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Abstract: In this paper, we present the supervised multi-view canonical correlation analysis ensemble
(SMVCCAE) and its semi-supervised version (SSMVCCAE), which are novel techniques designed
to address heterogeneous domain adaptation problems, i.e., situations in which the data to be
processed and recognized are collected from different heterogeneous domains. Specifically, the
multi-view canonical correlation analysis scheme is utilized to extract multiple correlation subspaces
that are useful for joint representations for data association across domains. This scheme makes
homogeneous domain adaption algorithms suitable for heterogeneous domain adaptation problems.
Additionally, inspired by fusion methods such as Ensemble Learning (EL), this work proposes a
weighted voting scheme based on canonical correlation coefficients to combine classification results
in multiple correlation subspaces. Finally, the semi-supervised MVCCAE extends the original
procedure by incorporating multiple speed-up spectral regression kernel discriminant analysis
(SRKDA). To validate the performances of the proposed supervised procedure, a single-view canonical
analysis (SVCCA) with the same base classifier (Random Forests) is used. Similarly, to evaluate the
performance of the semi-supervised approach, a comparison is made with other techniques such as
Logistic label propagation (LLP) and the Laplacian support vector machine (LapSVM). All of the
approaches are tested on two real hyperspectral images, which are considered the target domain,
with a classifier trained from synthetic low-dimensional multispectral images, which are considered
the original source domain. The experimental results confirm that multi-view canonical correlation
can overcome the limitations of SVCCA. Both of the proposed procedures outperform the ones used
in the comparison with respect to not only the classification accuracy but also the computational
efficiency. Moreover, this research shows that canonical correlation weighted voting (CCWV) is a
valid option with respect to other ensemble schemes and that because of their ability to balance
diversity and accuracy, canonical views extracted using partially joint random view generation are
more effective than those obtained by exploiting disjoint random view generation.
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1. Introduction

Supervised learning algorithms predominate over all other land cover mapping/monitoring
techniques that use remote sensing (RS) data. However, the performance of supervised learning
algorithms varies as a function of labeled training data properties, such as the sample size and
the statistically unbiased and discriminative capabilities of the features extracted from the data [1].
As monitoring requires multi-temporal images, radiometric differences, atmospheric and illumination
conditions, seasonal variations, and variable acquisition geometries can affect supervised techniques,
potentially causing a distribution shift in the training data [2,3]. Regardless of the cause, any
distribution change or domain shift that occurs after learning a classifier can degrade performance.

In the pattern recognition (PR) and RS image classification communities, this challenge is
commonly referred to as covariate shift [4] or sample selection bias [5]. Many solutions have been
proposed to resolve this problem, including image-to-image normalization [6], absolute and relative
image normalization [7,8], histogram matching [9], and a multivariate extension of the univariate
matching [10]. Recently, domain adaptation (DA) techniques, which attempt to mitigate performance
the degradation caused by a distribution shift, has attracted increasing attention and is widely
considered to provide an efficient solution [11–16].

According to the technical literature in PR and machine learning (ML), DA is a special case of
transductive transfer learning (TTL). Its goal is to learn a function that predicts the label of a novel test
sample in the target domain [12,15]. Depending on the availability of the source and the target domain
data, the DA problem can result into supervised domain adaptation (SDA), semi-supervised domain
adaptation (SSDA), unsupervised domain adaptation (UDA), multisource domain adaptation (MSDA)
and heterogeneous domain adaption (HDA) [14–19].

Moreover, according to the “knowledge” transferred across domains or tasks, classical approaches
to DA can be grouped into parameter adapting, instance transferring, feature representation, and
relational knowledge transfer techniques.

Parameter adapting approaches aim to transfer and adapt a classification model and/or its
parameters to the target domain; the model and/or parameters are learned from the source domain
(SD) [20]. The seminal work presented by Khosla et al. [5] and Woodcock et al. [7], which features
parameter adjustment for a maximum-likelihood classifier in a multiple cascade classifier system by
retraining, can be categorized into this group.

In instance transferring, the samples from the SD are reweighted [21] or resampled [22] for
their use in the TD. In the RS community, active learning (AL) has also been applied to address DA
problems. For example, AL for DA in the supervised classification RS images is proposed by Persello
and Bruzzone [23] via iteratively labeling and adding to the training set the minimum number of the
most informative samples from the target domain, while removing the source-domain samples that do
not fit with the distributions of the classes in the TD.

For the third group, feature representation-based adaptation searches for a set of shared and
invariant features using feature extraction (FE), feature selection (FS) or manifold alignment to reduce
the marginal, conditional and joint distributions between the domains [16,24–26]. Matasci et al. [14]
investigated the semi-supervised transfer component analysis (SSTCA) [27] for both hyperspectral and
multispectral high resolution image classification, whereas Samat et al. [16] analyzed a geodesic
Gaussian flow kernel based support vector machine (GFKSVM) in the context of hyperspectral
image classification, which adopts several unsupervised linear and nonlinear subspace feature
transfer techniques.
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Finally, relational knowledge transfer techniques address the problem of how to leverage the
knowledge acquired in SD to improve accuracy and learning speed in a related TD [28].

Among these four groups, it is easy to recognize the importance of RS image classification
of adaptation strategies based on feature representation. However, most previous studies have
assumed that data from different domains are represented by the same types of features with the same
dimensions. Thus, these techniques cannot handle the problem of data from source and target domains
represented by heterogeneous features with different dimensions [18,29]. One example of this scenario
is land cover updating using current RS data; each time, there are different features with finer spatial
resolution and more spectral bands (e.g., Landsat 8 OLI with nine spectral bands at 15–30 m spatial
resolution, and Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) with 224 spectral bands
at 20 m spatial resolution), when the training data are only available at coarser spatial and spectral
resolutions (e.g., MSS with four spectral bands and 60 m spatial resolution).

One of the simplest feature-based DA approaches is the feature augmentation proposed in [17],
whose extended versions, called heterogeneous feature augmentation (HFA) and semi-supervised
HFA (SHFA), were recently proposed in [18]. Versions that consider the intermediate domains as being
manifold-based were proposed in [30,31]. However, none of these approaches have been considered in
RS image classification.

Finding a joint feature representation between the source and target domains requires FS [12,19]
or FE [16] to select the most effective feature set. To accomplish this aim, canonical correlation analysis
(CCA), which aims to maximize the correlation between two variable sets (in this case, the different
domains) could be a very effective technique. Indeed, CCA and kernel CCA (KCCA) have already been
applied with promising results in object recognition and text categorization [29], action recognition
and image-to-text classification [32]. However, existing joint optimization frameworks such as [32]
are limited to scenarios in which the labeled data from both domains are available. This is not the
case in many practical situations. To solve this problem, CTSVM was proposed in [29], incorporating
the DA ability into the classifier design for a cross-domain recognition scenario of labeled data that is
available only in the SD. However, the CTSVM might fail to balance the possible mismatches between
the heterogeneous domains.

One solution might be to multi-view learning (MVL), a procedure that implies the splitting of
high-dimensional data into multiple “views” [33,34]. If multiple views are available, then multiple
classification results must be reconciled, and this step is efficiently performed using Ensemble Learning
(EL) [35,36]. Accordingly, this work introduces an EL technique based on supervised multi-view CCA,
which is called supervised multi-view canonical correlation analysis ensemble (SMVCCAE), and we
prove its effectiveness for DA (and specifically heterogeneous DA) problems.

