The CBR was measured using a pistol grip of an analytical spectral device with a field of view
of 45◦ at a height of 1.5 m above the top of the canopy. A total of 40 measurements in four directions
(east, south, west, and north) were averaged as the final CBR. The measured CBR was used when
optimizing the parameters of the SAIL model (canopy scale).

2.2.4. Measurement of Leaf Biochemical Parameters

The measured leaves were transported to the laboratory inside a temperature-controlled box.
The chlorophyll content (Cab, µg cm−2) of the leaves was measured using a spectrophotometer
(UV-2102C/PC/PCS, Unico (Shanghai) Instrument Co. Ltd., Shanghai, China) [46]. The leaf area metre
was measured using an AM300 (ADC Bioscientific Ltd., Hertfordshire, UK). The fresh weight and dry
matter (drying for 48 h at 75 ◦C) were measured using an FA2104 (Shanghai Liangping Instrument Co.
Ltd., Shanghai, China). The difference between the fresh weight and dry matter was calculated as the
water content. The dry matter per unit of each leaf was calculated using the dry matter divided by the
corresponding leaf area metre, and the water content per unit was calculated in the same way. The
average dry matter (Cm, g cm−2) and water content (Cw, g cm−2) per unit of leaves were used as the
inputs of the PROSAIL model.
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2.3. Bamboo Forest Distribution Extracting

The bamboo forest distribution was extracted from pre-processed Landsat 8 OLI data using the
maximum likelihood method. The training samples included data from 234 fixed plots from the
Forest Resources Inventory in Zhejiang Province and 157 investigation plots, as shown in Figure 1.
The bamboo forest information was extracted and resampled into pixel sizes of 1 km × 1 km for
matching the resolution of MOD09A1 datasets. See [47] for land cover information extracted using
Landsat data and the scale transformation method. The extracted bamboo forest map is shown in
Figure 3. The map provided accurate locations of the bamboo forest for assimilating the LAI of the
bamboo forest in Zhejiang Province.Remote Sens. 2017, 9, 401  6 of 16 
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2.4. LAI Assimilation Method

2.4.1. Flow chart of LAI assimilation

The flow chart of the data assimilation and accuracy evaluation of the two data methods is shown
in Figure 4. First, the PROSAIL model was optimized using observed LBR and CBR, and was used to
simulate the CBR of the MBF and the LBF. Second, the Dual EnKF and PF algorithm was driven by the
modelled CBR, MODIS CBR, and LAI simulated by the dynamic model. Third, the performances of
the two data assimilation methods were compared using the r and RMSE. Finally, the data assimilation
method with the highest r and lowest RMSE was used to generate the high-accuracy LAI products of
bamboo forests in Zhejiang Province. The LAI dynamic model, PROSAIL model, Dual EnKF algorithm,
and PF algorithm are described in detail in the following sections.
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2.4.2. LAI dynamic Model

In this study, the dynamic model is a modified version of the dynamic Leaf Model developed by
Dickinson et al. [48]. The model is given by a semi-empirical mathematical formula written as:

dL
dt

= λo · R(x) · Lo · (1− exp(−c · LAIt)) (1)

LAIt+1 = LAIt +
∫ t+1

t

dL
dt

dt− Lt · LAIt + ε (2)

where LAIt+1 represents the LAI at the previous time step; LAIt represents the LAI at the current
time step; R(x) is a smoothing function; x is the normalization of the LAI; x = (LAIt − LAImin)/
(LAImax + LAImin); LAImax and LAImin are the maximum and minimum of the LAI in a year, respectively;
L0 represents the max LAI; Lt represents the rate of leaf litter, which is associated with the biomass of
the cluster and plant phenological phases [49]; and λ0, L0, Lt, and c are parameters determined based
on experience. In this study, the c parameter value is 0.5, and the initial values of the other parameters
are obtained according to the field LAI fitting. ε represents the white-noise term with a zero mean and
covariance matrix Q, which summarizes all the uncertainties caused by the model formulation, the
forcing data, and the model parameters. The initial LAI value of the dynamic model was obtained
using the “LAI-CBR” lookup table (see Section 2.4.3).

