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Abstract: The Soil Moisture Active Passive (SMAP) mission was designed to provide global mapping
of soil moisture (SM) on nested 3, 9, and 36 km earth grids measured by L-band passive and active
microwave sensors. The validation of SMAP SM products is crucial for the application of the products
and improvement of the retrieval algorithm. Since the SMAP SM products were released, much effort
has been invested in the evaluation of the SMAP radiometer SM product (SMAP_P). However, there
has been little validation of SMAP radar (SMAP_A) and active/passive combined (SMAP_AP) SM
products. This paper presents an evaluation of SMAP_P, SMAP_A and SMAP_AP SM products by
using distributed ground observations networks in different landscapes in the Heihe River Basin of
northwestern China. The standard error metrics of SMAP products and relative error are applied to
measure the products’ performances. The results show that the SMAP SM products exhibit consistent
spatial-temporal variation with the ground measurements and typical precipitation events. Three
products show various types of performance capability (e.g., active, passive and combined), surface
coverage (e.g., bare, vegetated) and climatic region (e.g., cold, arid). Relatively, the SMAP_P shows
the best performance, while the SMAP_A performs the worst. The best performances are observed
over bare soils but with overestimation and the largest relative error, and unsatisfactory accuracies
are observed over cold regions and woody vegetated surfaces with underestimation. The vegetation
effect and the freezing-thawing cycle may be major factors that led to an unsatisfactory performance.
Efforts on resolving the influence of these factors are expected to improve the accuracy and to
promote the application of SMAP SM products over these regions. Overall, this evaluation provides
an understanding of SMAP SM products over cold and arid regions, and suggestions for the further
refinement of the SMAP SM retrieval algorithms.
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1. Introduction

The significance of soil moisture (SM) as a terrestrial hydrology state variable has been
well-recognized [1–3]. Therefore, estimating SM with high accuracy is crucial to meet the needs
of various applications. The Soil Moisture Active Passive (SMAP) [4] satellite, launched in January
2015, is the first of the earth observation satellites being developed by the National Aeronautics and
Space Administration (NASA) to provide high resolution global mapping of SM and freeze/thaw
state every 2–3 days on nested 3, 9, and 36-km earth grids measured by a host of passive and active
microwave sensors.
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The SMAP satellite incorporates an L-band (1.26 GHz) radar and an L-band radiometer (1.41 GHz)
to provide 3-km spatial resolution backscattering observation, and 36-km resolution brightness
temperature observation, respectively. Due to the strong penetration capability, the L-band microwave
observations have been recognized as the most promising band for SM estimation [5], especially under
vegetation canopies. The SMAP radar sensor stopped working on 7 July 2015 due to a mechanical
failure, but it could provide nearly 3 months (from 13 April to 7 July 2015) of radar observations and
SM products at 3-km resolution, as well as the 9-km resolution SM products by combining active and
passive observations. Although the SMAP active and combined SM products were only available
during a very short period, they provided the first high spatial resolution SM products at a global
scale. The retrieval algorithms of these two products need to be further refined. In addition, these
multi-scale SM products would be very important in scale-related research into SM estimation; thus,
the evaluation of SMAP SM products (especially the active and combined products) would provide
feedback for the algorithm’s refinement and useful information for research related to scale effect and
scale transformation issues.

Related calibration and validation activities for SMAP have been ongoing, such as the conduction
of SMAPEx [6] and SMAPVEX12 [7] experiments. The validation of the SMAP SM products is of
crucial significance, not only in view of possible applications of these data, but also to provide useful
feedback for the further refinement of the retrieval algorithm. After the release of SMAP products,
several authors [1,8,9] conducted validations of SMAP radiometer and active/passive combined SM
products. However, there is very little literature [10] reporting the evaluation of all three SMAP SM
products. Thus, one of the major objectives of this paper is to validate all three kinds of SM products.