Additionally, in real applications, it is typical to experience situations in which there are
very limited or even no labeled samples available. In this case, a semi-supervised learning (SSL)
technique (e.g., [37]), which uses of unlabeled data to improve performance using a small amount
of labeled data from the same domain, might be an appropriate solution. As a matter of fact, many
SSDAs have been proposed. However, most existing studies, such as asymmetric kernel transforms
(AKT) [38], domain-dependent regularization (DDR) [32], TCA, SSTCA [14,27], and co-regularization
based SSDA [39], were designed for homogeneous DA. Very recently, Li et al. [18] proposed a
semi-supervised heterogeneous DA by convex optimization of standard multiple kernel learning
(MKL) with augmented features. Unfortunately, this optimization is quite challenging in real-world
applications. This work instead proposes a semi-supervised version of the above-mentioned multi-view
canonical correlation analysis ensemble (called SSMVCCAE), incorporating multiple speed-up spectral
regression kernel discriminant analysis (SRKDA) [40] into the original supervised algorithm.
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2. Related Work

2.1. Notation for HDA

According to the technical literature, feature-based approaches to HDA can be grouped into the
following three clusters, depending on the features used to connect the target and the SD:

(1) If data from the source and target domains share the same features [41–43], then latent semantic
analysis (LSA) [44], probabilistic latent semantic analysis (pLSA) [45], and risk minimization
techniques [46] may be used.

(2) If additional features are needed, “feature augmentation” approaches have been proposed,
including the method in [37], HFA and SHFA [18], manifold alignment [31], sampling geodesic
flow (SGF) [47], and geodesic flow kernel (GFK) [16,30]. All of these approaches introduce
a common subspace for the source and target data so that heterogeneous features from
both domains.

(3) If features are adapted across domains through learning transformations, feature
transformation-based approaches are considered. This group of approaches includes the
HSMap [48], the sparse heterogeneous feature representation (SHFR) [49], and the correlation
transfer SVM (CTSVM) [29]. The algorithms that we propose fit into this group.

Although all of the approaches reviewed above have achieved promising results, they also have
some limitations of all the approaches reviewed above. For example, the co-occurrence features
assumption used in [41–43] may not hold in applications such as object recognition, which uses
only visual features [32]. For the feature augmentation based approaches discussed in [18,30,31], the
domain-specific copy process always requires large storage space, and the kernel version requires even
more space and computational complexity because of the parameter tuning. Finally, for the feature
transformation based approaches proposed in [29,32,48], they do not optimize the objective function
of a discriminative classifier directly, and the computational complexity is highly dependent on the
total number of samples or features used for adaptation [12,19].

In this work, we assume that there is only one SD (SD) and one TD (TD). We also define

XS =
[
xS

1 , ..., xS
nS

]†
∈ <dS×nS and XT =

[
xT

1 , ..., xT
nT

]† ∈ <dT×nT as the feature spaces in the two
domains, with the corresponding marginal distributions p(XS) and p(XT) for SD and TD, respectively.
The parameters dS and dT represent the size of xS

i , i = 1, ..., nS and xT
j , j = 1, ..., nT , nS and nT are the

sample sizes for XS and XT , and we have SD = {XS, P(XS)}, TD = {XT , P(XT)}. The labeled training

samples from the SD are denoted by
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {vl}c
l=1, and they refer to c classes.

Furthermore, let us consider as “task” Y the task to assign to each element of a set a label selected in a
label space by means of a predictive function f , so that υ = {y, f }.

In general, if the feature sets belong to different domains, then either XS 6= XT or
p(XS) 6= p(XT), or both. Similarly, the condition υS 6= υT implies that either YS 6= YT (YS = [yS

1 , ..., yS
nS
],

YT = [yT
1 , ..., yT

nT
]) or p(YS|XS) 6= p(YT |XT), or both. In this scenario, a “domain adaptation algorithm”

is an algorithm that aims to improve the learning of the predictive function fT in the TD TD using
the knowledge available in the SD SD and in the learning task υS, when either SD 6= TD or υS 6= υT .
Moreover, in heterogeneous problems, the additional condition dS 6= dT holds.

2.2. Canonical Correlation Analysis

Let us now assume that nS = nT for the feature sets (called “views” here) in the source and target
domains. The CCA is the procedure for obtaining the transformation matrices ωS and ωT which
maximize the correlation coefficient between the two sets [50]:

max
ωS ,ωT

ρ =
ω†

SΣSTωT√
ω†

SΣSSωS

√
ω†

TΣTTωT

(1)
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where ΣST = XSX†
T , ΣSS = XSX†

S, ΣTT = XTX†
T , ρ ∈ [0, 1], and “†” means the matrix transpose.

In practice,ωS can be obtained by a generalized eigenvalue decomposition problem:

ΣST(ΣTT)
−1Σ†

STωS = η(ΣSS)ωS (2)

where η is a constraint factor. OnceωS is obtained,ωT can be obtained by ΣTT
−1ΣSTωS/η. By adding

the regularization terms λSI and into ΣSS and ΣTT to avoid overfitting and singularity problems,
Equation (2) becomes:

ΣST(ΣTT + λTI)−1Σ†
STωS = η(ΣSS + λSI)ωS (3)

As a result, the source and target view data can be transformed into correlation subspaces by:

XC
S = XS·ωS,ωS ∈ <dS×d (4)

XC
T = XT ·ωT ,ωT ∈ <dT×d (5)

Note that one can derive more than one pair of transformation matrices
{
ωS

i
}d

i=1 and
{
ωT

i
}d

i=1,
where d = min{dS, dT} is the dimension of the resulting CCA subspace. Once the correlation subspaces
XC

S and XC
T spanned byωS andωT are derived, test data in the target view can be directly labeled by

any model MC
S that is trained using the source features XC

S .

2.3. Fusion Methods

If multiple “views” are available, then for each view, a label can be associated with each pixel
used, for instance, CCA. If multiple labels are present, then they must be fused to obtain a single value
using a so-called decision-based fusion procedure. Decision-based fusion aims to provide the final
classification label for a pixel by combining the labels obtained, in this case, by multiple view analysis.
This usually is obtained using two classes of procedures: weighted voting methods and meta-learning
methods [51].

For weighted voting, the labels are combined using the weights assigned to each result. Many
variants have been proposed in past decades. For the sake of comparison and because we must consider
these options to evaluate the performance of the canonical correlation weighted voting (CCWV) scheme
proposed in this paper, here, we consider only the following state-of-the-art techniques:

• Accuracy weighted voting (AWV), in which the weight of each member is set proportionally to its
accuracy performance on a validation set [51]:

wi =
ai

∑T
j=1 aj

(6)

where ai is a performance evaluation of the i-th classifier on a validation set.
• Best–worst weighted voting (BWWV), in which the best and the worst classifiers are given a

weight of 1 or 0, respectively [51], and for the ones the weights are compute according to:

αi = 1−
ei −min

i
(ei)

max
i

(ei)−min
i
(ei)

(7)

where ei is the error of the i-th classifier on a validation set.
• Quadratic best–worst weighted voting (QBWWV), that computes the intermediate weights

between 0 and 1 via squaring the above-mentioned BWWV:

αi =

 max
i

(ei)− ei

max
i

(ei)−min
i
(ei)

2

(8)
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3. The (Semi) Supervised Canonical Correlation Analysis Ensemble

3.1. Supervised Procedure

The idea of this procedure is to adopt MVL to decompose the target domain data into multiple
disjoint or partial joint feature subsets (views), where each view is assumed to bring complementary
information [52]. Next, these multiple views are used for DA, providing multiple matches between the
source and the target domains. Eventually, the labeling task in the SD is transferred into the target
domain through CCA, and the results of this “multi-view” CCA are combined to achieve a more
efficient heterogeneous DA.

