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Abstract: Assessing the quality of a reconstructed hyperspectral image (HSI) is of significance
for restoration and super-resolution. Current image quality assessment methods such as peak
signal-noise-ratio require the availability of pristine reference image, which is often not available
in reality. In this paper, we propose a no-reference hyperspectral image quality assessment method
based on quality-sensitive features extraction. Difference of statistical properties between pristine
and distorted HSIs is analyzed in both spectral and spatial domains, then multiple statistics features
that are sensitive to image quality are extracted. By combining all these statistics features, we
learn a multivariate Gaussian (MVG) model as benchmark from the pristine hyperspectral datasets.
In order to assess the quality of a reconstructed HSI, we partition it into different local blocks and
fit a MVG model on each block. A modified Bhattacharyya distance between the MVG model
of each reconstructed HSI block and the benchmark MVG model is computed to measure the
quality. The final quality score is obtained by average pooling over all the blocks. We assess
five state-of-the-art super-resolution methods on Airborne Visible Infrared Imaging Spectrometer
(AVIRIS) and Hyperspec-VNIR-C (HyperspecVC) data using our proposed method. It is verified
that the proposed quality score is consistent with current reference-based assessment indices,
which demonstrates the effectiveness and potential of the proposed no-reference image quality
assessment method.

Keywords: image assessment; no reference; hyperspectral; statistics feature; multivariate Gaussian

1. Introduction

Hyperspectral image (HSI) with rich spatial and spectral information of the scene is useful in
many fields such as mineral exploitation, agriculture, and environment management [1–3]. To improve
the quality of the acquired HSI due to limited spatial resolution, super-resolution is an important
enhancement technique [4–12]. In order to evaluate the reconstructed high resolution HSI, conventional
strategy is to degrade the original data into a coarser resolution by down-sampling. Then, the
original data are used as reference image and compared with the reconstructed high resolution image.
The disadvantage is that as the invariance of the super-resolution performance to scale changes cannot
be guaranteed, the performance of super-resolution method on the original data may not be as good as
on the down-sampled data [13,14]. While it is naturally better to assess the super-resolution method on
the original data rather than on the down-sampled data, reference image is not available for assessment
if the super-resolution is applied on the original data.

To our knowledge, there is no published work on no-reference quality assessment for the
reconstruction of HSI. Alparone et al. proposed a no-reference pansharpening assessment method
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in [14] where high resolution panchromatic image was needed to assess the reconstructed multispectral
image. This method is not applicable to cases where the panchromatic image is not available. There
are some other no-reference image assessment methods designed for color images [15–17], but they
cannot be applied to hyperspectral image directly. These methods can only assess spatial quality and
give quality scores which reflect human’s subjective visual sense. Furthermore, they cannot deal with
spectral fidelity, which is important for the interpretation of HSI.

In this study, we propose a no-reference quality assessment method for HSI. HSI possesses some
statistical properties that are sensitive to distortion, deviations of these statistics from their regular
counterparts reflect the extent of distortion. These statistics can be extracted as quality-sensitive
features. By analyzing the statistical properties of the pristine and distorted HSIs, we extract multiple
quality-sensitive features in both spectral and spatial domains. After integrating all these features,
we can learn a multivariate Gaussian model (MVG) of these features from the pristine hyperspectral
training dataset. The learned MVG is treated as a benchmark to compare with the MVG model fitted
on the reconstructed HSI. Distance between the two MVG models is computed as quality measure
with high value representing low quality. To apply this method, we partition the reconstructed HSI
into different local blocks, and measure the image quality for each of the local blocks. The final quality
score of the reconstructed HSI is obtained by average pooling.

We consider four contributions in this paper. Firstly, we propose the first no-reference assessment
method for hyperspectral image. Our method does not require any reference image or down-sampling
the original image, which is well-suited for practical applications. Secondly, in order to exploit
both the spectral and spatial information for quality assessment, other than the off-the-shelf spatial
features, we analyze the statistical properties in the spectral domain, design quality-sensitive features
for the spectral domain, and integrate them with the spatial features to form a joint spectral-spatial
quality-sensitive feature vector. Thirdly, compared with current color image assessment methods, our
method can also blindly assess the spectral fidelity. Finally, we verify the potential of our method as
a HSI assessment tool by testing it on several real HSIs, which are reconstructed by state-of-the-art
super-resolution methods.

The remainder of this paper is organized as follows. In Section 2, we analyze the statistical
properties of HSI, and extract quality-sensitive features. The methodology of computing the quality
score is given in Section 3. We present the experimental results and give discussions about the
experimental results in Sections 4 and 5, respectively. We make the conclusions in Section 6.

2. Quality-Sensitive Statistics Features

An image possesses statistics that would deviate from their regular counterparts due to distortion,
extracting these statistics as features and measuring their deviations makes it possible to assess HSI
without any reference [17]. Previous quality-sensitive statistics features designed for color images
mainly focus on the spatial domain [18–22]. In order to exploit the spectral correlation of a HSI, we
also need to extract quality-sensitive features from the spectral domain. In this section, we firstly
analyze the statistical properties in the spectral domain and design a quality-sensitive spectral feature
extraction method. Then, we demonstrate that off-the-shelf spatial features are effective for HSI. By
integrating our proposed spectral features and the spatial features, we form a joint spectral-spatial
quality-sensitive feature vector.