Furthermore, the traditional validation strategies of remote sensing products usually utilize a
single site-based point observation to validate the footprint scale remote sensing products. There is no
doubt that mismatch in the scale introduces large uncertainty in the evaluation [11–14]. Several recent
validation research papers [1,11,12] demonstrate that the average of the multi-point observations can
effectively relieve the uncertainty caused by the scales. Thus, this evaluation utilizes the average of the
distributed ground observation network data to evaluate the SMAP SM products.

The main objective of the present study is to contribute to the evaluation of the available SMAP SM
products, including the active products (SMAP_A), passive products (SMAP_P) and active/passive
combined (SMAP_AP) products, over the cold and arid regions in northwestern China. In this
evaluation, we address two key points. One point is the scale-related issue. At the horizontal
spatial scale, three different resolution SMAP SM products are evaluated using multi-point averaged
ground observations from several nested observation networks [15], distributed in various landscapes,
respectively. At the vertical spatial scale, the averaged value of two depth ground SM measurements
(~2 cm and ~4 cm, or~5 cm and ~10 cm) are used to represent ground reference value. At the temporal
scale, the average value of multiple observations obtained within 1 h of the SMAP transit are used to
represent the ground reference. Another point is the special study area. The evaluation is conducted
in three networks with different climatic regions and land surface types, namely: (1) cold region
covered by alpine meadow; (2) irrigated region covered by man-made oasis farmland; and (3) natural
oasis of arid Gobi desert covered by sparsely distributed vegetation (Populus euphratica, tamarisk, and
others). In addition to the standard error metrics [16] of SMAP SM products, the relative error (RE) is
introduced as an extra evaluation index.

2. Materials and Methods

2.1. Study Area

The Heihe River Basin (HRB) (37.5◦N–43◦N, 97◦E–102◦E) located in northwestern China
(Figure 1a) is used as the study area in this paper. The basin is the second largest inland river
basin in China, which covers various landscapes. The upstream area of the basin is located in the
mountain cyrospheric region of the northeastern Tibet Plateau. Both the permafrost and seasonal



Remote Sens. 2017, 9, 327 3 of 14

frozen soil coexist in the region, and the region is mainly covered by alpine meadow, evergreen forest
and snow. The annual precipitation, which mostly occurs from May to September, is higher than those
at the mid- and down-stream areas; thus, the SM is relatively high. The midstream area is located in
the center of the Hexi corridor which is characterized by an arid climate. The terrain is relatively flat
and is mainly covered by the Gobi desert, man-made oasis, wetland, and so on. The main vegetation
includes crop, grass and salinized meadow. The annual precipitation is small and the SM at the oasis
is mainly supplied by irrigation. The downstream area is located in Ejina in Inner Mongolia where the
climate is rather arid with an annual precipitation of less than 50 mm. Most parts of the region are
covered by the Gobi desert. Populus euphratica and tamarisk are sparsely distributed near the river
bank, forming a natural oasis.

2.2. Ground Observation Networks and Datasets

Three SM observation networks [15,17] are respectively established in the up-, middle- and
down-stream areas during HiWATER experiments [18]. In particular, the up-stream network consists
of multi-scale observations, including automatic weather stations (AWSs) and wireless sensor networks
(WSN). The observation networks [15] provide a very rich dataset for the SMAP SM products validation.
Thus, the utilization of data over HRB in this evaluation can provide more comprehensive evaluation
results over multiple climatic regions and land surface types.

Remote Sens. 2017, 9, 327  3 of 14 

 

cyrospheric region of the northeastern Tibet Plateau. Both the permafrost and seasonal frozen soil 
coexist in the region, and the region is mainly covered by alpine meadow, evergreen forest and snow. 
The annual precipitation, which mostly occurs from May to September, is higher than those at the 
mid- and down-stream areas; thus, the SM is relatively high. The midstream area is located in the 
center of the Hexi corridor which is characterized by an arid climate. The terrain is relatively flat and 
is mainly covered by the Gobi desert, man-made oasis, wetland, and so on. The main vegetation 
includes crop, grass and salinized meadow. The annual precipitation is small and the SM at the oasis 
is mainly supplied by irrigation. The downstream area is located in Ejina in Inner Mongolia where 
the climate is rather arid with an annual precipitation of less than 50 mm. Most parts of the region 
are covered by the Gobi desert. Populus euphratica and tamarisk are sparsely distributed near the river 
bank, forming a natural oasis. 

