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Abstract: This paper presents an automated and effective framework for classifying airborne laser
scanning (ALS) point clouds. The framework is composed of four stages: (i) step-wise point
cloud segmentation, (ii) feature extraction, (iii) Random Forests (RF) based feature selection and
classification, and (iv) post-processing. First, a step-wise point cloud segmentation method is
proposed to extract three kinds of segments, including planar, smooth and rough surfaces. Second,
a segment, rather than an individual point, is taken as the basic processing unit to extract features.
Third, RF is employed to select features and classify these segments. Finally, semantic rules are
employed to optimize the classification result. Three datasets provided by Open Topography are
utilized to test the proposed method. Experiments show that our method achieves a superior
classification result with an overall classification accuracy larger than 91.17%, and kappa coefficient
larger than 83.79%.

Keywords: airborne laser scanning; point cloud segmentation; random forests; feature extraction;
feature selection; semantic

1. Introduction

Commercial Airborne Laser Scanning (ALS) systems emerged in the mid-1990s for bathymetric
and topographic applications. With the aid of direct geo-referencing technique, laser scanning
equipment installed in the aircraft collect a cloud of laser range measurements for calculating the
3D coordinates (xyz) of the survey area [1]. In contrast to the 2D remote sensing imagery, an ALS
point cloud is a swarm of points with XYZ coordinates [2], and thus describes the 3D topographic
profiles of natural surfaces. Moreover, ALS point clouds have other benefits such as no effects of relief
displacement, penetration of vegetation, and insensitivity to lighting conditions [1]. Therefore, ALS
technique has been effectively used for ground point detection [3–7], topographic mapping [8], 3D city
modelling [9–13], object recognition [14–16], solar energy estimation [17], etc.

Over the last two decades, significant contributions to the consolidation and extension of ALS
data processing methods have been witnessed [1]. Among these processing methods, classifying the
ALS data into categorical object instances is the first and most critical step for further data processing
and model reconstruction [18]. Based on the granularity of basic processing units, these existing
classification strategies can be categorized into three groups, i.e., point-based classification [18–20],
segment-based classification [21–24], and multiple-entity-based classification [25]. A brief description
of these existing methods is provided as follows.
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1.1. Strategies for ALS Data Classification

1.1.1. Point-Based Classification

This kind of classification has attracted the most majority of research works in contrast to the
other two kinds of classification strategies. In the process of point-based classification, ALS features of
individual points [19] are firstly extracted. Then a classifier such as JointBoost [18] is trained using a
number of selected training samples. Finally, the input ALS point cloud is classified via the trained
classifier and the extracted features.

Additionally, to compute the features of individual points, a respective neighborhood definition
is required to describe the local 3D structure around each individual point. Generally, there are three
kinds of neighborhoods, i.e., spherical neighborhood [26], cylindrical neighborhood [27], and k-closest
neighborhood [28]. Among the three neighborhoods, the scale parameter, either a fixed radius or
a constant value k, is required. Due to the variation of local 3D structures and point densities, the
constant scale parameter often fails to describe the local structural configurations. Thus, more and
more studies such as [18,29–34] focus on seeking an optimal neighborhood size for each individual
point. Unfortunately, these neighborhood optimization methods require repetitive calculations of
eigenvectors and eigenvalues for each point, therefore they are rather time-consuming [35], which is
the main disadvantage of this kind of classification.

1.1.2. Segment-Based Classification

Point cloud segmentation has been involved in ALS point cloud classification since its emergence.
Generally, segment-based classification methods first perform segmentation on the point cloud after
removing the ground points [21]. Then, the non-ground points are segmented into a number of
segments, and features are extracted for each segment. Finally, a fuzzy model classifier [21,36] or
several classification rules [22,24] are utilized to classify the segments. However, most of these
studies are for non-ground points, and none of them uses Random Forests (RF) for feature selection
and classification.