2.1. Statistics Features in Spectral Domain

In this sub-section, spectral quality-sensitive features are proposed after analyzing the statistics
in the spectral domain. We observe that locally normalized spectra of a pristine HSI would follow a
Gaussian distribution, while those of distorted HSIs would deviate. Given a pristine HSI I ∈ RM×N×L,
we first apply local normalization to a spectrum s
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s(λ) =
s(λ)− µ(λ)

σ(λ) + C
, (1)

where λ = 1, 2, ..., L is the spectral coordinate, and C is a constant to stabilize the normalization when
the denominator tends to zero. In our experiment, C is set to 1. µ(λ) and σ(λ) are, respectively, local
mean and standard variance:

µ(λ) =
K

∑
k=−K

wks(λ + k), (2)

σ(λ) =

√√√√ K

∑
k=−K

wk[s(λ + k)− µ(λ)]2, (3)

where w = {wk|k = −K,−K + 1, ..., K} is a Gaussian weighting window. K determines the width
of the window. The local normalization removes the local mean displacements and normalize the
local variance, thus has a decorrelation effect. The locally normalized spectrum would be more
homogeneous than the original spectrum. After the local normalization, the spectra of a pristine HSI
would approximately have zero mean and unit variance.

We crop a sub-image from AVIRIS data [23], and then apply the above local normalization to
the spectrum, as shown in Figure 1. Noise and blurring are common effects caused by distortion in
HSI [24–26], so we add noise to the pristine HSI or blur it to simulate distorted HSIs. Figure 2 shows
the sub-images added with different level of noise (Gaussian noise) and blurring (average filtering).
We plot the histograms of all the spectra in the sub-image in Figure 3. It is observed that distribution of
the locally normalized spectra of a pristine HSI follows a Gaussian distribution with zero mean, while
the locally normalized spectra of distorted HSIs deviate. There are two interesting findings in Figure 3.
Firstly, each type of distortion modifies the distribution in its own way. For example, with noise added,
the distribution curve becomes flat and tends to be a uniform distribution. When the HSI is blurred, the
distribution curve becomes thin and tends to be a Laplacian distribution. Secondly, heavier distortion
causes greater modification of the distribution. Noise with standard variance σ = 0.20 makes the
distribution curve much flatter than noise with σ = 0.05, and a 5 × 5 blurring kernel generates a
narrower bell-shaped curve than a 3 × 3 kernel.

Therefore, some statistical properties in the spectral domain can be modified by the distortion, and
measuring the changes of these statistics makes it possible to assess the spectral distortion. Generalized
Gaussian distribution (GGD) can be used to capture the statistical changes between the pristine and
distorted HSIs. The function of a GGD with zero mean is

f (x; α, β, σ2) =
α

2βΓ(1/α)
exp[−( |x|

β
)

α

], (4)

where

β = σ

√
Γ(1/α)

Γ(3/α)
, (5)

Γ(a) =
∫ ∞

0
ta−1e−tdt a > 0, (6)

where α and β represent shape parameter and scale parameter, respectively. σ is standard variance.
The GGD model can describe broadly the statistics of multiple distributions. The GGD model reduces
to a Laplacian distribution and a Gaussian distribution when α = 1 and α = 2. It tends to a uniform
distribution when α approaches infinity. When distortion is introduced, the locally normalized spectra
would deviate from Gaussian distribution and tend to a uniform-like or a Laplacian-like distribution,
all of them can be captured by a GGD model. The statistics of a GGD model is described by its model
parameters, so we select the parameters [α, β] as the spectral quality-sensitive features, which can be
estimated using moment-matching algorithm [17].
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Figure 2. Distorted versions of the sub-image: (a) distorted by Gaussian noise with standard variance
σ = 0.05; (b) distorted by Gaussian noise with standard variance σ = 0.20; (c) distorted by blurring
with 3 × 3 average filtering kernel; and (d) distorted by blurring with 5 × 5 average filtering kernel.
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Figure 3. Histograms of locally normalized spectra of pristine hyperspectral image (HSI) and
distorted HSIs.

To show that our extracted feature is sensitive to image quality, we randomly crop 200 pristine
sub-images of size 64 × 64 × 224 from AVIRIS dataset [23]. Then, we introduce different types of
distortions to each sub-image. After applying the local normalization on the spectra of each sub-image,
we fit the histogram of spectra in each sub-image with GGD model. The extracted features [α, β] are
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plotted in Figure 4. As shown in Figure 4, features belonging to the same distortion form a cluster. It is
easy to separate different distortions in the feature space, which demonstrates the sensitivity of the
extracted feature to image quality.
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Figure 4. (a) The AVIRIS data of different scenes, 200 sub-images are randomly cropped from them;
and (b) spectral quality-sensitive features visualization. Each point represents feature of a sub-image,
each color represents a type of distortion.

2.2. Statistics Features in Spatial Domain

Image quality distortion can be reflected in local image structures [17], image gradient [19], and
multi-scale and multi-orientation decomposition [20]. To exploit these information, we adopt multiple
types of spatial features (originally proposed for color images [27]) and verify their effectiveness on
HSI in this sub-section.

2.2.1. Statistics of Panchromatic Image

A hyperspectral image often contains large number of continuous spectral bands with narrow
bandwidth, extracting the spatial features band-by-band would be time-consuming and result in huge
number of redundant features. In order to extract features from the spatial domain in a fast and simple
way, we analyze the statistics and extract the spatial features on a synthesized panchromatic image,
which is simulated by [27]

P = wrIr + wgIg + wbIb, (7)

where Ir, Ig, and Ib are spectral bands of the HSI with band centers corresponding to the red, green, and
blue bands. In the experiment, the weights wr, wg, and wb are set to 0.06, 0.63, and 0.27 as suggested
in [27]. The simulated panchromatic image of the HSI in Figure 1 is shown in Figure 5. The structural
and textural information contained in the panchromatic image would be exploited in extracting the
spatial quality-sensitive features. Similar to the spectral domain, we apply the local normalization to
the simulated panchromatic image

P(i, j) =
P(i, j)− µ(i, j)

σ(i, j) + C
, (8)

where i and j are the spatial coordinates, and µ(i, j) and σ(i, j) are local mean and standard variance,
respectively, computed by [17]
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µ(i, j) =
S

∑
s=−S

T

∑
t=−T

ws,tP(i + s, j + t), (9)