2.4.3. Simulation of CBR

In this study, PROSAIL, which is a combination of PROSPECT5 and 4SAIL [33], was used to
simulate the CBR spectra of the bamboo forest. PROSAIL simulates the top of the CBR in the range
of 400 nm to 2500 nm as a function of: (1) canopy structural parameters, i.e., the LAI (m2 m−2), leaf
mesophyll structure parameter (N, unitless), average leaf angle (ALA, ◦), and hot-spot parameter
(H, unitless); (2) biochemical parameters, i.e., Cm, Cw, Cab, and carotenoids content (Car, µg cm−2); and
(3) viewing geometry parameters, i.e., view zenith angle (θv, ◦), solar zenith angle (θs, ◦), and relative
azimuth angle (θz, ◦).
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The principal parameters of the PROSAIL model are shown in Table 2. The observed LAI was
used in the optimization of the parameters of the PROSAIL model, whereas the LAIt was used as the
inputs of the PROSAIL model during the assimilation process, as the forest CBR is very sensitive to
the LAI [44]. The Cab varied during the year, according to our measurements. Because Cw and Cm do
not vary too significantly during the year, we used the average value of our measurements. θv, θs, and
θz varied during the year; refer to the corresponding datasets in the MOD09A1.

Three parameters (N, Car, and H) were optimized by comparing the modelled and measured data.
First, the parameters of PROSPECT5 were optimized by decreasing the RMSE between the modelled
and measured LBR for each forest type. Second, the parameters of 4SAIL for each forest type were
optimized using the similarity approach for optimizing the parameters of PROSPECT5. Finally, the
optimized PROSAIL model was used to simulate the CBR.

Table 2. Principal parameters of the PROSAIL model.

Model Parameter (Unit) MBF LBF EBDF

PROSPECT5

N 1.04 2.10 2.15
Cab (µg cm−2) 28–55 30–54 33–65
Car (µg cm−2) 10 8 10
Cw (g cm−2) 0.0035 0.0085 0.0150
Cm (g cm−2) 0.003 0.001 0.009

4SAIL

LAI (m2 m−2) 0.0–7.0 1.5–7.0 0.0–6.5
ALA (◦) 20.2 19.66 19.65

H 0.0003 0.0015 0.0090
θv (◦) 0–90 0–90 0–90
θs (◦) 0–90 0–90 0–90
θz (◦) 0–180 0–180 0–180

In addition, the PROSAIL model was used to build the “LAI-CBR” lookup table to retrieve the
initial LAI value of the dynamic model. The lookup table was generated by various LAI from 0.5 to 7
with a step of 0.1, fixing other parameters and outputting the corresponding CBR. The simulated CBR
was resampled to the centre wavelength of MODIS RED and NIR.

2.4.4. Dual EnKF Algorithm

The EnKF algorithm is a sequential data assimilation algorithm based on the Monte Carlo
ensemble forecasting method for estimating the forecast error covariance [50]. The greatest advantage
of EnKF is that the linear model and the adjoint model do not need to be predicted, which can be used
to solve the complex nonlinear Gauss problem [11]. The Dual EnKF has two phases for estimating
parameters and state variables: first, the parameters are optimized using the observed state variables;
and then, the state variables are updated by optimizing the parameters and observed state variables.

The standard EnKF formula is:

Aa = A + K(Yo − HA) (3)

K = PHT(HPHT + R)
−1

(4)

P =
1

N − 1

N

∑
i=1

(A− A)(A− A)
T (5)

PHT =
1

N − 1

N

∑
i=1

(A− A)(HA− HA)
T (6)

HPHT =
1

N − 1

N

∑
i=1

(HA− HA)(HA− HA)
T (7)
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where Aa represents the assimilated LAI; A represents the dynamic model forecast LAI; A is the
ensemble mean of A; Y◦ represents the perturbed observation ensemble matrix; R and P are the
covariance matrices of Y◦ and A, respectively; H is the observation operator linking the model state
and the observation; and T is a matrix transpose. The observation operator H in the standard EnKF
is linear, while that in the PROSAIL model is non-linear, which is unsuitable for the standard EnKF.
Therefore, an extended ensemble was constructed to transform the nonlinear operator h(·) to a new
linear operator Ĥ. Defining the extended ensemble Â = [A, h(A)], Equations (3)–(7) are rewritten
as follows:

Aa = A + Pe ĤT(ĤPeĤT + R)
−1

(Yo − ĤÂ) (8)

where Pe is the covariance matrix of Â.
For specific algorithms and procedures related to the Dual EnKF algorithm, please refer to [14].