 
Figure 1. Location and land use map [19] of the study area (a), and the ground soil moisture (SM) 
observation networks at upstream (b), midstream (c) and downstream (d), respectively.  

2.2. Ground Observation Networks and Datasets 

Three SM observation networks [15,17] are respectively established in the up-, middle- and 
down-stream areas during HiWATER experiments [18]. In particular, the up-stream network consists 
of multi-scale observations, including automatic weather stations (AWSs) and wireless sensor 
networks (WSN). The observation networks [15] provide a very rich dataset for the SMAP SM 
products validation. Thus, the utilization of data over HRB in this evaluation can provide more 
comprehensive evaluation results over multiple climatic regions and land surface types. 

The upstream network (Figure 1b) has been set up in the Babaohe sub-basin of the upstream 
area since 2013. The network is a nested multi-scale network consisting of a hydro-meteorological 

Figure 1. Location and land use map [19] of the study area (a), and the ground soil moisture (SM)
observation networks at upstream (b), midstream (c) and downstream (d), respectively.



Remote Sens. 2017, 9, 327 4 of 14

The upstream network (Figure 1b) has been set up in the Babaohe sub-basin of the upstream
area since 2013. The network is a nested multi-scale network consisting of a hydro-meteorological
network (HMN) and a wireless sensor network (WSN), covering an area of around 4500 km2, which
covers about 4 SMAP_P pixels. The HMN encompasses five automatic weather stations (AWSs) which
can provide multi-layer (2 cm, 4 cm, 10 cm, 20 cm, . . . , 320 cm) SM measurements, as well as other
meteorological elements, e.g., precipitation. The WSN encompasses about 40 measuring nodes that
provide profile SM measurements. In this paper, we mainly use the surface SM measurements (2 cm
and 4 cm) of WSN and precipitation observations of AWSs to validate the SMAP SM products.

The midstream network was setup inside and around the artificial oasis area in the midstream
area. Three AWSs were instrumented in the network which can provide data for two SMAP_P pixel
product validation (Figure 1c). The Mid_DM_SS_AWS and Mid_HRB_RSS_AWS were located inside
the oasis, which were covered by maize vegetation, and the Mid_HZZ_AWS was located outside the
oasis, which was covered by the desert. All the AWSs provide SM at the depth of 5, 10, 20 cm, etc.
In addition, precipitation observations of the AWSs are applied in this paper to assist the analysis of
SM variations. The ~5 cm and ~10 cm SM measurements are used to validate the SMAP SM products.

The downstream observation network (Figure 1d) is deployed to measure water consumption of
the natural oasis ecosystem. The observation network is composed of six AWSs distributed in several
landscape types, including bare soils (2), forest (3) and desert (1). All these stations provide time serial
SM measurements at ~5 cm and ~10 cm for the validation the SMAP SM products at one passive
pixel scale.

2.3. SMAP SM Products

The SMAP satellite carries an L-band radar and an L-band radiometer to monitor the Earth’s
surface at sun-synchronous times: 06:00 (descending) and 18:00 (ascending) [20]. The radiometer
and radar began to provide SM products on the 31 March and 13 April 2015, respectively. Because
of the mechanical failure of the radar, the SMAP stopped providing active microwave products on
7 July 2015. All the SMAP products can be freely downloaded from the website of NSIDC (https:
//nsidc.org/data/smap/smap-data.html). Three L3 level SM products, including radar SM product
(L3_SM_A), radiometer SM product (L3_SM_P) and active/passive combined SM product (L3_SM_AP),
are chosen for the evaluation in this research. The spatial resolutions of the three products are 3 km,
36 km and 9 km, respectively. The L3_SM_A and L3_SM_AP products cover 13 April–7 July and
the L3_SM_P covers 2 April–31 December 2015. All the L3 products are the daily composite of the
level 2 granules.