Specifically, without loss of generality, let us assume a heterogeneous DA from a low-dimensional
XS to a high-dimensional XT , with dS < dT , which requires that XT is decomposed into N views, i.e.,
XT =

{
Xi

T
}N

i=1, Xi
T ∈ <di×nT , dT = ∑N

i=i di. In this case, the implementation of MVCCA corresponds to
searching for the following:

argmax
(ωi

S ,ωi
T),...,(ω

N
S ,...,ωN

T )

(ρ1, ..., ρN) =
N

∑
i=1

(
ωi

S
)†Σi

STω
i
T√(

ωi
S
)†Σi

SSω
i
S

√(
ωi

T
)†Σi

TTω
i
T

(9)

where Σi
ST = XS

(
Xi

T
)†, Σi

SS = XSX†
S and Σi

TT = Xi
T
(
Xi

T
)†. Generalizing the standard CCA, Equation (9)

can be rewritten as:

argmax
(ωi

S ,ωi
T),...,(ω

N
S ,...,ωN

T )

(ρ1, ..., ρN) =
N
∑

i=1

(
ωi

S
)†Σi

STω
i
T

s.t.
(
ω1

S
)†Σ1

STω
i
T = 1, ...,

(
ωN

S
)†ΣN

STω
N
T = 1

(10)

As a result, by using the solutions ωi
S

∣∣N
i=1 and ωi

T
∣∣N
i=1, we will have multiple transformed

correlation subspaces, each one considering the SD and one of the target “views”:

XCi
S = XS·ωi

S,ωi
S ∈ <dS×d̂i (11)

XCi
T = Xi

T ·ωi
T ,ωi

T ∈ <dT×d̂i (12)

For any new instance of the target domain, i.e., x = {xi}|Ni=1, xi ∈ XCi
T , the decision function of

this SMVCCAE, trained with labeled training samples
{(

xSC
j , yS

j

)∣∣∣nS

j=1

}
, xSC

j ∈ XCi
S , i = ∀N, can be

implemented via majority voting (MV):

H(x) = sign
(

N
∑

i=1
hi(xi)

)
=

 vl , if
N
∑

i=1
hl

i(xi) � 1
2

c
∑

k=1

N
∑

i=1
hk

i (xi)

reject, otherwise

(13)

However, to further optimize the ensemble results, one can also recall that the canonical

correlations ρ =

{{
ρ1, ..., ρj

}∣∣d̂1
j=1, ...,

{
ρ1, ..., ρj

}∣∣d̂N
j=1

}
obtained together with the transformation

matricesωi
S andωi

T provide information about correlation between the SD and each target view. Since

larger values of ∀
{

ρj
}∣∣d̂i

j=1 ∈ {ρi}|Ni=1 show a greater correlation, this can also be considered a hint to
obtain a better domain transfer ability for the corresponding view. We expect that poor correlation

values (i.e., low values of ∑d̂i
j=1 ρj) will result in poor domain transfer abilities. Therefore, ∑d̂i

j=1 ρj may

be used to quantitatively evaluate the domain transfer ability of the transformation matricesωi
S and
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ωi
T . Accordingly, we propose to include the following canonical correlation coefficient in the voting

strategy of Equation (13):

H(x) = sign

(
N

∑
i=1

∑d̂i
j=1 ρjhi(xi)

)
(14)

The algorithmic steps of the new algorithm (called Supervised MVCCA Ensemble, or SMVCCAE
for short) are summarized in Algorithm 1.

Algorithm 1. Algorithmic details of SMVCCAE.

1. Inputs: SD XS =
[
xS

1 , ..., xS
nS

]
∈ <dS×nS ; TD XT =

[
xT

1 , ..., xT
nT

]
∈ <dT×nT ; id for labeled training samples

2.
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {vl}c
l=1 from XS, where the superscript C represents the number of

class types;

3. Supervised classifier ζ; N the number of views of the TD; and min(dS, dT) ≤
⌊

max(dS ,dT)
N

⌋
.

4. Train: for i = 1 to N
5. generate the target domain view Xi

T ∈ <di×nT , dT = ∑N
i=i di;

6. return the transformation matricesωi
S andωi

T according to Equation (10);
7. obtain the correlation subspaces XCi

S and XCi
T according to Equations (11) and (12);

8. compute the transformed training samples
{(

xSC
j , yS

j

)∣∣∣nS

j=1

}
from XCi

S according to id;

9. train the classifier hi = ζ
(

xSC, yS);
10. end
11. Output: return the classifier pool {h1, ..., hN};
12. Classification: For a given new instance x = {xi}|Ni=1, xi ∈ XCi

T , predict the label according to
Equation (14).

3.2. Semi-Supervised Version

To implement a semi-supervised version of the proposed algorithm, the multiple speed-up
SRKDA approach has been incorporated into the supervised procedure. SRDKA essentially improves
the original idea of the spectral regression proposed in [53] for linear discriminant analysis (LDA), by
transforming the eigenvector decomposition based discriminant analysis into a regression framework
via spectral graph embedding [40]. For the sake of clarity, we briefly recall here the SRKDA notation
before formalizing its implementation in the new procedure.

Given the labeled samples
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {vl}c
l=1, the LDA objective function is:

aLDA = argmax a†ψba
a†ψwa

ψb =
c
∑

k=1
nk

(
u(k) − u

)(
u(k) − u

)†

ψw =
c
∑

k=1

(
nk
∑

q=1
(x(k)q − u(k))(x(k)q − u(k))

†
) (15)

where u is the global centroid, nk is the number of samples in the k-th class, u(k) is the centroid of the
k-th class, x(k)q is the q-th sample in the k-th class, and ψw and ψb represent the within-class scatter
matrix and the between-class scatter matrix respectively, so that the total scatter matrix is computed
as ψt = ψb +ψw. The best solutions for Equation (15) are the eigenvectors that correspond to the
nonzero eigenvalues of:

ψbaLDA = λψtaLDA (16)



Remote Sens. 2017, 9, 337 8 of 28

To address the nonlinearities, the kernel extension of this procedure maps the input data to a
kernel Hilbert space through nonlinear positive semi-definite kernel functions, such as the Gaussian
kernel K(x, y) = exp

(
−‖x− y‖2/2σ2

)
, the polynomial kernel K(x, y) =

(
1 + x†y

)d and the sigmoid

kernel K(x, y) = tanh
(
x†y + a

)
. Generalizing Equation (15), the projective function of KDA is therefore:

υKDA = argmaxυ
†ψ

φ
bυ

υ†ψ
φ
t υ

ψ
φ
b =

c
∑

k=1
nk

(
u(k)

φ − uφ

)(
u(k)

φ − uφ

)†

ψ
φ
w =

c
∑

k=1

(
nk
∑

q=1
(φ(x(k)q )− u(k)

φ )(φ(x(k)q )− u(k)
φ )

†
)

ψ
φ
t = ψ

φ
b +ψ

φ
w

(17)

where ψφ
b , ψφ

w, and ψφ
t denote the between-class, within-class and total scatter matrices in the kernel

space, respectively.
Because the eigenvectors of ψφ

bυKDA = λψ
φ
t υKDA are linear combinations of φ(xq) [54], there is

always a coefficient εq such as υKDA = ∑nk
q=1 εqφ(xq). This constrain makes Equation (17) equivalent to:

εKDA = argmax
ε†KWKε
ε†KKε

(18)

where εKDA =
[
ε1, ..., εnk

]†. Then, the corresponding eigenproblem becomes:

KWKεKDA = λKKεKDA (19)

where K is the kernel matrix, and the affinity matrix W is defined using either HeatKernel [55] or the
binary weight mode:

Wi,j =

{
1/nk, if xi and xj both belong to the kth class;
0, otherwise.

