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We used the AVHRR 1 km2 local area coverage (LAC) data that are available for the continental 
United States for our analysis [1]. AVHRR data processing has been ongoing since 1989 [2], and it 
constitutes the only consistently processed 1 km2 AVHRR data for the globe. Processing of these data 
include radiometric correction that results from sensor degradation, adjustments for atmospheric 
effects, and geometric registration accuracy. The 1 km2 AVHRR LAC data are produced from 
NOAA-11, -14, -16, and -17 satellites. Radiometric corrections are based on sources specific to each 
satellite (see Table 1 in [1]). Adjustments for atmospheric effects include corrections for ozone, water 
vapor absorption, and Rayleigh scattering. Water vapor absorption can reduce near-infrared band 
reflectance by up to 30%, and Rayleigh scattering and ozone absorption can increase reflectance in 
the red band by up to 2% [1]. Geometric registration is accomplished using image-to-image 
registration rather than image to map registration because the former improved geometric accuracy. 
All observations used in the geometric registration must have a root mean square error of less than 1 
pixel. On average, 10 satellite passes per week are used to develop the NDVI maximum value 
composite (MVC) data. The maximum value composite data methods were developed by [3].  

The climatic factors selected represent precipitation and temperature because these two factors 
are generally strongly associated with greenness [4,5]. We also included dew point temperature, 
which is the temperature at which atmospheric moisture condenses, because it reflects both 
temperature and moisture conditions, and it was shown to be positively related to NDVI in a study 
of agricultural and residential areas in Phoenix, Arizona [6]. We used five climatic factors, four of 
which were original and one of which was derived. The four original variables were monthly 
averages of precipitation, maximum temperature, minimum temperature, and dew point 
temperature. The fifth variable was one-month lagged precipitation, derived from monthly 
precipitation. The four original climate factors were obtained from Parameter-elevation Regressions 
on Independent Slopes Model (PRISM; http://www.prism.oregonstate.edu/products/matrix.phtml, 
accessed March 2012) using observed climatic data from > 10,000 stations [7]. The 4km × 4km grid 
cells of the interpolated PRISM climatic variables were gridded into 1km x 1km grid cells using the 
inverse distance weighted method in ARC-GIS 9.3.1 (ESRI, Redlands, California) to match the NDVI 
resolution. Downscaling of PRISM climate data from 4km × 4km to 1km × 1km was applied recently 
by [8]. In this study we are using one-month lagged precipitation due to its stronger relation with 
NDVI [9, 10]. For the model, we used the monthly NDVI, which is the maximum NDVI value of the 
biweekly NDVI derived by applying MapAlgebra in ARC-GIS 9.3.1. In all analyses, we used the 8 
bites NDVI values, only for temporal NDVI figures, transformed NDVI values (NDVI/255) were 
displayed.  
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1. Supplementary Tables 

Table S1. Statistical summary for the trend values per outcome. Outcomes A and C denote changes 
due to direct factors, Outcome B denotes changes due to climatic factors, and Outcome D denotes no 
change in greenness. S denotes significant, u denotes univariate, m denotes multivariate, n denotes 
not. Percent (%) is the proportion of outcomes as described in Table 3.  

Outcome % Min P25 Mean Median P75 IQR Max
A(Su/Sm) 44.83 -0.5690 0.0193 0.0180 0.0275 0.0357 0.0164 0.1764 
B(Su/nSm) 3.56 -0.0814 0.0107 0.0091 0.0147 0.0182 0.0075 0.0802 
C(nSu/Sm) 8.16 -0.1030 0.0001 0.0062 0.0119 0.0163 0.0163 0.0857 

D(nSu/nSm) 43.45 -0.0818 -0.0025 0.0025 0.0036 0.0083 0.0108 0.0846 

Table S2. Trend value, trend direction and the significant p-value for the climatic factors from the 
univariate autoregression (Equation (1)). The last two rows present NDVI trend, direction and 
p-value from univariate, and multivariate models. 

Variable Trend Value p-value
P −0.0086 0.88 

Tmin +0.0020 0.21 
Tmax −0.0006 0.63 

Dp +0.0020 0.15 
NDVI(univariate) +0.0276 0.0001 

NDVI(multivariate) +0.0287 0.066 

2. Supplementary Figures  

The land cover (Figure S1) is dominated in close proportion by forest (26%) and shrubland 
(23%). While cultivated crop (16%) and grass (15%) are close in their covers, wetland and emergent 
wetland cover 5% [11] (Fry et al., 2011).  Labeled symbols A and B in Figure 6 are the locations of the 
pixels within the Yellowstone used in Figs. S2 and S3, respectively, showing NDVI behavior over 
time. The severity of the fire on greenness varied spatially. Following changes in Greenness post fire, 
we observe that pattern of significantly decreasing NDVI (β6 < -0.077, p < 0.0001) is consistent with 
vegetation loss as a result of the 1988 fire just prior the onset of the NDVI period reported here 
(1989–2013) (Figure S2). In contrast, vegetation recovery has occurred since the 1988 fire in the block 
of pixels with significantly increasing NDVI at the western edge of the park boundary, as 
represented by the pixel located at B in Figure 6 (Figure S3, β6 = 0.0623, p = 0.0002).  

 
Figure S1. Land cover for the conterminous US. Data from National Land Cover Database (Fry et al., 
2011).  
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Figure S2. Observed and predicted values for NDVI for one pixel in the Yellowstone Fire (pixel A in 
Figure 6). The blue line is the observed values (n=300). The red line is the predicted values from the 
multivariate autoregression model and the green line represent the structural part of the multivariate 
autoregression model (see explanation for Equation (4)). NDVI trend with time (β6 = -0.0604) is 
significant (p < 0.0001).  

 

Figure S3. Observed and predicted values for NDVI for one pixel in the Yellowstone Fire (pixel B in 
Figure 6). The blue line is the observed values (n=300). The red line is the predicted values from the 
multivariate autoregression model and the green line represent the structural part of the multivariate 
autoregression model (see explanation for Equation (4)). NDVI trend with time (β6 = 0.0623) is 
significant (p = 0.0002).  
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Figure S4. Observed and predicted values for NDVI for one pixel within outcome B (see Figure 8). 
The blue line is the observed values (n=300). The red line is the predicted values from the univariate 
autoregression model and the green line represent the coefficient of time of the univariate 
autoregression model (see explanation for Equation (1)). NDVI trend with time (θ1 = 0.0276) is 
significant (p < 0.0001).  

 

Figure S5. Observed and predicted values for NDVI for one pixel within outcome B (see Figure 8). 
The blue line is the observed values (n=300). The red line is the predicted values from the 
multivariate autoregression model and the green line represent the coefficient of time of the 
multivariate autoregression model (see explanation for Equation (4)). NDVI trend with time (β6 = 
0.0281) is not significant (p = 0.0663).  
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