The baseline retrieval algorithm of L3_SM_A product inverts a forward scattering model using
a time series data-cube approach [21,22]. The Numerical Maxwell Model in 3 Dimensions [23,24]
is adopted as the benchmark model for the bare surface. A “discrete scattering” approximation
approach [25,26] is utilized for the non-woody vegetated surface, and a layered scattering geometry and
vegetation model [27] are applied for the woody vegetated surface. Three channels radar backscattering
coefficients, HH, HV and VV, as well as auxiliary data (including DEM, land cover class and crop type,
etc.), are applied to simultaneously estimate soil permittivity (equivalent to SM), surface roughness and
vegetation water content (VWC). Furthermore, the SMAP adopts several other optional algorithms,
including change detection [28,29], snapshot algorithm [30], etc. In this paper, only the baseline SM
product is evaluated.

The L3_SM_P product is a daily global composite of the L2_SM_P SM product that is produced
by a single channel algorithm [31,32]. The algorithm utilizes the horizontally-polarized brightness
temperature (TB) observations to estimate SM based on a zero-order radiative transfer model known
as the τ-ω model [33]. The SM retrieval process includes five basic steps, including normalizing
TB to emissivity, removing the vegetation effects, accounting for the soil surface roughness effects,
converting emissivity to soil permittivity, and converting soil permittivity to SM. The retrieval process
can be seen in detail in the algorithm document of the SMAP SM product [31] and related references.

https://nsidc.org/data/smap/smap-data.html
https://nsidc.org/data/smap/smap-data.html
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The L3_SM_AP is a daily global composite of L2_SM_AP product which is based on the merger of
the SMAP radiometer and radar instruments product at two discrete grid resolutions, 36 km and 3 km,
respectively [34–36]. The L2_SM_AP baseline algorithm is essentially focused on the disaggregation of
the radiometer TB, based on the radar backscattering spatial patterns within the radiometer footprint
that are inferred from the radar measurements [35]. Once the TB is disaggregated to 9 km, the L2_SM_P
inversion algorithm is applied with ancillary data to produce the L2_SM_AP product.

2.4. Data Processing and Evaluation Method

The SMAP SM products possess three different spatial resolutions and the three resolution grids
are well-nested, as shown in Figure 2. The spatial averaging has been recognized to be able to reduce
the noise of site observations [11,12], as well as to enhance the representativeness of the ground
observations; thus, the site-average values at different scales and conditions are applied to evaluate
the SMAP SM products.
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Figure 2. Schematic diagram of multi-scale nested Soil Moisture Active Passive (SMAP) SM products.

More specifically, for the upstream area of HRB, because of the same land surface coverage
(alpine meadow), the evaluation of the SMAP_P product is conducted on the whole network scale
and pixel scale, respectively, and the evaluations of SMAP_A and SMAP_AP products are conducted
on the whole network scale because the ground sites are rather sparsely distributed (relative to the
high resolution of the SMAP_A and SMAP_AP products) and because of the very limited products
that are available. An evaluation of the whole network involves comparing the average value of all
measurements of the whole network with the average value of the corresponding SMAP SM products,
and that on the pixel scale means comparing the average value of measurements that are within a
certain SMAP pixel. Taking Figure 2 as an example, the average value of a and b sites is used to validate
a certain SMAP_A, and that of a, b, ..., f is used to validate a certain SMAP_P SM product.

For the mid- and down-stream areas of HRB, the ground surfaces are covered by several kinds
of landscapes, including: the Gobi desert, non-vegetated cropland, cropland and woodland. The
downstream network can provide evaluation data for one SMA_P pixel and several SMAP_A and
SMAP_AP pixels. In particular, there may be only one site within a certain SMAP_A pixel over
mid-stream area network. Thus, the evaluations are conducted on the whole network scale of mid- and
down-steam areas, respectively, without considering the differences in surface types. Moreover, the
sites that fall into different surface types are used to represent the corresponding ground observations.
For example, a site that falls into the Gobi desert, e.g., Mid_HZZ_AWS in Figure 1c, is considered as a
bare soil observation in mid-stream.
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To quantitatively evaluate the SMAP SM products, several validation indices, including RMSE,
the mean bias, the unbiased RMSE (ubRMSE), and correlation coefficient (R), are used. The definitions
of the validation indices are as follows [16]:

RMSE =

√
E[
(

θest − θre f

)2
] (1)

bias = E[θest]− E
[
θre f

]
(2)

ubRMSE =

√
E[((θest − E[θest])−

(
θre f − E

[
θre f

])
)2] (3)

R = E[(θest − E[θest])
(

θre f − E
[
θre f

])
]/
(

σest·σre f

)
(4)

Moreover, another commonly used index, relative error (RE), is added to assist the SMAP SM
products’ evaluation:

RE = E

[
abs(θest − θre f )

θre f

]
∗ 100% (5)

In the above equations: θest and θre f represent the SMAP and ground observed SM values,
respectively; E[·] and abs are the expectation and absolute value operators, respectively; σest and σre f
are the standard deviations of the SMAP and ground observed SM, respectively.

3. Results

3.1. Passive SM Product

Figures 3–5 show the evaluation results of SMAP_P SM product at the up-, mid- and down-stream
areas of HRB, respectively. In the upstream area of the HRB, a total of around 45 ground sites
(AWSs + WSNs) are respectively located in four SMAP radiometer pixels. Due to the entire region
being covered by the same land surface type (alpine meadows), two evaluation strategies are used,
as described in Section 2.4. As can be seen from Figure 3a, the temporal evolutions of ground
measurement and SMAP_P SM product show significant variation. Referring to the precipitation data,
both ground measurements and SMAP_P SM product are able to capture the precipitation events and
the SM variation trends. However, ground measurements at different footprints show rather large
differences, but SMAP_P SM product shows relatively small differences. Additionally, the SMAP_P
SM product shows underestimation against the ground measurements (Figure 3a,b).

Figure 4 shows the evaluation results of SMAP_P SM product over the midstream area of HRB.
Two comparisons are conducted: (1) the measurements from the two sites located within the oasis
are averaged (Ground_Oasis) to compare to the oasis SMAP_P SM product (SMAP_P_Oasis), and the
measurements from site located Gobi desert (Ground_Bare) are compared to the bare surface SMAP_P
SM product (SMAP_P_Bare); (2) the average values of all the ground measurements (Ground_All)
in the whole network region are compared to the average SMAP_P SM product (SMAP_All). Both
SMAP_P SM product and ground measurements show consistent variation trends to the precipitation.
SMAP underestimates the SM over the oasis and overestimates those over the bare soil. However, the
averaged SMAP_P SM product over the network performs a better estimation of SM.

Figure 5 shows the evaluation results of the downstream network where the land surface is
covered by bare soils and woody vegetation. One SMAP radiometer footprint covers the entire
downstream network. Large differences between the ground measurements and SMAP_P SM product
are observed. However, the SMAP_P SM product is more closed to the SM measurements over bare
soil. Both the SMAP and ground measurements possess similar temporal evolution.
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River Basin (HRB) with (a) the temporal evolution and (b) the scatterplot of ground and SMAP product.
Ground_i, SMAP_P_i (i = 1, 2, 3, 4) represent ground reference and SMAP SM product over a certain
radiometer footprint. Ground_All and SMAP_P_All represent the average value of ground reference
and SMAP_P of the whole network, respectively.

Figure 4. The evaluation results of SMAP_P SM product over the midstream area network of HRB
with (a) the temporal evolution and (b) the scatterplot of ground and SMAP product. The Ground_All
and SMAP_P_All represent the average values of ground reference and SMAP_P of the whole network,
respectively. Ground_Bare, SMAP_P_Bare, Ground_Oasis and SMAP_P_Oasis represent ground and
SMAP values over bare and oasis soils, respectively.