σ(i, j) =

√√√√ S

∑
s=−S

T

∑
t=−T

ws,t[P(i + s, j + t)− µ(i, j)]2, (10)

where w = {ws,t|s = −S, ..., S, t = −T, ..., T} is the Gaussian weighting window, and the window size
is determined by S and T. After local normalization, the value of most pixels would be decorrelated
and close to zero, the locally normalized result exhibits a homogeneous appearance with a few residual
edges, as shown in Figure 6a. In Figure 6b, we present the histograms of the locally normalized
panchromatic images simulated from pristine and distorted HSIs. It has been observed that the locally
normalized panchromatic image follows a Gaussian distribution with zero mean, while it deviates
when distortion exists [17,27]. The pattern of curves in Figure 6b is similar to Figure 3, and the statistics
of the panchromatic image is modified by distortions in a similar way as what has been discovered
in the spectral domain. We also use the GGD model to measure the difference of statistics between
the pristine and distorted HSIs. The shape parameter and scale parameter of GGD model are used as
spatial quality-sensitive features.
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2.2.2. Statistics of Texture

The quality of image can also be revealed by the quality of texture which should be exploited for
the quality assessment. Log-Gabor filters decompose an image in multi-scales and multi-orientations,
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thus can capture textual information. The textures of a HSI are captured in the panchromatic image, so
we apply Log-Gabor filters to the simulated panchromatic image. The Log-Gabor filter is expressed
as [27]

G(ω, θ) = exp(− (log(ω/ω0))
2

2σ2
r

) · exp(−
(θ − θj)

2

2σ2
θ

), (11)

where θj = jπ/J, j = {0, 1, ..., J − 1} is orientation; J is the number of orientations; ω0 is center
frequency; and σr and σθ determine radial bandwidth and angular bandwidth of the filter, respectively.
Applying Log-Gabor filters with N center frequencies and J orientations to the simulated panchromatic
image would generate 2NJ response maps

{
(en,j, on,j)

∣∣n = 0, ..., N − 1, j = 0, ..., J − 1}, where en,j and
on,j represent the real part and the imaginary part of the response, respectively.

In Figure 7a, we present a response map o1,3 (N = 3, J = 4) as an example. It is shown that
texture and edges of the panchromatic image are extracted by the Log-Gabor filter. In order to analyze
the statistical difference of the Log-Gabor filtering response between the pristine and the distorted
HSIs, we take the response map o1,3 as an example and plot the histograms of o1,3 under different
distortions in Figure 7b. It is clear that different distortions lead to different distributions of the
Log-Gabor filtering response, the distribution of Log-Gabor response can be used as an indicator of
distortion. We also use the GGD model to describe the distribution of the Log-Gabor response en,j and
on,j, the shape parameter and scale parameter of the fitted GGD model form another type of spatial
quality-sensitive features.
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In order to further exploit the texture information, we also analyze the statistics of directional
gradient of the Log-Gabor filtering response map. The vertical gradient of o1,3 is shown in Figure 8a.
The histograms of the vertical gradient of o1,3 under different distortions are given in Figure 8b.
The distribution of the directional gradient is modified by distortion in a similar way to the Log-Gabor
response map, therefore GGD model is used to describe the distribution of directional gradients (both
horizontal and vertical) of en,j and on,j [19,27]; the shape parameter and scale parameter of the fitted
GGD model are another spatial quality-sensitive features.

In addition to directional gradient, gradient magnitude of the Log-Gabor filtering response map
is also analyzed. The gradient magnitude of o1,3 is shown in Figure 9a. The histograms of gradient
magnitude of o1,3 under different distortions are presented in Figure 9b. The histogram follows Weibull
distribution [27,28]

f (x; λ, k) =

{
k
λ (

x
λ )

k−1 exp(−( x
λ )

k) x ≥ 0
0 x < 0

, (12)
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where λ is the scale parameter and k is the shape parameter of Weibull model. Since the distribution of
the gradient magnitude can be fitted by the Weibull model, alterations of the Weibull model can be
used as an indicator for the degree of distortion. Thus, the parameters λ and k of the fitted Weibull
model can be used as quality-sensitive features.Remote Sens. 2017, 9, 305 8 of 24 
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Figure 9. (a) Gradient magnitude of Log-Gabor response map o1,3 of the pristine panchromatic image
in Figure 5; and (b) histograms of gradient magnitude of o1,3, under different kind of distortions.

To demonstrate that the extracted features above are sensitive to image quality, we visualize the
features as in Figure 4. We randomly crop 200 pristine sub-images of size 64 × 64 × 224 from the
AVIRIS dataset, and introduce different kinds of distortions to each sub-image. We apply Log-Gabor
filters on each sub-image, then we fit the histograms of o1,3 and the vertical gradient of o1,3 with GGD
model. We fit the histogram of gradient magnitude of o1,3 with Weibull model. The parameters of
the fitted model are used as features. Feature of each sub-image is plotted as a point. As shown in
Figures 10–12, even though there is some overlapping between different kinds of distortions, most
features belonging to the same distortion tend to group into the same cluster. Different distortions
occupy different regions in the feature space, which demonstrates the sensitivity of the extracted
feature to image quality.
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In order to extract joint features that contain both structural and spectral information, we need 
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spectral-spatial feature vector that is sensitive to image quality can be obtained, as shown in Figure 
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Figure 12. Visualization of spatial quality-sensitive features extracted from gradient magnitude of
Log-Gabor response map o1,3. Each point represents feature of a sub-image, each color represents a
type of distortion.

In order to extract joint features that contain both structural and spectral information, we need
to integrate the spatial features with the proposed spectral features. All the features extracted in the
spatial domain are stacked, then they are concatenated with the spectral features, a joint spectral-spatial
feature vector that is sensitive to image quality can be obtained, as shown in Figure 13.



Remote Sens. 2017, 9, 305 10 of 24
Remote Sens. 2017, 9, 305 10 of 24 

 

α
β
 
 
 

α
β
 
 
 

α
β
 
 
 

α
β
 
 
 

k

λ
 
 
 

k

α
β
α

λ

 
 
 
 
 
 
 
 
 
 
 
  

 
Figure 13. Flow chart of quality-sensitive features extraction for each HSI. 