(20)

To efficiently solve the KDA eigenproblem in Equation (19), let us consider ϑ to be the solution of
Wϑ = λϑ. Replacing KεKDA on the left side of Equation (19) by ϑ, we have:

KWKεKDA = KWϑ = Kλϑ = λKϑ = λKKεKDA (21)

To avoid singularities, a constant matrix δI is added to K to keep it positive definite:

εKDA = (K + δI)−1ϑ (22)

where I is the identity matrix, and δ ≥ 0 represents the regularization parameter. It can be easily
verified that the optimal solution given by Equation (22) is the optimal solution of the following
regularized regression problem [56]:

min
f∈F

nS

∑
j=1

(
f
(
xj
)
− yj

)2
+ δ‖ f ‖2

K (23)

where F is the kernel space associated with the kernel K, and ‖ f ‖K is the corresponding norm.
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According to Equations (19) and (21), the solution can be reached in two steps: (1) solve the
eigenproblem Wϑ = λϑ to obtain ϑ; and (2) find a vector εKDA that satisfies KεKDA = ϑ. For Step 1, it
is easy to check that the involved affinity matrix W has a block-diagonal structure:

W =


W(1) 0 · · · 0

0 W(2) · · · 0
...

...
. . .

...
0 0 · · · W(c)

 (24)

where
{

W(k)
}c

k=1
is an nk × nk matrix with all of the elements defined in Equation (19), and it is

straightforward to show that W(k) has the eigenvector e(k) associated with e(k) = [1, 1, ..., 1]†. In addition,
there is only one nonzero eigenvalue of W(k) because the rank of W(k) is always 1. Thus, there are
exactly c eigenvectors of W with the same eigenvalue 1:

ϑk = [0, ..., 0︸ ︷︷ ︸
∑k−1

i=1 ni

, 1, ..., 1︸ ︷︷ ︸
nk

, 0, ..., 0︸ ︷︷ ︸
∑c

i=k+1 ni

]† (25)

According to the theorem proven by Cai and He in [57], the kernel matrix is positive definite, and
the c-1 projective function of KDA gives exactly the same solutions as the c-1 linear equations systems

Kεk
KDA = ϑ

k. Then let Θ = [ε1, ..., εc−1] be the KDA transformation matrix which embeds the data
into the KDA subspace:

Θ†[K(:, x1), ..., K(:, xnk )
]
= Y† (26)

where the columns of Y† are the embedding results. Accordingly, the data with the same label
correspond to the same point in the KDA subspace when the kernel matrix is positive definite.

To perform SRKDA in a semi-supervised way, one straightforward solution is to use the label
information to guide the construction of the affinity matrix W, as in [57–59]. Let G = (V, E) be a
graph with set of vertices V, which is connected by a set of edges E. The vertices of the graph are

the labeled and unlabeled instances
(

xS
j , yS

j

)∣∣∣nS

j=1
∪
{(

xT
j

)∣∣∣nT

j=1

}
. An edge between two vertices (or

labeled and unlabeled samples) i, j represents the similarity of two instances with an associated weight
{Wi,j}. Then, the affinity matrix W is built using both labeled and unlabeled samples. To achieve this
goal, p-nearest neighbors, ε-neighbors, or fully connected graph techniques can be adopted, where 0–1
weighting, Gaussian kernel weighting, Polynomial kernel weighting and Dot-product weighting can
be considered to establish the graph weights [57,58]. Usually, graph-based SSL methods compute the
normalized graph Laplacian:

L = I − D−1/2WD−1/2 (27)

where D denotes a diagonal matrix defined by Dii = ∑j Wi,j (see [59,60] (Chapter 5) for more details
on different families of graph based SSL methods).

According to this procedure, and inserting the notation for DA using multiple view CCA, the
new semi-supervised procedure follows the steps reported in Algorithm 2.
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Algorithm 2. Algorithmic details of SSMVCCAE.

1. Inputs: SD XS =
[
xS

1 , ..., xS
nS

]
∈ <dS×nS ; TD XT =

[
xT

1 , ..., xT
nT

]
∈ <dT×nT ; idL

S for labeled training

2. samples
{(

xS
j , yS

j

)∣∣∣nS

j=1

}
, yS

j ∈ Ω = {vl}c
l=1 from XS, where superscript C represents the number

of class

3. types; idU
T for unlabeled candidates

{(
xT

j

)∣∣∣nT

j=1

}
from XT Semi-supervised classifier ζSRKDA; N =

4. Number of views of the target domain; and min(dS, dT) ≤
⌊

max(dS ,dT)
N

⌋
.

5. Train: for i = 1 to N
6. generate the target domain view Xi

T ∈ <di×nT , dT = ∑N
i=i di;

7. return the transformation matricesωi
S andωi

T according to Equation (10);
8. obtain the correlation subspaces XCi

S and XCi
T according to Equations (11) and (12);

9. compute the transformed training samples
{(

xSC
j , yS

j

)∣∣∣nS

j=1

}
from XCi

S according to idL
S and the

10. transformed unlabeled samples
{(

xTC
j

)∣∣∣nT

j=1

}
from XT according to idU

T ;

11. build the graph Laplacian Li according to Equation (27) using
(

xSC
j , ySC

j

)∣∣∣nS

j=1
∪
{(

xTC
j

)∣∣∣nT

j=1

}
;

12. obtain the KDA transformation matrix Θi according to the solutions of Equation (26) and
Equation (22);

13. return the embedded results Y†
i ;

14. end

15. Output: return the KDA transformation matrices {Θi}N
i=1 and the full KDA subspace embedded results{

Y†
i

}N

i=1
;

16. Classification: For a given new instance x = {xi}|Ni=1, xi ∈ XCi
T

17. for i = 1 to N
18. first map xi into RKHS with the specified kernel function φ(xi);
19. obtain the embedded results YiT in KDA space according to Equation (26);

20. return the decision function hi(x) = argmin
c
∑

j=1

(
‖yiT − uj‖2

)
, yiT ∈ YiT , and uj = ∑x∈ci

x/
∣∣∣cj

∣∣∣,
which represents the class center of ci in the KDA embedded space.

21. end
22. obtain the final predicted label by a majority voting ensemble strategy using Equation (14).

Summing up algorithmic details of the SMVCCAE and SSMVCCAE as described in
Sections 3.1 and 3.2, Figure 1 illustrate the general flowchart for the proposed heterogeneous DA
algorithms for RS image classification.
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Figure 1. General flowchart for the proposed heterogeneous DA algorithms SMVCCAE and
SSMVCCAE for RS image classification.

4. Data Sets and Setups

4.1. Datasets

For our analyses and evaluations, we consider two datasets, with different spatial and spectral
resolutions. The first dataset is a 1.3 m spatial resolution image collected by the Reflective
Optics Spectrographic Image System (ROSIS) sensor over the University of Pavia, with a size of
610 × 340 pixels (Figure 2). A total of 103 spectral reflectance bands that cover a region of the spectrum
between 430 and 860 nm were retained for the analyses. The captured scene primarily represents a
built-up setting with these thematic classes: asphalt, meadows, gravel, trees, metal sheets, bitumen,
bare soil, bricks and shadows, as listed in Table 1. As described earlier, the main purpose of this
article is to investigate the proposed methods in a heterogeneous DA problem. In this sense, the
low-dimensional image is simulated by clustering the spectral space of the original ROSIS image.
Specifically, the original bands of the original ROSIS image are clustered into seven groups using
the K-Means algorithm, and the mean value of each cluster is considered as a new spectral band,
providing a total of seven new bands. In the experiments, the new synthetic image is considered as the
SD, whereas the original ROSIS image is considered as the TD.
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Figure 2. (a–d) False color composite of the: synthetic low spectral resolution (a); and the original
hyperspectral (c) images of the University campus in Pavia, together with: training (b); and validation
(d) data sets (legend and sample details are reported in Table 1). False color composites are obtained
and are displayed as R, G, and B bands 7, 5, and 4 for the synthetic, and bands 60, 30, and 2 for the
original image, respectively.