Table 1 lists the error metrics of the SMAP_P SM product over the entire HRB network. It shows
various performance associated to climate region or land surface types. Throughout the whole river
basin, SMAP_P SM product underestimates the SM over vegetated (woody and non-woody) surface,
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especially over the woody land surface with the bias being larger than 0.14 m3/m3, and overestimates
the SM over bare soil. Due to the presence of the biases, the SMAP_P SM product shows a relatively
large RMSE over most climatic regions and land surface types. However, it can achieve a favorable
accuracy after removing the bias with the ubRMSE smaller than 0.04 m3/m3 (the SMAP mission target
accuracy) over most areas of the HRB, except for that over the upstream area. The unsatisfactory
performance over the upstream area of HRB may be caused by the impact of soil freezing and thawing
process over the cold climate region [1]. Although it shows relatively small RMSE and ubRMSE values
over the midstream and downstream areas, the RE are rather large, especially over bare soils. This is
because the SM values are rather small over the bare soils. Overall, from the error matrices defined
in [16], the SMAP_P SM product possesses a relatively favorable performance over most parts of HRB,
but from the RE index, one should pay sufficient attention to when these products are used.Remote Sens. 2017, 9, 327  8 of 14 
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Figure 5. The evaluation results of SMAP_P SM product over the downstream area network of HRB
with (a) The temporal evolution and (b) the scatterplot of ground and SMAP product. The Ground_All
and SMAP_P_All represent the average values of ground reference and SMAP_P of the whole network,
respectively. Ground_Bare and Ground_Woody represent ground values over bare and woodland soils,
respectively, SMAP_P represents the values of SMAP product of only-one pixel.

Table 1. Performance metrics of SMAP_P SM product over HRB, in which N is the sample number.
At the surface fields, All_Ave represents all the ground measurement and SMAP_P SM product are
averaged and compared. Pixel, Oasis, Bare and Woody mean the ground measurements within a
certain pixel with a specific surface type that are applied to validate the SMAP_P product at pixel scale.

Networks Surface Bias (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) RE (%) R (−) N

Upstream All 0.087 0.092 0.032 31.28 0.552 93
Pixel −0.087 0.098 0.045 29.17 0.498 279

Middle
stream

All −0.007 0.028 0.027 3.56 0.783 110
Oasis −0.045 0.062 0.043 26.83 0.603 110
Bare 0.055 0.06 0.023 275.6 0.84 110

Down
stream

All −0.073 0.08 0.032 50.06 0.576 110
Woody −0.142 0.147 0.039 66.05 0.391 110

Bare 0.036 0.043 0.024 168.6 0.789 110
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3.2. Active SM Product

Due to the short duration of SMAP radar sensor and the lack of SMAP coverage over HRB,
the amount of SMAP_A SM product over HRB is very small, especially at the upstream of the
basin. Overall, the active SM product shows an unsatisfactory estimation of SM. Figure 6 shows the
comparison of SMAP_A SM product and the ground measurements. The SMs over the upstream of
HRB are significantly underestimated, and those over bare soils over mid- and down-stream areas
are overestimated. These results are similar to those of the SMAP_P SM product. From Table 2, all
performance metrics show that the active SM product over most climatic and surface types in HRB
presents an unsatisfactory accuracy. This observation implies that the present version of SMAP_A SM
product is hardly directly applied in this region.Remote Sens. 2017, 9, 327  9 of 14 
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Table 2. Performance metrics of SMAP_A SM product over HRB. With which N is the sample number.
At the surface fields, All_Ave represents all the ground measurement and the SMAP_A SM products
are averaged and compared; Oasis, Bare and Woody mean the ground measurements within a certain
SMAP_A pixel with a specific surface type are applied to validate the SMAP_A products at pixel scale.