In addition, segment-based classification relies heavily on its employed segmentation method.
A variety of point cloud segmentation methods have been proposed, which can be roughly classified
as model-fitting-based methods, region-growing-based (RG-based) methods, and clustering-feature-
based methods [37]. However, these existing methods segment input 3D point clouds into only one
type of geometric structure. Actually, point clouds consist of a variety of geometric structures, such as
planes, smooth surfaces and rough surfaces. In a complex 3D scene, there may exist regular and
irregular man-made objects, and natural objects. Regular man-made objects such as buildings are
composed of planar surfaces and smooth surfaces, while irregular man-made objects such as cars and
natural objects like trees are composed of rough surfaces.

Therefore, segmenting point clouds into only one type of geometric structure is unreasonable.
For example, existing planar segmentation methods segment all the points in an input point cloud
into planes. If points are on building roofs, these methods are logical and perform well, however,
if the points are on trees or cars, these methods which roughly segment these points into false planes
are illogical. To obtain a superior classification result, we should consider a query point’s geometric
structure, and then segment it into a planar surface, smooth surface, or rough surface.

Although the aforementioned limitations exist, segment-based methods still have two main
benefits in contrast to point-based classification methods, i.e., (i) segments are helpful to compute
geometric features which relieve the dependence on neighborhood optimization [18,34] methods, and
(ii) segments give several new attributes which are helpful to employ semantic rules.

1.1.3. Multiple-Entity-Based Classification

Multiple-entity-based classification [25] is considered as a combination of the segment-based and
point-based classification. To solve the problem that a complex 3D scene is difficult to be characterized
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by only individual points or one kind of segments, this method utilizes three kinds of entities,
i.e., points, planar segments, mean shift segments. In the process of classification, the input ALS
point cloud is first divided into ground points and non-ground points. Next, planar segments are
extracted from the non-ground points, and the scattered points are remained. Then, the planar
segments are classified into several classes. The remained points are point-wise classified based on
the contextual information offered by the classified planar segments. Finally, in complex areas where
vegetation covers building roofs, mean shift segments are extracted to classify these areas.

However, the process of this method is a hierarchical classification procedure, which involves
many steps. Besides, the mean shift segments and planar segments are derived from different segmentation
methods, which adds additional classification steps. To simplify the classification process, a point
cloud segmentation method that is able to extract more than one kind of segments is required.

These above three strategies have two common elements, including feature extraction and
classifiers. Therefore, we present a brief description of both them as follows.

1.2. Feature Extraction

There are three main groups of features for ALS point cloud classification, i.e., reflectance-based
features, descriptor-based features, and geometric features.

• The reflectance-based features are often related to the intensity [38] and echo [18] recorded by
scanner systems. Therefore, the distinctiveness of this kind of features relies heavily on the quality
of the scanner’s signal.

• The descriptor-based features often employ spin images [39], shape distributions [40],
histograms [41–43] to characterize a local 3D neighborhood. For all these descriptor-based
features, a single object of the resulting feature vector is hardly interpretable [20].

• Common geometric features are height-based features [19], eigenvalue-based features [19,36],
projection-area-based features [18,39], surface-based features [18], etc. Specifically, the
eigenvalue-based features derived from the 3D structure tensor which is represented by the
3D covariance matrix derived from the 3D coordinates of all points within a local neighborhood,
are discriminative in a variety of classification approaches. In contrast, the geometric features are
deeply studied and widely used by state-of-the-art methods.

Most existing studies often compute as many features as possible to obtain a superior classification
result. When a large number of features are extracted, some of them may be redundant. These
redundant features not only increase the computational burden, but also waste the memory space.
Therefore, recent studies introduce a feature selection procedure [19,20,38,44] as an additional step
between feature extraction and classification steps.

1.3. Classifiers for ALS Data Classification

In the classification stage, many studies have tried locally independent classifiers, such as Support
Vector Machine (SVM) [45], Adaptive Boosting (AdaBoost) [46], Expectation Maximum (EM) [47],
RF [48,49], JointBoost [18], etc. The fundamental idea is to train a classifier by using given training
samples which is used for prediction later [20]. Specifically, due to the excellent performance, the RF
classifier [50] has received increasing attention [51]. Some studies [19,20,34,38] have looked into the
potential of the RF classifier to improve urban objects classification and select uncorrelated features for
ALS point clouds.

However, the integration of RF and the segment-based classification is rarely studied, as well as
the importance analysis of segment features. In addition, the robustness of the classification methods
is rarely analyzed when noises exist in the extracted features.