Table 1. Class legend and sample details for the ROSIS University data set.

No. Class Code
Source Target

Train Test

1 Asphalt 548 6631
2 Meadows 540 18649
3 Gravel 392 2099
4 Trees 524 3064
5 Metal sheets 265 1345
6 Bare soil 532 5029
7 Bitumen 375 1330
8 Bricks 514 3682
9 Shadows 231 947

The second dataset was gathered by the AVIRIS sensor over the Indian Pines test site in
North-western Indiana in 1992, with 224 spectral reflectance bands in the wavelength range of 0.4 to
2.5 µm. It consists of 145 × 145 pixels with moderate spatial resolution of 20 m per pixel, and a 16-bit
radiometric resolution. After an initial screening, the number of bands was reduced to 200 by removing
bands 104–108, 150–163, and 220, due to noise and water absorption phenomena. This scene contains
two-thirds agriculture, and one-third forest or other natural perennial vegetation. For the other Pavia
data set, K-Means is used to simulate a low dimensional image with 10 bands. For illustrative purposes,
Figure 3a,b shows false color composition of the simulated low dimensional and the original AVIRIS
Indian Pines scene, whereas Figure 3b shows the ground truth map that is available for the scene,
which is displayed in the form of a class assignment for each labeled pixel. In the experimenting stage,
this ground truth map is subdivided into two parts for training and validation purposes, as detailed in
Table 2.
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Figure 3. (a–d) False color composites of the: simulated low spectral resolution (a); and original
hyperspectral (c) images of Indian Pines data, together with: training (b); and validation (d) data
sets (color legend and sample details are reported in Table 2). False color composites are obtained
displaying as R, G, and B bands, 6, 4, and 5 for the synthetic, and bands 99, 51, and 21 for the original
image, respectively.
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Table 2. Class legend and sample details for the AVIRIS Indian Pines data set.

No. Class Code
Source Target

Train Test

1 Alfalfa 23 23
2 Corn-notill 228 1200
3 Corn-mintill 130 700
4 Corn-notill 57 180
5 Grass-pasture 83 400
6 Grass-trees 130 600
7 Grass-pasture-mowed 14 14
8 Hay-windrowed 78 400
9 Oats 10 10
10 Soybean-notill 172 800
11 Soybean-mintill 255 2200
12 Soybean-clean 93 500
13 Wheat 55 150
14 Woods 265 1000
15 Buildings-grass-trees-drives 86 300
16 Stone-steel-towers 43 50

4.2. Experiment Setups

All of the experiments were performed using MatlabTM on a Windows 10 64-bit system with
Intel® CoreTM i7-4970 CPU, @3.60 GHz, 32GB RAM. For the sake of evaluation and comparison,
a Random Forest classifier (RaF) is considered as benchmark classifier for both the SMVCCAE
and SVCCA approaches, because of its proven velocity, and its generalized and easy-to-implement
properties [61,62]. The number of decision trees in RaF is set by default to 100, whereas the number of
features is set by default to the floor of the square root of the original feature dimensionality.

For both the ROSIS and Indian Pines data sets, all of the initial and derived features have been
standardized to a zero mean and unit variance. For incorporated object oriented (OO), five statistics
are utilized, including the pixels’ mean and standard deviation, area, orientation and major axis length
of the segmented objects via K-Means clustering algorithm, whereas the spatial feature morphology
profiles (MPs) are applied to the three transferred features that have the highest canonical correlation
coefficients. Specifically, MPs are constructed by applying closing by reconstruction (CBR) with a
circular element with a radius of 3–11 pixels, and opening by reconstruction (OBR) with an element
with a radius of 3–6 pixels, refer to works carried out in [63,64]. Therefore, the feature dimensionality
set in the experiments is 7 (10) vs. 103 (200) when using spectral features only for ROSIS (Indian Pines),
7 + 5 (10 + 5) vs. 103 + 5 (200 + 5) when using spectral features stacked with OO ones, 7 + 39 (10 + 39)
vs. 103 + 39 (200 + 39) when using spectral features stacked with MPs features, and finally 7 + 5 + 39
(10 + 5 + 39) vs. 103 + 5 + 39 (200 + 5 + 39) when using all spectral, OO, and MPs features.

To assess the classification performances of the proposed semi-supervised approach, two
state-of-the-art semi-supervised classifiers, Logistic label propagation (LLP) [65] and Laplacian support
vector machine (LapSVM) [66] were considered. For the critical parameters of the semi-supervised
technique (SRKDA), such as the regularization parameter δ and the number of neighbors NN used to
construct the graph Laplacian L with HeatKernel [40], their values are obtained by a heuristic search in
the (0.01–1) and (1–15) ranges, respectively. The parameter settings for LLP and LapSVM are instead
reported in Table 3. Because LapSVM was originally proposed for binary classification problems,
a one-against-all (OAA) scheme was adopted to handle the multiclass classification in our experiments.
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Table 3. Parameter details for LLP and LapSVM.

Classifier Parameters Meanings Values

LLP

g graph complete type KNN
τ neighborhood type Supervised
N neighbor size for constructing graph 5
ω weights for edge in graph Heat Kernel
σ parameter for Heat Kernel 1
C regularization scale 0.001
M maxim iteration number 1000
η weight function for labeled samples mean

LapSVM

γa regularization parameter (ambient norm) 10−5

γi regularization parameter (intrinsic norm) 1
α the initial weights 0
κ kernel type RBF
σ RBF kernel parameter 0.01
M maximum iteration number 200
c LapSVM training type primal
η Laplacian normalization TRUE
N neighbor size for constructing graph 6

5. Experimental Results and Discussion

5.1. Domain Transfer Ability of MVCCA

As discussed in Section 3.1, each dimension in the derived CCA subspace is associated with a
different canonical correlation coefficient which is a measure of its transfer ability. Moreover, in the
MVCCA scenario, the transfer ability of each view and dimension is controlled not only by the number
of views but also by the view generation technique. In this sense, Figure 4 presents the results of
the average canonical correlation coefficient obtained using different view generation techniques, i.e.,
disjoint random sampling, uniform slice, clustering and partially joint random generation. Partially
joint random view generation can apparently increase the chance of finding views with better domain
transfer ability on the one hand, and to overcome the limitation ensemble techniques when the number
of classifiers (equal to number of views in our case) is small on the other hand. Please note that for a
more objective evaluation and comparison, each experiment was executed 10 times independently.Remote Sens. 2017, 9, x FOR PEER REVIEW  15 of 28 
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Figure 4. Average canonical correlation coefficient versus embedded features for: ROSIS (a–d); and
Indian Pines (e–h) data sets using different view generation techniques: disjoint random sampling
(a,e); uniform slice (b,f); clustering (c,g); and partially joint random generation (d,h).
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In Figure 4, we see that the embedded features with the highest canonical correlation coefficient
are obtained by directly applying CCA without multi view generation (i.e., n = 1). However, single
view CCA may still fail to balance potential mismatches across heterogeneous domains by overfitting,
as demonstrated in the results reported in the following sections. Additionally, the decreasing trend
of the canonical correlation coefficient with an increasing number of views is obvious because of
the increasing mismatch between the source and target views. However, the decreasing rates of the
canonical correlation coefficient for disjoint random and partially joint random generation techniques
are lower than those from disjoint uniform slice and disjoint clustering view generations. Therefore,
partially joint random and disjoint random view generation techniques have been selected for the
following experiments.