3. Quality Assessment: From Features to Score 

If we can extract the spectral-spatial features from the pristine HSI training set and distorted 
HSIs using the method in Section 2, the distortion of the HSI could be quantified by computing the 
distance of the quality-sensitive features between the training set and the distorted HSI. In this work, 
we adopt the strategy of multivariate Gaussian (MVG) learning originally proposed in [18], the flow 
chart is in Figure 14. In the training stage, there are three main steps: collecting training 
hyperspectral data, extracting quality-sensitive features, and learning MVG distribution.  

1 2

1 2

n

n

α α α

λ λ λ

 
 
 
 
 
 

d n× ( , )Σμ

1 2

1 2

m

m

α α α

λ λ λ

 
 
 
 
 
 

d m× ( , ')i Σμ

 
Figure 14. Flow chart of the proposed HSI assessment method. 

A set of pristine HSI is firstly collected as training set. Noisy bands and water absorption bands 
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3. Quality Assessment: From Features to Score

If we can extract the spectral-spatial features from the pristine HSI training set and distorted HSIs
using the method in Section 2, the distortion of the HSI could be quantified by computing the distance
of the quality-sensitive features between the training set and the distorted HSI. In this work, we adopt
the strategy of multivariate Gaussian (MVG) learning originally proposed in [18], the flow chart is
in Figure 14. In the training stage, there are three main steps: collecting training hyperspectral data,
extracting quality-sensitive features, and learning MVG distribution.
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A set of pristine HSI is firstly collected as training set. Noisy bands and water absorption bands are
removed. Different local image regions contain different structures, and have different contributions to
the overall image quality [18,27]. In order to exploit the local structural information of the image, we
divide the HSI into non-overlapping local 3D blocks. Quality-sensitive features are extracted from
each block. By stacking all the spectral and spatial quality-sensitive features, a feature vector x ∈ Rd×1

would be extracted from each block. Suppose there are n blocks in the training set in total, a feature
matrix X = [x1, x2, ..., xn] ∈ Rd×n would be obtained from the training set.

There are correlations among different kinds of features; for example, directional gradient
and gradient magnitude are highly correlated. In order to remove the correlation and reduce the
computation burden, PCA transform is applied to the feature matrix X, a projection matrix Φ and a
dimension-reduced feature matrix can be obtained
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X′ = ΦX, (13)

where X′ = [x′1, x′2, ..., x′n] ∈ Rd′×n is the dimension-reduced feature matrix of the training data. Each
feature vector in X′ is extracted from different blocks, and there is no overlapping among the blocks.
Thus, the feature vectors can be assumed to be independent of each other and all the feature vectors
should conform to a common multivariate Gaussian model [21,22]. The MVG model can be learned
from X′ with the standard maximum likelihood estimation algorithm, the MVG model is

f (x) =
1

(2π)d′/2
∣∣∣Σ∣∣∣1/2 exp[−1

2
(x− µ)TΣ−1(x− µ)], (14)

where x ∈ Rd′×1 is the feature vector after dimension reduction, and µ and Σ are mean vector and
covariance matrix, respectively. Since there is no distortion in the training set, the normal distribution
of the features is represented by the learned MVG model, which is a benchmark for assessing distorted
image [18]. When distortion exists in HSI, the distribution of the feature vector would deviate from
the learned MVG model. The deviation can be measured and quality score of a distorted image can
be computed.

For each testing HSI, we divide it into several blocks, of which the size is the same as that of
training data. After extracting quality-sensitive features and stacking them into a feature vector as in
the training stage, we can obtain a feature matrix Y = [y1, y2, ..., ym] ∈ Rd×m, where m is the number
of blocks in the testing image. With the pre-learned projection matrix Φ, dimension-reduced feature
matrix is

Y′ = ΦY, (15)

where Y′ = [y′1, y′2, ..., y′m] ∈ Rd′×m is the dimension-reduced feature matrix of the testing image.
Different blocks make different contribution to the quality of testing image, so we compute quality
score on each local block. Every block should be fitted by a MVG model (µi, Σi), and then compared
with the learned benchmark MVG model (µ, Σ).

It should be noted that MVG model of each block can be estimated from its neighboring blocks,
but it is complex and time-costly. In this work, µi and Σi of the i-th block’s features are simply
approximated by y′i and covariance matrix of Y′, which is denoted as Σ′. A modified Bhattacharyya
distance is used to compute the distance between the benchmark MVG and the fitted MVG of the i-th
block [27]

disi =

√
(µ− y′i)

T(
Σ + Σ′

2
)
−1

(µ− y′i), (16)

The distance measures disparity between statistics of the i-th block and the pristine training data,
it is used as the measurement for image quality. The smaller the distance, the better the image quality
is. Quality score of the whole image is computed by averaging the distances over all the blocks.

4. Experiment Design and Results

4.1. Experiment Setting and Data

To demonstrate the effectiveness of the proposed assessment method, we test if the proposed
quality scores are consistent with other reference-based indices. We firstly apply five state-of-the-art
super-resolution methods to the simulated and real HSIs, and then quality scores of the reconstructed
HSIs are computed and compared with reference-based evaluation indices to see if there is consistency.

The following super-resolution methods are used to reconstruct HSIs; these methods are selected
due to their good performance in both reconstruction accuracy and speed:

• Coupled negative matrix factorization based hyperspectral fusion (denoted as CNMF) [8];
• Sparse spatial-spectral representation based super-resolution (denoted as SSR) [9];
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• Sparse image fusion algorithm (denoted as sparseFU) [10];
• Bayesian sparse representation based super-resolution (denoted as BayesSR) [11]; and
• Spectral unmixing based super-resolution (denoted as SUn) [12].