In this paper, we focus on the segment-based classification due to its advantages over the
point-based classification. To address the aforementioned problems, we design a segment-based
classification framework. This framework has three improvements compared to the existing methods:
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(1) A novel point cloud segmentation method is proposed. This method clusters the points with regular
neighborhoods into planar and smooth surfaces, and the points with scattered neighborhoods
into rough surfaces.

(2) RF is integrated with the segment-based classification to select features and perform classification.
The integration of RF and the segment-based classification improves the robustness of ALS point
cloud classification.

(3) Semantic rules are employed to optimize the classification result. The semantic rules are more
convenient to be detected when we process segments.

The outline of this paper is shown as follows. Section 2 presents the methodology of our proposed
classification framework which contains a novel point cloud segmentation method, feature extraction
based on segments, the integration of RF and segment-based classification, and post-processing based
on semantic rules. The experiments and discussions are presented in Section 3, followed by Section 4
which summarizes the uncertainties, errors and accuracies of the proposed classification framework.
The research conclusions are presented in Section 5.

2. Methodology

The proposed classification framework is composed of four stages as shown in Figure 1. First of
all, a step-wise point cloud segmentation method which is able to cluster points with different
neighborhoods into different geometric structures is proposed (see Section 2.1). Next, a segment
rather than an individual point is considered as the basic processing unit for feature extraction
(see Section 2.2). Then, we employ RF to select uncorrelated features based on a backward elimination
method [52], and improve the robustness of ALS point clouds classification (see Section 2.3). Finally, we
utilize semantic rules to optimize the classification result in the post-processing stage (see Section 2.4).
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Figure 1. The proposed framework for airborne laser scanning (ALS) point cloud classification.

2.1. Step-Wise Point Cloud Segmentation

The proposed point cloud segmentation method is a RG-based one, and it clusters the points into
planar surfaces, smooth surfaces, or rough surfaces.

Our segmentation procedure consists of three steps: region growing (RG) with RANdom SAmple
Consensus (RANSAC), scattered points clustering, and small segments merging (see Figure 2). The first
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step extracts planar and smooth surfaces, and recognizes scattered points from the input point cloud.
Then, the scattered points clustering step extracts rough surfaces from the scattered points. At last,
an optional step is performed to merge small segments.
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Figure 2. The flowchart of the step-wise point cloud segmentation.

It is notable that rough surfaces are separated from the other types of segments by the aforementioned
steps. However, planar surfaces and smooth surfaces are not distinguished when we extract them
in RG with RANSAC step. For the application of semantic recognition, planar surfaces and smooth
surfaces are easily to be distinguished by their curvatures. In this study, the feature extraction, and the
RF-based feature selection and classification stages perform without distinguishing these three types
of segments.

2.1.1. RG with RANSAC

The plane-based RANSAC algorithm is widely used in point cloud segmentation tasks [53].
However, there is rare study employing RANSAC to improve RG-based segmentation methods.

To extract planar surfaces, two difficulties should be overcome for a RG-based method,
i.e., non-optimal segmentations around edges where two surfaces meet [54], and the detection of small
or narrow planes [55]. The integration of RANSAC and RG is able to solve both problems. In addition,
we utilize a smooth RG procedure, which is able to extract smooth surfaces simultaneously.

There are three substeps in the RG with RANSAC step, i.e., normal estimation, RG with redefined
constraints, and small segment elimination.

(1) Normal estimation

We employ RANSAC-Normal [56] to the RG-based method. Our previous approach [56] has
validated that the RANSAC-Normal is efficient to extract a suitable plane from a complex
neighborhood with intersecting surfaces. This procedure first determines the kn neighbors of the
i-th query point pi, then fits a local plane based on the RANSAC algorithm, and finally, defines
the normal of the fitted plane as the RANSAC-Normal.

In addition, during the normal estimation procedure, a number of scattered points are detected,
and they are stored in a scattered point set SP. The pseudo code which shows details of this
procedure, is presented in Algorithm 1. The parameter kn is utilized to determine how many
neighbors of a query point will be detected in Row 4. The parameter dr is the threshold of the
plane-based RANSAC algorithm, which is utilized in Row 5.
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Algorithm 1. Normal estimation.