5.2. Parameter Analysis for SMVCCAE

In Figure 5, we report the results of a sensitivity analysis of SMVCCAE that involves its critical
parameters: the dimension of the target view di

T = dT
N , the view generating strategies including disjoint

random (DJR) and partially joint random (PJR) generation, as well as the ensemble approaches MJV
and CCWV. Please note that the number of views for PJR based SMCCAE was set to 35, which is a
number that will be discussed later in this paper.
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features on: ROSIS University (a–d); and Indian Pine datasets (e–h).

As illustrated in Figure 5 for the test data sets, the choice of PJR view generation with MJV
and CCWV strategies allows the best overall accuracy values (OA curves in color green and
pink). Concerning the dimensionality of the target views, they are different using different features.
Specifically, for spectral features, the larger the dimensionality of the target views, the larger the OA
values for PJR-based SMVCCAE because of the better domain transfer capacity with more ensemble
classifiers. However, a dimensionality that is too large leads to too few view splits, i.e., a small number
of ensemble elements, eventually resulting in a degraded performance. For example, when target view
dimensionality is larger than four times the source view (7) dimensionality for ROSIS and larger than
six times this value for Indian Pines, the OA value exhibits a decreasing trend (Figure 5a,e). Among
the different types of features, (e.g., spectral and object-oriented features (labeled “spectral-OO”),
spectral and morphological profile features (labeled “spectral-MPs”), and all of them together (labeled
“spectral-OO-MPs”), the outcome is as expected, which is that the best results are obtained using
spectral-OO-MPs. Interestingly, whereas the classification performances of the PJR-based approach
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are quite stable with respect to the dimensionality of the target views, the DJR-based results show a
negative trend with an increasing number of target views. This finding is especially true when spatial
(i.e., OO and morphological profiles) features are incorporated. This result can be explained by the
trade-off between the diversity, OA and number of classifiers in an ensemble system. Specifically, the
statistical diversity among spectral and spatial features tends to enhance the classification accuracy
diversities more than using any view splitting strategy. As a result, the final classification performance
could be limited or even degraded, especially when the number of classifiers is small.

Finally, in Figure 6, we focus on the computational complexity of the proposed approach by
presenting OA, kappa statistics and CPU time values with respect to the number of views and the
various fusion strategies.
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According to Figure 6, the proposed CCWV fusion technique is effective as the other fusion
techniques. Apparently, with regard to the improvements in the OA values (see Figure 6a,b,d,e),
and the computational burden from the number of views (see Figure 6c,f), views between 30 and
40 produce the best tradeoff between computational burden and classification accuracy.

In summary, in a scenario in which low-dimensional and high-dimensional data sets require DA,
a well-designed SMVCCAE requires us to set the dimensionality of each target view to three or four
times the dimensionality of the source view, and to use a PJR view generation technique.

5.3. Validation of SMVCCAE

Figure 7 provides the SMVCCAE heterogeneous cross-domain classification maps with OA values
for the ROSIS University dataset using spectral, spectral-OO, spectral-MPs and spectral-OO-MPs
features. Compared with the maps produced by a single-view canonical correlation analysis (SVCCA)
approach, the thematic maps obtained by SMVCCAE using the associated features are better,
specifically with adequate delineations of the bitumen, gravel and bare soil areas (see the numbers
in Table 4). These results experimentally verify our earlier assumptions that single view CCA could
fail to balance potential mismatches across heterogeneous domains by overfitting. Additionally, the
most accurate result is obtained with spectral-OO-MPs by SMVCCAE using the PJR view generation
strategy, as shown by the results in Figure 7 and the numbers in bold in Table 4.

For the Indian Pines dataset, Figure 8 shows the thematic maps with OA values, whereas Table 5
reports the classification accuracies (Average accuracy (AA) and OA), and kappa statistics (k) with



Remote Sens. 2017, 9, 337 17 of 28

respect to various features. Once again, the thematic maps with larger OA values produced by
SMVCCAE are better than the results produced by SVCCA, especially when the OO and MPs are
incorporated. The numbers in bold in Table 5 show that the largest accuracies for various class types
are obtained by the SMVCCAE with the PJR technique using spectral-OO-MPs features.
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5.4. Parameter Analysis for the Semi-Supervised Version of the Algorithm

In Figures 9 and 10, we report the results of the sensitivity analysis for SSMVCCAE while
considering the two critical parameters from the adopted SRKDA technique: (1) the regularization
parameter δ; and (2) the number of neighbors NN used to construct the graph Laplacian L. The other
parameters, such as the target view dimensionality, di

T and the number of total views N (i.e., the
ensemble size), are set by default to di

T = 4× ds and N = 35, according to our previous experimental
analysis for the supervised version of the same technique.
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Table 4. Classification accuracy values for the SVCCA and SMVCCAE (dT = 4 × dS) methods for ROSIS University. Considered metrics: Overall accuracy (OA),
Average accuracy (AA), Kappa statistic (Kappa).

Methods Strategy Features Asphalt Meadows Gravel Trees Metal Sheets Bare Soil Bitumen Bricks Shadows AA (%) OA (%) Kappa

SVCCA ~

F1 94.96 91.61 66.17 52.56 98.68 45.70 70.63 69.50 99.26 76.56 73.68 0.67
F2 98.02 95.88 93.04 71.59 98.68 71.13 90.88 76.59 100.00 88.42 88.76 0.85
F3 99.47 88.06 94.39 80.89 99.55 53.10 72.31 90.67 98.90 86.37 84.76 0.80
F4 99.86 89.32 91.35 82.43 98.67 71.98 96.44 95.76 99.15 91.66 89.96 0.87

SMVCCAE

DJR_MJV

F1 94.72 93.38 73.72 51.80 99.40 45.96 73.73 68.49 99.62 77.87 73.80 0.68
F2 95.35 97.59 77.93 61.68 99.61 82.74 81.94 68.45 99.90 85.02 86.37 0.82
F3 99.36 90.58 95.88 74.91 99.37 72.69 94.79 85.28 99.21 90.23 88.16 0.85
F4 99.49 92.05 96.76 79.38 99.77 88.84 96.45 86.15 99.26 93.13 91.44 0.89

DJR_CCWV

F1 94.81 93.25 73.44 51.82 99.65 45.99 74.43 68.29 99.61 77.92 73.84 0.68
F2 96.56 98.56 78.45 62.47 99.47 92.16 88.74 68.79 99.81 87.22 88.89 0.86
F3 99.31 90.60 96.05 74.26 99.52 75.25 96.40 85.82 99.32 90.72 88.33 0.85
F4 99.24 90.64 96.72 77.65 99.28 93.32 97.36 86.71 99.19 93.34 91.42 0.89

PJR_MJV

F1 95.30 94.31 76.84 52.48 99.83 48.15 76.36 69.20 99.87 79.15 75.28 0.69
F2 98.64 98.00 95.62 77.19 99.52 89.26 97.57 72.69 99.79 92.03 92.14 0.90
F3 99.72 91.09 98.96 82.15 99.93 80.10 99.62 87.11 99.36 93.11 90.97 0.88
F4 99.89 91.46 94.97 84.63 99.93 98.81 99.34 95.66 99.40 96.01 93.97 0.92

PJR_CCWV

F1 95.26 94.33 77.45 52.44 99.83 47.96 76.56 69.06 99.86 79.19 75.20 0.69
F2 98.55 98.02 95.55 77.33 99.54 89.40 97.57 72.62 99.79 92.04 92.16 0.90
F3 99.71 90.90 99.08 82.14 99.95 77.94 99.56 86.99 99.36 92.85 90.69 0.88
F4 99.89 91.36 95.16 84.40 99.95 98.88 99.35 95.78 99.38 96.02 93.92 0.92

F1: Spectral; F2: Spectral-OO; F3: Spectral-MPs; F4: Spectral-OO-MPs.
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Table 5. Classification accuracy values (average) for the SVCCA and SMVCCAE methods for Indian Pines. Considered metrics: Overall accuracy (OA), Average
accuracy (AA), Kappa statistic (Kappa).