Two datasets are used in the experiment. The first dataset was acquired by Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) sensor [23], which consists of 224 spectral bands in the range
of 400 ~2500 nm. This dataset includes four images collected over Moffett Field, Cuprite, Lunar Lake, and
Indian Pines sites with dimensions 753 × 1923, 614 × 2207, 781 × 6955, and 614 × 1087, respectively.
Spatial resolution of Moffett Field, Cuprite and Lunar Lake is 20 m, and spatial resolution of Indian Pines
is 4 m. After discarding the water absorption bands and noisy bands, there are 162 bands remaining.
The second dataset was acquired by airborne Headwall Hyperspec-VNIR-C (HyperspecVC)sensor
over agricultural and urban areas in Chikusei, Ibaraki, Japan [29]. It was made public by Dr. Naoto
Yokoya and Prof. Akira Iwasaki from the University of Tokyo. The dataset has 128 bands in the range
of 363 ~1018 nm. Size of the data is 2517× 2335. Spatial resolution of the data is 2.5 m. After discarding
noisy bands, 125 bands are used in the experiment.

We crop two sub-images from each dataset as testing images, the rest of the dataset is treated
as pristine data and used in the training stage. Then we apply the five super-resolution methods on
the testing images, and evaluate the enhanced sub-images using the proposed assessment method.
The parameters in the algorithm are set as follows. The size in spatial domain of each block is 64 × 64,
the size in spectral domain is the number of bands. The window sizes for local normalization in spectral
and spatial domains are set as K = 3 and S = T = 2, respectively. The dimension of features after
PCA is determined by the number of high order Principal Components (PCs) which has preserved at
least 90% information of the original input. The parameters related to Log-Gabor filtering are adopted
from [27]: N = 3, J = 4, σr = 0.60, σθ = 0.71, ω1

0 = 0.417, ω2
0 = 0.318, ω3

0 = 0.243, where ω1
0, ω2

0, and
ω3

0 are the center frequencies of Log-Gabor filters at three different scales. All the parameters of the
super-resolution methods are tuned to achieve the best reconstruction results.

4.2. Reference-Based Evaluation Indices

Peak signal-noise-ratio (PSNR), structural similarity index measurement (SSIM) [21], feature
similarity index measurement (FSIM) [22], and spectral angle mean (SAM) are representatives of
popular quantitative measures for image quality and have been applied to evaluate enhancement
methods. They are selected to compare with the proposed quality score. PSNR computes the
mean square errors of the reconstructed HSI. SSIM and FSIM calculate the similarity between the
reconstructed HSI and reference. SAM measures the spectral distortion. Mathematically, PSNR of the
l-th band is computed as

MSEl =
1

MN

∣∣∣∣∣∣∣∣Ire f
l − Irec

l

∣∣∣∣∣∣∣∣2, (17)

PSNRl = 10 log10 (
Imax,l

MSEl
)

2
, (18)

where Imax,l is the maximum of the image on the l-th band, Ire f
l and Irec

l are the reference image and
reconstructed image on the l-th band. M and N are number of rows and columns. SSIM of the l-th
band is computed as [21]

SSIMl =
4σ

Irec
l Ire f

l
Irec

l Ire f
l

(σ2
Irec
l

+ σ2
Ire f
l

)
, (19)

where Ire f
l and Irec

l are mean of the reference and reconstructed image; and σ
Irec
l Ire f

l
, σ

Ire f
l

and σIrec
l

are

covariance and standard variance. FSIM of the l-th band is [22]
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FSIMl =
∑z∈Ω SL(z) · PCm(z)

∑z∈Ω PCm(z)
, (20)

where Ω is the whole spatial domain, and

SPC(z) =
2PCre f

l (z) · PCrec
l (z) + C1

(PCre f
l (z))

2
+ (PCrec

l (z))2 + C1

, (21)

SGM(z) =
2GMre f

l (z) · GMrec
l (z) + C2

(GMre f
l (z))

2
+ (GMrec

l (z))2 + C2

, (22)

SL(z) = SPC(z) · SGM(z), (23)

PCm(z) = max(PCre f
l (z), PCrec

l (z)), (24)

where PCre f
l (z) and PCrec

l (z) are phase congruency at pixel z of the reference and the reconstructed
images. The PSNR, SSIM, and FSIM are computed by averaging over all the acquired bands of HSI.
SAM at pixel z is computed as

SAM(z) = arccos(
< Sre f (z), Srec(z) >∣∣∣∣∣∣Sre f (z)

∣∣∣∣∣∣2·∣∣∣∣∣∣Srec(z)
∣∣∣∣∣∣

2

), (25)

where Sre f (z) and Srec(z) represent the spectrum at pixel z, SAM of HSI is computed by averaging
over the entire spatial domain.

4.3. Comparison With Reference-Based Indices

We crop two sub-images from Indian Pines and Moffett Field of AVIRIS data, and two sub- images
(denoted as Chikusei-1 and Chikusei-2) from HyperspecVC data. After down-sampling the sub-images
by a factor of two, we apply the super-resolution methods on them. It is noted that our goal here
is to compare our assessment method with previous indices. Down-sampling is necessary to obtain
reference for these indices. The indices are reported in Tables 1–4. In order to present the trend of
different indices clearly, we also plot the curves of different indices in Figures 15–18. The reconstructed
HSIs using all enhancement methods are shown in Figures 19–22.