2.4.5. PF Algorithm

The PF algorithm is a type of Monte Carlo Bayesian algorithm implementation, which is not
restricted by the linear model or Gauss’s hypothesis, and is thus applicable to any non-linear and
non-Gauss system. Its basic theory is to use a series of weighted particles to approximate the posterior
probability density distribution of state variables to better simulate a changing nonlinear system [12].
Assuming that N particles are extracted from the posterior probability distribution of the state variables,
the posterior probability density distribution of the state can be obtained by the following equation:

p̂(xk|z1:k) =
1
N

N

∑
i=1

δ(xk − xi
k) (9)

where δ is the Dirac function, k represents time, xi
k represents the particle state value, zk represents

the observation value, and p̂(xk|z1:k) denotes the posterior probability density distribution. Usually,
the posterior distribution density function cannot be obtained directly. To solve this problem, this
study used the sequential importance sampling method, which uses a recursive method to calculate
the weights of particles using the following equations:

wi
k = wi

k−1

p(zk

∣∣∣xi
k)p(xi

k

∣∣∣xi
k−1)

q(xi
k

∣∣∣xi
k−1, zk)

(10)

q(xi
k

∣∣∣xi
k−1, zk) = p(xi

k

∣∣∣xi
k−1) (11)

where q(xi
k

∣∣∣xi
k−1, zk) is the importance sampling function, p(zk

∣∣xi
k) is the likelihood function, and wi

k
represents the weights of the k time particles.

wi
k = wi

k−1 p(zk

∣∣∣xi
k) (12)

Finally, the updated particle weights were obtained according to Equation (14).

wi
k =

wi
k

N
∑

i=1
wi

k

(13)

The estimated value of the state variable is the weighted average of all the state values of
the particles.

x̂k =
N

∑
i=1

wi
kxi

k (14)
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For detailed information regarding the PF algorithm and sequential importance sampling method,
refer to [16,21]. In this study, the residual resampling method was applied to solve the particle
impoverishment problem and ensure the abundance of the particle. For detailed descriptions of the
residual resampling method, please refer to [51].

3. Results and Discussion

3.1. Validation of Simulated LBR and CBR

The comparisons of observed and simulated bidirectional reflectance by PROSAIL in the MBF and
LBF are shown in Figure 5. All the simulated LBR were significantly correlated with the observations,
with an r of 0.99. The RMSE of the simulated LBR was 0.02 and 0.03 for the MBF and LBF, respectively,
indicating that PROSPECT5 was well calibrated and could be used for CBR simulation. The simulated
CBR achieved a high accuracy, with an RMSE of 0.03 and 0.02 for the MBF and LBF, respectively, and
provided high-quality inputs for the two LAI assimilation methods.Remote Sens. 2017, 9, 401  10 of 16 
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Figure 5. The scatter of observed and simulated bidirectional reflectance in the MBF (a) and LBF (b).

3.2. Performance of Data Assimilation

The performances of the Dual EnKF and PF methods were strongly affected by the size of the
ensemble and particles [16,52]. Therefore, the influence of ensemble (particle) size on LAI assimilation
was studied. The r and RMSE between the LAI assimilated using different ensemble (particle) sizes
and observed during 2015 are shown as Figure 6. The fluctuation of r and RMSE decreased with an
increasing ensemble (particle) size, and the r and RMSE stabilized when the ensemble size and particle
size were greater than 200 and 80, respectively. The results also indicated that the r increased with an
increasing ensemble (particle) size, and the RMSE decreased with an increasing ensemble (particle)
size. However, an excessively large ensemble (particle) significantly reduces the computational
efficiency [52]. To make the comparison environment of the assimilation results as uniform as possible,
this study selected a size of 200 for both the Dual EnKF and PF to assimilate the MODIS LAI.
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Figure 6. Performance of data assimilation for different ensemble sizes (a) and particle sizes (b).