Input: Point cloud={P}. Parameters: kn, dr

1: Regular point set {RP} ← ∅ , Scattered point set {SP} ← ∅ , Inlier Set {IN} ← ∅ , Proportion Set {PR} ← ∅ ,
Normal Set {NOR} ← ∅
2: For i = 0 to size ({P}) do
3: Select i-th point pi as the query point
4: Find kn neighbors for pi NEIi ← A(i, kn, P)
5: Determine the inliers using plane-based RANSAC algorithm {PIi} ← B(NEIi, dr)

6: If pi ∈ {PIi} then
7: Compute proportion of PIi to kn neighbors pri ← C(Ni, dr)

8: Normal estimation nori ← D(PIi)

9: {RP} ← {RP} ∪ pi , {NOR} ← {NOR} ∪ nori
10: Else then
11: {SP} ← {SP} ∪ pi
12: End If
13: {IN} ← {IN} ∪ PIi , {PR} ← {PR} ∪ pri
14: End For
Output: {NOR}, {IN}, {PR}, {SP}, {RP}

Specifically, when plane-based RANSAC algorithm fits a local plane, it divides kn neighbors into
inliers PIi and outliers (Row 5). The points in PIi are on the fitted plane. If the query point pi is in
PIi, we compute a proportion pri of the inliers PIi to the kn neighbors (Row 7).

Five sets (NOR, IN, PR, SP, RP) are generated in Algorithm 1, and they are useful for the RG
with redefined constraints.

(2) RG with redefined constraints

This procedure is similar to the RG method presented in [57]. However, two constraints
(local connectivity and surface smoothness [57]) are redefined based on the plane-based
RANSAC algorithm.

• Constraint 1: local connectivity

The points in a segment should be locally connected. In contrast to literature [57], we utilize
the inliers INi to optimize this constraint. If pi is in INi, the points in INi are local connective
to it. Otherwise, there is no point local connective to pi.

• Constraint 2: surface smoothness

The points in a segment should locally make a smooth surface, whose RANSAC-Normals
do not vary “too much” from each other. This constraint is expressed through dot product
between normals:

||nors·norn||< thθ , (1)

where thθ is the threshold of the constraint, nors is the normal of current seed, and norn is
the normal of a point which is local connective to the current seed.

The pseudo code which shows details of the RG with redefined constraints procedure, is presented
in Algorithm 2. The parameter thθ is utilized to restrict the dot product between normals in the
Row 12 and its usage is presented in Formula (1).
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Algorithm 2. RG with redefined constraints.

Input: {RP}, {NOR}, {IN}, {PR}. Parameters: thθ

1: Available point list {A} ← {1, . . . , size(RP)}
2: While {A} is not empty do
3: Current segment (planar or smooth face) {FC} ← ∅ , Current seeds {SC} ← ∅
4: Find a point in {RP} with maximum pri pmax ← E(RP, PR, i)
5: {SC} ← {SC} ∪ pmax , {FC} ← {FC} ∪ pmax , {A} ← {A}\i
6: For j=0 to size({SC}) do
7: Set j-th point in {SC} as current seed SCj

8: Find Current inliers of SCj

{
INj

}
← {IN} (constraint 1)

9: For k=0 to size(INj) do

10: Neighbor point index pnk ←
{

INj

}
(k)

11: Compute cos θ ← Λ
(

NOR
{

SCj

}
, NOR{pnk}

)
12: if {A} contains pnk and cos θ < thθ then (constraint 2)
13: {FC} ← {FC} ∪ pnk , {A} ← {A}\pnk , {SC} ← {SC} ∪pnk
14: End If
15 End For
16: End For
17: {FP} ← {FP} ∪ {FC}
18: End While
Output: Planar and smooth surfaces {FP}

Specifically, the constraint 1 is utilized in Row 8, and the constraint 2 is utilized in Row 12 of
Algorithm 2.

(3) Small segment elimination

If the point density of trees is dense, there may be some small segments (planar and smooth
surfaces) in the tree areas. Therefore, we should remove these small segments from FP, and add
the points in these small segments to SP. There is a parameter in this procedure, i.e., the minimum
size threshold smin. smin is expressed via the number of points in a segment.