Table 1. Comparison among peak signal-noise-ratio (PSNR), structural similarity index measurement
(SSIM), feature similarity index measurement (FSIM), and our score on Indian Pines of Airborne Visible
Infrared Imaging Spectrometer (AVIRIS) data.

sparseFU SUn BayesSR SSR CNMF

PSNR 23.6208 dB 28.7583 dB 29.0122 dB 30.5461 dB 30.9304 dB
SSIM 0.8317 0.9514 0.9455 0.9513 0.9616
FSIM 0.9125 0.9634 0.9640 0.9683 0.9698

Our score 30.4231 26.6541 25.8696 25.7163 25.3713

Table 2. Comparison among PSNR, SSIM, FSIM, and our score on Moffett Field of AVIRIS data.

sparseFU SUn BayesSR SSR CNMF

PSNR 23.4575 dB 30.0800 dB 30.3489 dB 30.6237 dB 30.7831 dB
SSIM 0.8152 0.9226 0.9301 0.9478 0.9525
FSIM 0.9117 0.9516 0.9571 0.9669 0.9647

Our score 31.4860 28.7071 27.3159 27.2858 26.0752
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Table 3. Comparison among PSNR, SSIM, FSIM, and our score on Chikusei-1 of HyperspecVC data.

sparseFU SSR SUn BayesSR CNMF

PSNR 29.1765 dB 33.1108 dB 34.5367 dB 36.5812 dB 36.9954 dB
SSIM 0.9521 0.9714 0.9735 0.9650 0.9883
FSIM 0.9557 0.9769 0.9828 0.9823 0.9899

Our score 21.3899 15.4410 15.3373 14.1547 13.9024

Table 4. Comparison among PSNR, SSIM, FSIM, and our score on Chikusei-2 of HyperspecVC data.

sparseFU SSR SUn BayesSR CNMF

PSNR 29.3492 dB 30.8350 dB 35.4586 dB 37.4310 dB 37.4797 dB
SSIM 0.9419 0.9463 0.9618 0.9663 0.9840
FSIM 0.9514 0.9640 0.9793 0.9808 0.9894

Our score 30.7928 23.3912 23.7168 23.1677 23.1171
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Our score measures the extent of distortion in the reconstructed HSI, with higher score
representing lower quality, which should correspond to, e.g., a lower PSNR. In each table and figure,
different methods are arranged in ascending order of PSNR from left to right. As shown in the tables
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and figures, the corresponding scores of the proposed method are in descending order from left to
right, which means that our no-reference score is consistent with PSNR in assessing the reconstructed
HSI. We find that the no-reference score is not consistent with SSIM and FSIM of BayesSR, as shown in
Figure 17b,c. This is caused by the inconsistency of SSIM and FSIM, both of them are not consistent
with PSNR of BayesSR. Nevertheless, our score is consistent with SSIM and FSIM in most cases. PSNR,
SSIM, and FSIM are the most common reference-based indices for image reconstruction evaluation,
and the consistency between our measured scores and these three indices indicates that the proposed
assessment method has potential to be implemented as a no-reference measure in evaluating spatially
enhanced HSIs.

It should be noted that the result of SSR on Chikusei-2 is inconsistent with other indices. In Table 4,
PSNR values of SSR and SUn are 30.8350 dB and 35.4586 dB, showing that the quality of SSR is lower
than that of the SUn. However, the proposed score method obtained the scores of 23.3912 for SSR and
23.7168 for SUn, showing the former has a better quality. If SSR can be evaluated correctly, its score
should be higher than SUn and slightly lower than sparseFU. This inconsistency may be attributed
to the limited number of training samples. AVIRIS dataset contains HSI acquired over multiple sites,
more blocks can be extracted for training the benchmark MVG model, so it leads to great consistency
on evaluations of Indian Pines and Moffett Field, as shown in Tables 1 and 2. However, the HyperspecVC
data are taken only over Chikusei, the number of training blocks is smaller than those taken from the
AVIRIS images, which may explain the failure of evaluating SSR in Table 4.

4.4. Spectral Distortion Assessment

Spectral fidelity is of high importance for the interpretation of HSI, so assessing spectral distortion
is necessary for the reconstructed HSIs. Spectral angle mean (SAM), as a reference-based spectral
assessment index, computes the disparity between the spectra of original HSI and reconstructed HSI.
In this sub-section, we compute the spectral distortion without reference using the proposed method.
Quality-sensitive features are extracted from both spectral and spatial domains in our method. If
we extract quality-sensitive features only from the spectral domain and then train the benchmark
MVG model, the quality score would measure spectral deviation of the reconstructed HSI from the
pristine HSI, which can be treated as a measurement of spectral distortion. The spectral quality scores
of the reconstructed HSIs are given in Tables 5–8. We also plot the spectral quailty scores as curves in
Figure 23.

Table 5. Comparison between SAM and spectral quality score on Indian Pines of AVIRIS data.

sparseFU SUn SSR CNMF BayesSR

SAM 5.5003◦ 4.2875◦ 4.1631◦ 3.7864◦ 3.6997◦

Spectral score 1.6776 1.6625 1.5130 1.0657 1.0469

Table 6. Comparison between SAM and spectral quality score on Moffett Field of AVIRIS data.

sparseFU BayesSR SUn SSR CNMF

SAM 3.9216◦ 3.2950◦ 2.6870◦ 2.6214◦ 2.3456◦

Spectral score 1.5505 1.3589 1.3252 1.2964 1.0489

Table 7. Comparison between SAM and spectral quality score on Chikusei-1 of HyperspecVC data.

BayesSR SSR sparseFU SUn CNMF

SAM 3.1975◦ 3.1424◦ 2.4779◦ 2.4702◦ 1.8175◦

Spectral score 1.4390 1.4210 1.4322 1.3802 1.2435
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Table 8. Comparison between SAM and spectral quality score on Chikusei-2 of HyperspecVC data.

SSR BayesSR SUn sparseFU CNMF

SAM 4.6458◦ 3.4304◦ 3.0957◦ 2.5936◦ 2.1912◦

Spectral score 1.3016 1.4139 1.4024 1.3387 1.2043
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Different methods are arranged in descending order of SAM in the tables. As shown in Tables 5
and 6, the corresponding spectral quality scores are in descending order as well, which demonstrates
that our no-reference spectral quality score is consistent with SAM on AVIRIS data. However, on
Chikusei-1, SAM values of SSR and sparseFU are 3.1424◦ and 2.4779◦, indicating that SSR has larger
spectral distortion, while the spectral scores of SSR and sparseFU are 1.4210 and 1.4322, showing
that sparseFU has larger distortion. Similarly, the spectral score of SSR is inconsistent with SAM on
Chikusei-2. The fewer number of training samples that can be extracted from this dataset, the same
reason suggested in Section 4.3, may have caused this inconsistency. However, most of our spectral
quality scores are consistent with SAM on HyperspecVC data.