Networks Surface Bias (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) RE (%) R (−) N

Upstream All_Ave −0.116 0.17 0.124 30.7 0.214 10

Middle
stream

All_Ave 0.093 0.111 0.061 90.55 0.783 27
Oasis 0.01 0.095 0.095 9.86 0.636 31
Bare 0.081 0.105 0.067 222.9 0.682 27

Down
stream

All_Ave −0.021 0.033 0.025 17.82 0.28 28
Woody −0.071 0.086 0.048 37.28 0.345 33

Bare 0.028 0.033 0.017 84.86 0.755 28

3.3. Active/Passive Combined SM Product

The evaluation results of SMAP_AP SM product are presented in Figure 7 and Table 3. The overall
performance of SMAP_AP SM product is better than that of the active one, and worse than that of
the passive one. Except for the bare surface at the downstream, the SMAP_AP SM product shows
smaller RE than the active and passive product. As is the case with the active and passive products,
the SMAP_AP SM product significantly underestimates the SM at the upstream area. Overestimation
of SM can be found over bare soil at the mid- and downstream areas. In contrast, it is found that the
SMA_AP SM product shows a slight overestimation over the woody surface at the downstream area.
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Table 3. Performance metrics of SMAP_AP SM product over HRB, in which N is the sample number.
At the surface fields, All_Ave represents that all the ground measurement and SMAP_AP SM product
are averaged and compared; Oasis, Bare and Woody mean the ground measurements within a
certain SMAP_AP pixel with a specific surface type are applied to validate the SMAP_AP products at
pixel scale.

Networks Surface Bias (m3/m3) RMSE (m3/m3) ubRMSE (m3/m3) RE (%) R (−) N

Upstream All_Ave −0.203 0.213 0.067 47.6 0.385 18

Middle
stream

All_Ave 0.029 0.043 0.05 28 0.806 37
Oasis 0.017 0.057 0.054 8.6 0.833 37
Bare 0.03 0.038 0.023 34.2 0.905 67

Down
stream

All_Ave 0.029 0.808 0.075 43.83 0.408 38
Woody 0.034 0.075 0.067 38.86 0.396 38

Bare 0.027 0.095 0.091 97.72 0.402 38

4. Discussion

In this paper, three different scale SMAP SM products are evaluated using the ground observation
networks distributed in HRB, and the corresponding results are shown in Section 3. In this section, an
extended discussion is conducted to give remarks on the overall performance of SMAP SM products,
as well as to provide suggestions for the algorithm’s improvement.

Regarding the evaluating metrics, the performance metrics defined by [16] and RE are applied
to assess the performances of SMAP products in this research. As shown in Tables 1–3, several error
indices, e.g., RMSE, ubRMSE, show very satisfactory accuracies, especially over the bare soil surface,
even better than the SMAP mission target accuracy of 0.04 m3/m3. Nevertheless, the RE shows rather
large values because, over bare soil at arid regions of HRB, SM values are rather small, and the SMAP
estimated SM values are relatively small. However, they are not small enough compared to the ground
reference values. Under this condition, the RMSE and ubRMSE present very small values, but the
RE presents large values. Thus, only the performance metrics cannot fully describe the performance
of SMAP SM products. From this point, not only the standard performance metrics, but also the RE
should be carefully considered for the comprehensive evaluation of SMAP SM products. This point
should also be addressed in evaluation issues of many other remote sensing products.

For the consideration of various climatic regions and land surface types, this research
systematically evaluates the SMAP SM products over several landscapes distributed in cold and
arid regions of HRB because the numbers and densities of the ground observation sites in each
network varies. Even within a certain network, the land surface presents several different landscapes.
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Additionally, the SMAP provides three different spatial scale SM products. Meanwhile, the mixed
pixel issue objectively exists in the remote sensing data. This issue also influences the application of
SM products in various disciplines. Thus, the choice of evaluation strategy is very important. The
authors of [1] utilized the averaged SM values of the whole ground network, without considering the
difference in surface covers, to represent the ground truth, and used the averaged values of all SMAP
SM products covering the whole network to represent the SMAP estimated values. The two sets of
averaged values are compared to evaluate the performance of the SMAP_P SM product. However, the
evaluation presented in this paper utilizes several strategies to compare the estimated and ground
reference values. The results of this evaluation show significant performance differences in SMAP
SM products over various land surfaces, e.g., the performances of SMAP SM products over bare soil
are better than those over vegetated soil, and much better than those over the woodland surface.
The averaging of all ground measurements without considering surface difference may make the
result worse under some conditions, but it also makes the result a little better under other conditions.
However, the discrimination of land surface may provide more useful information about the SMAP
SM products performance, and extend their application.