Methods SVCCA SMVCCAE

Strategy ~ DJR_MJV DJR_CCWV PJR_MJV PJR_CCWV

Features F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4 F1 F2 F3 F4

Alfalfa 69.57 91.30 86.96 86.96 45.22 91.30 95.22 95.65 48.26 91.30 95.65 95.65 46.09 91.30 95.65 95.65 46.09 91.30 95.65 95.65
Corn-notill 81.42 87.42 90.67 93.92 78.04 87.86 90.45 91.92 77.91 87.05 90.41 91.70 80.83 89.12 91.06 92.78 80.82 89.38 91.14 92.90

Corn-mintill 70.71 88.71 96.86 96.57 64.70 84.54 97.00 98.16 65.34 83.29 97.31 97.91 65.87 86.54 98.03 99.20 65.43 86.93 97.97 99.24
Corn-notill 75.56 94.44 95.56 96.67 62.83 83.89 94.11 95.33 62.94 83.44 93.11 95.61 65.56 86.17 95.56 95.89 65.61 86.28 95.56 95.95

Grass-pasture 79.00 81.50 88.75 88.75 72.98 86.48 93.13 93.60 72.95 86.38 92.55 93.70 75.90 88.65 93.63 93.90 75.95 88.43 93.73 94.00
Grass-trees 91.00 92.17 99.00 99.00 96.03 96.80 99.70 99.69 95.68 96.73 99.67 99.64 96.58 97.33 99.67 99.67 96.50 97.49 99.67 99.67

Grass-pasture-mowed 85.71 85.71 85.71 85.71 91.43 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86 92.86
Hay-windrowed 97.75 97.50 99.75 99.75 98.45 96.30 99.68 99.70 98.68 96.93 99.68 99.63 99.45 97.70 99.73 99.75 99.23 97.83 99.65 99.75

Oats 90.00 90.00 100.00 100.00 80.00 89.00 91.00 99.00 85.00 92.00 97.00 98.00 91.00 99.00 100. 100. 89.00 98.00 100. 100.
Soybean-notill 77.75 87.38 87.25 89.00 79.37 89.83 91.34 92.59 79.54 89.02 90.93 92.22 81.89 91.85 92.27 93.14 81.70 91.89 92.15 92.92

Soybean-mintill 78.55 87.45 95.77 95.64 76.94 91.20 97.35 98.44 77.20 91.22 97.54 98.16 78.52 92.82 98.16 98.54 78.74 92.88 98.25 98.52
Soybean-clean 71.60 82.80 93.80 93.80 73.42 81.86 95.20 96.36 73.90 82.72 95.18 95.94 77.90 86.10 97.14 97.16 77.50 86.16 96.90 97.18

Wheat 99.33 99.33 98.67 98.67 98.20 99.00 98.60 98.73 98.13 98.53 98.27 98.80 98.54 99.33 98.67 99.00 98.47 99.33 98.67 98.80
Woods 96.60 96.90 99.60 99.50 98.23 98.94 99.87 99.82 98.17 98.90 99.83 99.85 98.37 99.08 99.91 99.91 98.41 99.06 99.90 99.90

Buildings-grass-trees-drives 51.33 61.33 99.00 99.00 56.00 69.60 99.77 99.97 55.27 70.27 99.90 99.97 57.17 69.87 100. 100. 56.60 70.33 100. 100.
Stone-steel-towers 100. 100. 100. 100. 99.80 100. 100. 100. 99.60 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100.

AA (%) 82.24 89.00 94.83 95.18 79.48 89.97 95.95 96.99 80.09 90.04 96.24 96.85 81.66 91.73 97.02 97.34 81.43 91.76 97.01 97.33
OA (%) 81.21 88.43 94.91 95.48 80.19 90.10 96.07 96.89 80.30 89.89 96.05 96.72 81.95 91.60 96.73 97.27 81.89 91.71 96.73 97.27
Kappa 0.78 0.87 0.94 0.95 0.77 0.89 0.95 0.96 0.77 0.88 0.95 0.96 0.79 0.90 0.96 0.97 0.79 0.90 0.96 0.97

F1: Spectral; F2: Spectral-OO; F3: Spectral-MPs; F4: Spectral-OO-MPs.
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According to the results, the smaller the regularization parameter δ is and the larger the number
of neighbors NN, the larger the OA values. Thus, δ = 0.01 and NN = 12 were considered in all of the
experiments. Computational complexity is primarily controlled by the labeled sample size (note the
vertical axis in Figures 9d–f and 10d–f.

5.5. Validation of the Semi-Supervised MVCCAE

To validate the performances of the semi-supervised version of the proposed algorithm,
comparisons with existing methods, specifically LLP and LapSVM, are presented for the ROSIS
University data set, starting from a label set of increasing size.

Figure 11 shows the learning curves for SSMVCCAE, LLP, and LapSVM using different view
generation and classifier ensemble strategies as a function of this size. Each point on the x-axis
represents the size of the labeled samples (pixels) for each class type, while the y-axis represents
the average overall classification accuracy. In Table 6, we report the average overall classification
accuracies and kappa statistics (κ) over 10 independent runs, when a total of 100 labeled samples are
considered for each class.Remote Sens. 2017, 9, 337  23 of 28 
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Figure 11. (a–p) Average OA values versus labeled pixels for SSMVCCAE with different view
generation and fusion strategies for ROSIS University dataset.

According to the results in Figure 11 and Table 6, the proposed semi-supervised heterogeneous
DA approach achieves comparable and sometimes better results in any case (see the learning curves
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in blue for SSMVCCAE-SRKDA vs. green for SSMVCCAE-LPP and red for SSMVCCAE-LapSVM in
Figure 11). Moreover, larger OA values with faster convergence rates are shown by SSMVCCAE with
PJR as opposed to DJR view generation, either by MJV fusion or by the CCWV fusion, especially using
the spectral-OO-MPs features.

In Figure 12 and Table 7, the results of the same experiments are reported for the Indian Pines test
set. Please note that because only a few samples are available for some classes in the Indian Pines case,
class types that contain less than 70 pixels for training are not considered here. Even in this case, to
obtain a more objective comparison and evaluation, each test is executed independently for 10 rounds.Remote Sens. 2017, 9, 337  24 of 28 
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Figure 13. (a–h) CPU time consumption in seconds versus the size of the labeled samples for 

SSMVCCAE-SRKDA/-LLP/-LapSVM for the ROSIS University data. 

  

Figure 12. (a–p) Average OA values versus labeled pixels for SSMVCCAE with different view
generation and fusion strategies on Indian Pines data.

Figure 12 shows that better classification results are obtained by the SSMVCCAE with SRKDA,
not only using the original spectral features but also using spectral features that incorporate OO
and MPs features (see the learning curves in blue vs. those in green and red). Moreover, the best
classification results are obtained by SSMVCCAE-SRKDA with the PJR view generation technique,
and when considering the spectral-OO-MPs stacked features (see the numbers in bold in Table 7).
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Table 6. Average overall classification accuracies and kappa statistics (κ) for SSMVCCAE with different semi-supervised classifiers for the ROSIS University data.
Total 100 labeled samples are available for each class over 10 independent runs.