4.5. Analyzing Each Type of Spatial Features

There are four types of statistics features extracted from the spatial domain. They are based
on histogram of the normalized panchromatic image, histograms of Log-Gabor filtering responses,
histograms of directional gradient of Log-Gabor filtering responses, and histograms of gradient
magnitude of Log-Gabor filtering responses. In order to analyze their contribution separately, we
extract the spectral features and incorporate them with only one type of spatial features each time, then
train the benchmark MVG and compute the quality score. We report the quality scores in Tables 9–12.
We also plot the scores as curves in Figure 24.

Table 9. Comparison of each type of spatial features on Indian Pines of AVIRIS data.

sparseFU SUn BayesSR SSR CNMF

PSNR 23.6208 dB 28.7583 dB 29.0122 dB 30.5461 dB 30.9304 dB
Norm. pan. 1.8954 3.2748 3.2500 3.1095 3.3361
Log-Gabor 12.8284 10.0834 10.0197 9.7432 9.8424

Log-Gabor grad. 14.8344 15.8623 15.2599 15.0333 14.4433
Log-Gabor grad. mag. 11.6690 11.6845 11.5943 11.3729 11.0730
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Table 10. Comparison of each type of spatial features on Moffett Field of AVIRIS data.

sparseFU SUn BayesSR SSR CNMF

PSNR 23.4575 dB 30.0800 dB 30.3489 dB 30.6237 dB 30.7831 dB
Norm. pan. 1.8197 2.6929 2.6068 2.7086 2.5588
Log-Gabor 15.0683 9.9437 9.3638 9.4834 9.0729

Log-Gabor grad. 17.9726 19.3613 17.8142 18.4023 17.6334
Log-Gabor grad. mag. 13.2884 12.3348 11.2945 11.4125 11.1886

Table 11. Comparison of each type of spatial features on Chikusei-1 of HyperspecVC data.

sparseFU SSR SUn BayesSR CNMF

PSNR 29.1765 dB 33.1108 dB 34.5367 dB 36.5812 dB 36.9954 dB
Norm. pan. 3.0628 2.5048 2.3498 2.3832 2.5048
Log-Gabor 9.7003 6.7508 6.4789 6.5799 6.6106

Log-Gabor grad. 8.9788 9.3372 9.7097 9.0800 9.0335
Log-Gabor grad. mag. 7.3913 7.3545 7.1662 7.2224 7.2018

Table 12. Comparison of each type of spatial features on Chikusei-2 of HyperspecVC data.

sparseFU SSR SUn BayesSR CNMF

PSNR 29.3492 dB 30.8350 dB 35.4586 dB 37.4310 dB 37.4797 dB
Norm. pan. 3.6266 3.2416 2.9475 3.1052 3.0355
Log-Gabor 10.5328 8.9106 8.2312 8.4462 8.2740

Log-Gabor grad. 11.6873 11.5684 11.6145 11.7111 11.3460
Log-Gabor grad. mag. 7.7580 7.8534 7.7350 7.8038 7.6945Remote Sens. 2017, 9, 305 19 of 24 
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We can make the following two conclusions from the results. Firstly, integrating multiple types of
spatial features performs better than using a single type of spatial features. When only one type of
spatial features is extracted, the curve is not monotonically descending, which means that some quality
scores are not consistent with the reference-based indices, as shown in Figure 24. When all the spatial
features are extracted, the scores are consistent with reference-based indices in most cases, as presented
in Section 4.3. Secondly, among all these spatial features, the features based on Log-Gabor filtering are
more efficient. As shown in Figure 24, the curves of Log-Gabor features are generally in descending
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order. While other features, such as the features based on locally normalized panchromatic image,
could not lead to a satisfactory assessment, as shown in the tables. This phenomenon is reasonable
because Log-Gabor filters describe texture, edges, and details, which play a key role in reflecting the
quality of image [19,20].

4.6. Robustness Analysis Over Training Data

To further investigate the robustness of our method, we design an experiment by varying the
training data where the benchmark MVG model is trained on data from one sensor and used to
evaluate enhanced data of another sensor. We train the benchmark MVG model on HyperspecVC data,
then with the trained model, we evaluate the reconstructed images from AVIRIS data. We also compute
the spectral distortion by training the benchmark MVG with only spectral features. The quality scores
are presented in Tables 13 and 14, the spectral scores are presented in Tables 15 and 16, and the curves
of scores are plotted in Figures 25 and 26.

The quality scores of SUn, BayesSR, SSR, and CNMF are consistent with PSNR on both Indian
Pines and Moffett Field, but sparseFU cannot be assessed correctly. On Indian Pines, the spectral scores of
SUn and SSR are not consistent with SAM. SAM of SUn and SSR are 4.2875◦ and 4.1631◦ respectively,
showing that spectral distortion of SUn is larger than SSR. While our spectral score shows that spectral
distortion of SSR is larger than SUn. On Moffett Field, except sparseFU, the spectral scores are consistent
with SAM. The above inconsistency may be caused by the huge difference between the training
datasets, as HyperspercVC data and AVIRIS data have big difference in spatial resolution and number
of spectral bands. Although there is minor inconsistency between the scoring method and conventional
reference-based indices, most of the super-resolution methods can still be assessed correctly, which
demonstrates the robustness of the proposed method to some extent.

All the experiments are implemented on Matlab 2014a, with Intel PC Core 3.10 GHz, RAM of 12
GB. The training of our method takes about 30 min, while assessing the reconstructed HSI takes about
2 min. All the codes for super-resolution methods are provided by the authors.