3.3. Validation of LAI Assimilation

The time series of different LAI data are shown in Figure 7, and the Taylor diagram between them
is shown in Figure 8. These LAI data include the observed LAI (Obs_LAI), original (MODIS_LAI) and
LACC smoothed (LACC_LAI) MODIS LAI products, and the LAI time series assimilated using Dual
EnKF (DEnKF_LAI) and PF (PF_LAI) of MBF and LBF during 2014–2015.Remote Sens. 2017, 9, 401  11 of 16 
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Figure 7. Time series of Obs_LAI, MODIS_LAI and LACC_LAI, DEnKF_LAI and PF_LAI of MBF in
2014 (a) and 2015 (c), and those of LBF in 2014 (b) and 2015 (d).
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Figure 8. Taylor diagram between Obs_LAI and other LAI data (MODIS_LAI, LACC_LAI, DEnKF_LAI,
and PF_LAI) in (a) MBF and (b) LBF. The radial distance from the origin (black dotted line) is
proportional to the standard deviation of the estimate normalized by the standard deviation of the
observations, the azimuthal (blue dotted line) position gives the correlation coefficient, and the radial
distance from the reference point (green dotted line) is proportional to the centred RMSE difference
between the observed and other LAI time series.

As shown in Figure 7, the MODIS_LAI fluctuated considerably in the bamboo forest during
2014–2015, especially during the growing season (e.g., DOY 137–273 in MBF and 89–273 in the LBF
in 2014). The lower r and the highest RMSE indicate that there are huge errors in the MODIS LAI
time-series data of bamboo forests (Figure 8). The LACC_LAI is smoother than the MODIS_LAI, but
still fluctuated during the growing season (e.g., DOY 169–193 in the MBF and LBF in 2015), indicating
that the quality of LACC_LAI was significantly affected by the MODIS LAI time series. Moreover,
the r between LACC_LAI and Obs_LAI was the lowest, and the RMSE remained very high (Figure 8).
Therefore, both the MODIS_LAI and LACC_LAI cannot accurately reflect the long-term LAI variations
in bamboo forests.

Compared to MODIS_LAI and LACC_LAI, the DEnKF_LAI and PF_LAI are closer to Obs_LAI,
greatly reducing the fluctuations in the MODIS LAI time series, especially during the growing season.
Moreover, the two methods increased the r with Obs_LAI and decreased the RMSE, indicating that the
assimilated LAI time series greatly decreased the uncertainty in the MODIS LAI time series (Figure 8).
However, the errors in DEnKF_LAI were larger than those in PF_LAI, e.g., DEnKF_LAI presents a
larger fluctuation with an overestimation during DOY 65–81 in 2015 compared to the PF_LAI. The
statistical results also show that PF_LAI was more accurate than DEnKF_LAI: the r of PF_LAI was
4.44% and 4.21% higher than that of DEnKF_LAI for the MBF and LBF, respectively, and the RMSE of
PF_LAI was 33.33% lower than that of DEnKF_LAI for both the MBF and LBF (Figure 8).

The reasons for this may be as follows. The EnKF algorithm only provides an optimal estimate of
model predictions at the next step of the operation, and it does not consider an optimal estimate of the
LAI over annual time periods. Moreover, the EnKF algorithm is a PF with equal weight, whereas the
weight was unequal during the assimilation process, which leads to fluctuations in the assimilation
process. The PF uses the posterior probability density to calculate the weight of the particles; as
such, the assimilated LAI results in a long-term time series that is relatively stable. Therefore, the PF
algorithm was more suitable for LAI assimilation for bamboo forests.

3.4. Assimilating LAI for Bamboo Forests in Zhejiang Province

For the application of large-scale carbon cycle simulations for bamboo forest, the PF algorithm
was used to assimilate the MODIS LAI time series in Zhejiang Province. The averaged LAIs of bamboo
forest for each season during 2014–2015 are shown in Figure 9, and their statistical information is
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shown in Table 3. The LAI during the summer in 2015 was higher than that in 2014, while the LAI
during other seasons in 2015 was similar to that in 2014.