Classifier SSMVCCAE (SRKDA) SSMVCCAE (LPP) SSMVCCAE (LapSVM)

View Generation DJR PJR DJR PJR DJR PJR

Voting MJV CCWV MJV CCWV MJV CCWV MJV CCWV MJV CCWV MJV CCWV

Statistics OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ

Spectral 73.82 0.66 73.83 0.66 74.58 0.67 74.47 0.67 75.12 0.68 75.11 0.68 75.45 0.68 75.37 0.68 72.82 0.66 72.85 0.66 74.26 0.67 74.16 0.67
Spectral-OO 78.31 0.72 78.29 0.72 78.02 0.72 78.00 0.72 82.08 0.76 82.04 0.76 83.44 0.78 83.32 0.78 77.37 0.71 77.38 0.71 80.08 0.74 80.04 0.74
Spectral-MPs 88.23 0.85 88.24 0.85 86.73 0.82 86.89 0.83 88.44 0.85 88.45 0.85 90.16 0.87 90.17 0.87 85.65 0.82 85.72 0.82 88.14 0.85 88.12 0.85

Spectral-OO-MPs 93.17 0.91 93.14 0.91 93.47 0.91 93.46 0.91 90.36 0.87 90.31 0.87 92.78 0.90 92.77 0.90 92.08 0.90 92.10 0.90 93.68 0.92 93.67 0.92

Table 7. Average overall classification accuracies and kappa statistics (κ) for SSMVCCAE with different semi-supervised classifiers for the Indian Pines data. A total of
55 labeled samples are available for each class over 10 independent runs.

Classifier SSMVCCAE (SRKDA) SSMVCCAE (LPP) SSMVCCAE (LapSVM)

View Generation DJR PJR DJR PJR DJR PJR

Voting MJV CCWV MJV CCWV MJV CCWV MJV CCWV MJV CCWV MJV CCWV

Statistics OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ OA κ

Spectral 73.67 0.70 73.81 0.70 75.49 0.72 75.51 0.72 67.05 0.62 67.13 0.62 68.18 0.64 68.17 0.64 65.43 0.61 65.48 0.61 68.34 0.64 68.38 0.64
Spectral-OO 75.64 0.72 75.53 0.72 76.61 0.73 76.66 0.73 73.69 0.70 73.75 0.70 75.42 0.72 75.47 0.72 69.59 0.65 69.54 0.65 73.20 0.69 73.18 0.69
Spectral-MPs 88.42 0.87 88.49 0.87 89.57 0.88 89.54 0.88 83.19 0.81 83.22 0.81 88.29 0.86 88.31 0.86 83.49 0.81 83.51 0.81 84.33 0.82 84.33 0.82

Spectral-OO-MPs 89.02 0.87 89.05 0.87 89.66 0.88 89.66 0.88 86.01 0.84 86.02 0.84 89.60 0.88 89.59 0.88 85.01 0.83 84.99 0.83 85.03 0.83 85.01 0.83
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Finally, in Figures 13 and 14, the CPU time consumptions in seconds for the different
implementations of the semi-supervised procedure are reported as a function of the labeled sample
size for both Pavia and Indian Pines. According to the results, SSMVCCAE with SRKDA is only
slightly more efficient than LapSVM for the ROSIS University data, but is much more efficient for the
Indian Pines data. Moreover, the computational complexities of LapSVM and LLP increase linearly
with the number of labeled samples, because they are more visible for the Indian Pines data, whereas
the CPU time for SRKDA stays almost constant.
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6. Conclusions 

In this paper, we have presented the implementation details, analyzed the parameter sensitivity, 

and proposed a comprehensive validation of two versions of an ensemble classifier that is suitable 

for heterogeneous DA and based on multiple view CCA. The main idea is to overcome the limitations 

of SVCCA by incorporating multi view CCA into EL. Superior results have been proven using two 

high dimensional (hyperspectral) images, the ROSIS Pavia University and the AVIRIS Indian Pine 

datasets, as high dimensional target domains, with synthetic low dimensional (multispectral) images 

as associated SDs. The best classification results were always obtained by jointly considering the 

original spectral features stacked with object-oriented features assigned to segmentation results, and 

the morphological profiles, which were subdivided into multiple views using the PJR view 

generation technique. 

To further mitigate the marginal and/or conditional distribution gap between the source and the 

target domains, when few or even no labeled samples are available from the target domain, we 

propose a semi-supervised version of the same approach via training multiple speed-up SRKDA. 

For new research directions, we are considering more complex problems, such as single SD vs. 

multiple TDs, as well as multiple SDs vs. multiple TDs supervised and semi-supervised adaptation 

techniques. 

Acknowledgments: This work was partially supported by the Project funded by China Postdoctoral Science 

Foundation (2016M592872), the Xinjiang Uyghur Autonomous Region High Level Talents Introduction Project 

(Y648031) and the National Natural Science Foundation of China (No. 41601440, No. 41601354, and No. 

41471098). 

Author Contributions: Alim Samat developed the algorithms, executed all of the experiments, finished the 

original manuscript and the subsequent revisions, and provided part of the funding. Claudio Persello and Paolo 

Gamba offered valuable suggestions and comments, and carefully revised the original manuscript and its 

revisions. Jilili Abuduwaili provided part of the funding. Sicong Liu and Erzhu Li, contributed to revising of the 

manuscript. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Olofsson, P.; Foody, G.M.; Herold, M.; Stehman, S.V.; Woodcock, C.E.; Wulder, M.A. Good practices for 

estimating area and assessing accuracy of land change. Remote Sens. Environ. 2014, 148, 42–57. 

2. Curlander, J.C. Location of spaceborne SAR imagery. IEEE Trans. Geosci. Remote Sens. 1982, 3, 359–364. 

3. Bruzzone, L.; Cossu, R. A multiple-cascade-classifier system for a robust and partially unsupervised 

updating of land-cover maps. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1984–1996. 

4. Torralba, A.; Efros, A.A. Unbiased Look at Dataset Bias. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1521–1528. 

Figure 14. (a–h) CPU time versus the size of the labeled samples for SSMVCCAE-SRKDA/
-LLP/-LapSVM for the Indian Pines data.

Summing the results presented in this section, it can be concluded that the novel proposed
semi-supervised heterogeneous DA approach works properly and achieves satisfactory results better
than the current state-of-the-art techniques when using a PJR view generation technique either with
majority voting or with canonical correlation coefficient voting. A comparison of the results by
SSMVCCAE with those by LLP and LapSVM shows that the performance of SRKDA is superior for
both classification accuracy and computational efficiency. Finally, the computational burden caused
by the sizes of the labeled samples and feature dimensionality is much smaller for SSMVCCAE with
SRKDA, whereas it increases linearly with the sample size when using the other techniques.

6. Conclusions

In this paper, we have presented the implementation details, analyzed the parameter sensitivity,
and proposed a comprehensive validation of two versions of an ensemble classifier that is suitable for
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heterogeneous DA and based on multiple view CCA. The main idea is to overcome the limitations
of SVCCA by incorporating multi view CCA into EL. Superior results have been proven using two
high dimensional (hyperspectral) images, the ROSIS Pavia University and the AVIRIS Indian Pine
datasets, as high dimensional target domains, with synthetic low dimensional (multispectral) images
as associated SDs. The best classification results were always obtained by jointly considering the
original spectral features stacked with object-oriented features assigned to segmentation results,
and the morphological profiles, which were subdivided into multiple views using the PJR view
generation technique.

To further mitigate the marginal and/or conditional distribution gap between the source and
the target domains, when few or even no labeled samples are available from the target domain, we
propose a semi-supervised version of the same approach via training multiple speed-up SRKDA.

For new research directions, we are considering more complex problems, such as single SD
vs. multiple TDs, as well as multiple SDs vs. multiple TDs supervised and semi-supervised
adaptation techniques.
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