Table 13. Performance on Indian Pines of AVIRIS data, trained on HyperspecVC data.

sparseFU SUn BayesSR SSR CNMF

PSNR 23.6208 dB 28.7583 dB 29.0122 dB 30.5461 dB 30.9304 dB
Our score 72.3626 82.3826 80.3653 80.1138 79.9110

Table 14. Performance on Moffett Field of AVIRIS data, trained on HyperspecVC data.

sparseFU SUn BayesSR SSR CNMF

PSNR 23.4575 dB 30.0800 dB 30.3489 dB 30.6237 dB 30.7831 dB
Our score 79.0081 89.3360 88.8949 87.9909 86.0247

Table 15. Spectral scores on Indian Pines of AVIRIS data, trained on HyperspecVC data.

sparseFU SUn SSR CNMF BayesSR

SAM 5.5003◦ 4.2875◦ 4.1631◦ 3.7864◦ 3.6997◦

Spectral score 1.7102 1.5146 1.5844 1.0776 0.9915

Table 16. Spectral scores on Moffett Field of AVIRIS data, trained on HyperspecVC data.

sparseFU BayesSR SUn SSR CNMF

SAM 3.9216◦ 3.2950◦ 2.6870◦ 2.6214◦ 2.3456◦

Spectral score 1.6405 1.7076 1.5679 1.4515 1.0755
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Figure 25. Consistency of our score and PSNR with HyperspecVC data used for training: (a) on Indian
Pines; and (b) on Moffett Field.
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5. Discussion

From the experiments, we can make the following interesting discussions:

1. The spectral features based on locally normalized spectra are more efficient than a single type
of spatial features. If we only use the spectral features, the quality score reflects the spectral
distortion of the reconstructed HSI and they are consistent with SAM, as shown in Section 4.4.
However, if we use only a single type of spatial features, the quality scores of some reconstructed
HSIs are not consistent with PSNR, as shown in Section 4.5. The efficiency of spectral features for
distortion characterization can be further verified by comparing Figures 4b and 10, Figures 11
and 12 where spectral features belonging to the same distortion tend to form clusters which are
more compact and more separable than that of spatial features.

2. Texture information is necessary in reflecting image quality, which is verified by the efficiency
of features based on Log-Gabor responses and the gradients. We have tested several types
of spatial features to characterize spatial quality of the reconstructed images. By comparing
the performance among different types of spatial features, it is found that features based on
statistics of Log-Gabor responses and the gradients often lead to better results than statistics of
locally normalized panchromatic image, as shown in Section 4.4. It is worth noting that some
other filters, such as wavelet and ridgelet [30,31], are also effective in texture analysis, extracting
quality-sensitive features using these filters may lead to a better result.

3. Integrating multiple features is helpful for enhancing the performance. Multiple features are
extracted from spectral and spatial domains and incorporated in the proposed method. By
comparing the results in Sections 4.3 and 4.3, we find that if we only exploit a single type of
features, some reconstructed HSI cannot be assessed correctly, while, if multiple features are
exploited, most of the reconstructed HSI can be assessed correctly, which means that these features
are complementary to each other in predicting image quality. Additional statistics features can
also be integrated in our framework to obtain a better result.

4. The benchmark MVG is robust over the training data. In this study, the training data come
from the same sensor with the testing data. When we train the benchmark MVG model on
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HyperspecVC data and test it on AVIRIS data, it is observed that even though there is huge
difference in spatial and spectral configuration of the two sensors, we obtained comparable results;
most of the scores are consistent with PSNR and SAM on AVIRIS data. In real applications, if
training data from the same sensor are not sufficient, training the benchmark MVG model with
data from other sensors may be an alternative option.

5. The proposed method has potential to be applied in reality. The speed of our assessment
method is fast: it only takes less than two minutes to evaluate the reconstructed HSI in the
experiments. In addition, the proposed assessment method is fully blind, both the reference
image and information related to the distortion type in HSI are not necessary to be known. All
those characteristics make it possible to be applied in reality.

However, it should be noted that there are still some questions that need to be studied further in
the future:

1. Research in models that are more efficient in representing the quality-sensitive features. In this
study, we learn MVG models to represent the quality-sensitive features of pristine HSI and
reconstructed HSI. MVG model is simple and fast to be implemented, but it may not be the most
efficient one in feature representation. Some other advanced machine learning models, such as
sparse representation [32], which were used in this work, could be more efficient. If we exploit
these models to represent the quality-sensitive features, better performance may be obtained.

2. Determining the optimal number of features. According to our experiments, integrating multiple
features is helpful. In this study, one type of spectral features and four types of spatial features are
exploited. However, if more quality-sensitive features are exploited in the future, more training
samples would be required and the computation burden would increase. In order to balance the
computation burden and the performance, we need to determine the optimal number of features.

6. Conclusions

We propose a no-reference quality assessment method to assess reconstructed HSI. Image
distortion can be characterized by statistics of HSI, measuring the deviation of these statistics makes it
possible to assess the image quality of HSI. Based on this principle, statistical properties of pristine
and distorted HSIs are analyzed, and then multiple statistics that are sensitive to image quality are
extracted as features from both spectral and spatial domains. A MVG model is built for the features
extracted from pristine training data and treated as benchmark. Reconstructed HSI is divided into
several blocks, quality-sensitive features are extracted from each block, and a MVG model of the
features is fitted for each block. Quality score of each block is computed by measuring the distance
between the benchmark and the fitted MVG. Overall quality score is obtained by average pooling.
We apply five state-of-the-art super-resolution methods on AVIRIS and HyperspecVC data, and then
compute the quality scores of the reconstructed HSIs. Our quality scores have good consistency with
PSNR, SSIM, FSIM, and SAM, which demonstrates the effectiveness and potential of the proposed
no-reference assessment method.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/4/305/s1.
Supplementary experiments on testing sub-images cropped from Cuprite site of AVIRIS data.
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