Overall, the LAI of bamboo forests assimilated by the PF algorithm presents a reasonable
spatiotemporal pattern in Zhejiang Province. The LAI ranged from 1.63–5.53 during spring (DOY
65–145), with an average value of 3.36 ± 0.82 in 2014 and 3.21 ± 0.78 in 2015. The LAI was highest
during summer (DOY 153–241), ranging from 1.99–7.48, with an average value of 4.04 ± 0.80 in 2014
and 4.57 ± 0.93 in 2015. The LAI during autumn (DOY 249–329) was slightly higher than that during
spring and ranged from 1.85–6.28, with an average value of 3.57 ± 0.71 in 2014 and 3.68 ± 0.80 in 2015.
The LAI was lowest during winter (DOY 337–361), ranging from 1.43–4.44, with an average value of
2.23 ± 0.52 in 2014 and 2.15 ± 0.50 in 2015.

The areas of MBF and LBF accounted for more than 90% of the total bamboo forest area in Zhejiang
Province [34], indicating that the assimilated LAI of bamboo forests in Zhejiang Province provides a
level of representativeness. The PF algorithm greatly improved the accuracy of MODIS LAI products,
and the assimilated LAI can be used as a reliable structure parameter for large-scale carbon cycle
simulations in bamboo forests. However, further plot investigations should be conducted to validate
the assimilated LAI of other regions.Remote Sens. 2017, 9, 401  13 of 16 
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Table 3. Statistical information of bamboo forest LAI assimilated by the PF algorithm in Zhejiang
Province. Upper-case letters denote significant differences in each row (one-way ANOVA with
Duncan’s multiple range test, p < 0.01).

Year Seasons
LAI (m2 m−2)

Min Max Average ± Std.

2014

Spring 1.81 5.53 3.36 E ± 0.82
Summer 1.99 5.88 4.04 B ± 0.80
Autumn 1.94 5.58 3.57 D ± 0.71
Winter 1.43 4.89 2.23 G ± 0.52

2015

Spring 1.63 5.32 3.21 F ± 0.78
Summer 2.05 7.48 4.57 A ± 0.93
Autumn 1.85 6.28 3.68 C ± 0.80
Winter 1.43 4.44 2.15 H ± 0.50

4. Conclusions

This study compared the performances of two data assimilation methods (Dual EnKF and PF)
in improving the quality of MODIS LAI of the MBF and LBF during 2014–2015 using long-term
time-series LAI observation data. The study also applied the method with the highest r and lowest
RMSE to generate highly accurate LAI products of bamboo forests in Zhejiang Province. The results
show that the two methods significantly reduced fluctuations and decreased the uncertainty in MODIS
LAI products. The PF_LAI was more accurate than DEnKF_LAI, with an r value of 0.94 and 0.99, and
RMSE of 0.28 and 0.28, for the MBF and the LBF, respectively. The average r of PF_LAI was 4.32%
higher than that of DEnKF_LAI, and the average RMSE of PF_LAI was 33.33% lower than that of
DEnKF_LAI. Therefore, the PF algorithm was applied to assimilate the LAI for bamboo forests in
Zhejiang Province. The LAI of bamboo forests assimilated by the PF algorithm in Zhejiang Province
ranged between 1.63–5.53, 1.99–7.48, 1.85–6.28, and 1.43–4.89 during Spring, Summer, Autumn, and
Winter, respectively. The advantage of the method proposed in this study was the synchronization of
the measured LAI involved in the procedure of assimilation and the combined use of the PROSAIL
model and data assimilation methods for the assimilation of MODIS LAI. However, the assimilated
LAI was highly related to the MODIS reflectance data, indicating that the accuracy of assimilated LAI
is affected if large errors exist in the MODIS reflectance data [53]. In future research, the assimilated
LAI will be further validated based on plot investigations and applied in simulations of the carbon
cycle for bamboo forests using a process-based model.
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