The radio frequency interference (RFI) on L-band microwave signature has been recognized as
the main challenging issue in East Asia, which may be an important error source of SMAP products
over northwest China. However, this issue has been optimally controlled and mitigated [37,38]. Here,
we mainly discuss possible error sources in the SM retrieval algorithm related to climatic region and
land surface characteristics. The overall performance of SMAP SM products over HRB possess the
following characteristics:

• The SMAP SM products over most parts of HRB present relatively satisfactory spatial-temporal
variation, especially because they can capture the typical precipitation events. However, they
present relatively large RE.

• The performance of the passive SM product is the best. The active SM product is worse than the
passive and combined products, which is consistent with the findings of [10].

• All SMAP SM products were found to perform a slightly better over the middle area than those
over the up- and down areas of HRB.

• Better performance of all SMAP SM products can be observed over bare soils compared with
vegetated soils.

As described in Section 3, all of the three SMAP SM products show overestimation over bare
soils and underestimation over vegetated and frozen soils. These observations may be attributed to
the climate and land surface characteristics. The surface of the study area is characterized by cold
and arid regions. Over the cold region, the liquid and solid water coexist in the soil and possess
different permittivity characters, but the present algorithm is insufficient in the frozen soil permittivity
modeling, resulting in the underestimation of SM. Over the arid region, the soil is so dry that the
microwave signal at the L-band penetrates larger soil depth and senses the volume scattering of the
soil. This leads to the overestimation of SM. The underestimation of SM over the vegetated surface is
caused by the effects of vegetation canopy on the microwave signal. This point is the key factor that
makes the estimation of SMAP weak over the downstream area.

Additionally, the weak forward modeling and inversion strategies may be another important
factor for the unsatisfied performance of the present SMAP SM products. For the passive SM product,
this evaluation’s results are close to the finding of [1], but SMAP_P SM results in a larger RMSE and
ubRMSE over HRB. Although the algorithm is relatively mature and has been validated previously,
there may be the possibility of improvement via adding vertically polarized TB in the future SMAP SM
products generation. For the active SM products, errors may have originated because the sensitivity
of backscattering to SM is less than to surface roughness [39], as well as from the uncertainty in the
time series algorithm. Parameterization and estimation soil surface roughness from radar observation
before SM estimation may be a promising approach to improve SMAP_A SM inversion [40]. The error
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in SMAP_AP SM products may be caused by: (1) the uncertainties in active and passive observations,
respectively; and (2) the uncertainties caused by the scale issue when merging the radar and radiometer
observations [35,36,41,42]. Development and improvement of the more robust merging algorithm,
considering the scale effects, may improve the accuracy of SMAP_AP SM products.

5. Conclusions

The validation of SMAP SM products is crucial for the application of the products and refinement
of the retrieval algorithm. This study presents an evaluation of the SMAP SM products by using the
ground network data over the HRB in cold and arid regions of northwestern China, which offers an
insight into the SMAP SM products’ application in the region, and also provides suggestions for the
refinement of the retrieval algorithm. SMAP_A and SMAP_AP products are available at a very limited
period, but they can be used in scale-related research, and the present evaluation can help to provide
feedback for the improvement of the current retrieval algorithm.

The results show that the SMAP SM products over most parts of HRB present
relatively satisfactory spatial-temporal variation, especially because they can capture the typical
precipitation events.

Relatively, the performance of the passive SM products is the best, and the active SM products
were worse than the two others.

All SMAP SM products present a little better over the midstream area than those over the cold
(upstream) and extreme arid (downstream) areas of HRB. Better performance of all SMAP SM products
can be observed over bare soils than vegetated soils. The vegetation effects on SM inversion have been
fully recognized. The unsatisfactory performance of SMAP SM products over the cold region may be
caused by the freezing and thawing cycle. This indicates that the future SMAP SM retrieval algorithm
should focus on the vegetation effects of the freezing and thawing cycle.
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