Specifically, The RG with RANSAC step divides the input 3D point cloud into two point sets.
The first set is the regular point set RP, and the second set is the scattered point set SP. Points in RP
are clustered into planar and smooth surfaces, and points in SP are clustered into rough surfaces in the
subsequent step. In the RG with RANSAC step, there are two procedures for dividing regular points
and scattered points, which are shown as follows:

• For a query point pi in Algorithm 1, we first find kn neighbors of it, and then plane-based RANSAC
is performed to determine inliers PIi which is on the local fitted plane. If pi is not in PIi, it will be
recognized as a scattered point.

• When the Algorithm 2 is performed, regular points are recognized and clustered into a number
of segments containing planar and smooth surfaces. There may be misjudgment if a planar or
smooth surface is small enough. Therefore, the small segment should be removed and points in it
will be recognized as scattered points.

The result of the RG with RANSAC step is presented in Figure 3a. Points rendered in black are
scattered points and other points are regular points.



Remote Sens. 2017, 9, 288 8 of 34

Remote Sens. 2017, 9, 288 8 of 34 

 

(a)

(b)

(c)

Figure 3. Results of internal steps in the step-wise point cloud segmentation: (a) Intermediate result 
after the process of the region growing (RG) with RANdom SAmple Consensus (RANSAC) step. The 
scattered points are rendered in black; (b) Intermediate result after the process of the initial patch 
construction; (c) The result of the step-wise point cloud segmentation. 

2.1.2. Scattered Points Clustering 

In this step, the scattered points in ܵܲ are first clustered into a number of initial patches, and 
then rough surfaces are extracted by growing these initial patches. The two substeps are detailed as 
follows: 

(1) Initial patch construction 

This substep is an iterative procedure. An initial patch is iteratively extracted from the 
scattered point set ܵܲ, until all the points in ܵܲ have been traversed. There are two parameters 
in this procedure, i.e., the maximum size threshold ݇௣ and the maximum distance threshold ݀௠௔௫. The number of points in an initial patch has to be smaller than ݇௣. Moreover, an initial 
patch has to satisfy the follow constraint: 

Figure 3. Results of internal steps in the step-wise point cloud segmentation: (a) Intermediate result
after the process of the region growing (RG) with RANdom SAmple Consensus (RANSAC) step.
The scattered points are rendered in black; (b) Intermediate result after the process of the initial patch
construction; (c) The result of the step-wise point cloud segmentation.

2.1.2. Scattered Points Clustering

In this step, the scattered points in SP are first clustered into a number of initial patches, and then
rough surfaces are extracted by growing these initial patches. The two substeps are detailed as follows:

(1) Initial patch construction

This substep is an iterative procedure. An initial patch is iteratively extracted from the scattered
point set SP, until all the points in SP have been traversed. There are two parameters in this
procedure, i.e., the maximum size threshold kp and the maximum distance threshold dmax.
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The number of points in an initial patch has to be smaller than kp. Moreover, an initial patch has
to satisfy the follow constraint:

max
i

[(xi − xc)
2 + (yi − yc)

2 + (zi − zc)
2] < dmax for i = 1, . . . , kp. (2)

where (xi, yi, zi) is a point in an initial patch, and (xc, yc, zc) is the centroid point of the initial patch.
The details of this procedure is shown in Algorithm 3. To stabilize this procedure, the curvature
of each point in {SP} is estimated. These points in {SP} are sorted according to their curvatures
from minimum to maximum, and then are traversed in order.

Algorithm 3. Initial patch construction.

Input: Scattered point set {SP}. Parameters: kp, dmax

1: Initial patch set {PT} ← ∅ , Dirty indicator {DI} ← false , Covariance matrix set {CM} ← ∅
2: Estimate curvatures of the points in {SP} {CUR} ← A

(
kp
)

3: Sort {CUR} from minimum to maximum, and obtain the sorted ID {IDs} of each scattered point
4: For i = 0 to size ({IDs}) do
5: Select i-th point pi as the query point
6: Find kp nearest neighbors for pi based on a kd-tree {NEIi} ← B

(
i, kp, {SP}

)
7: Extract a subset of the kp nearest neighbors based on the threshold dmax {PTi} ← C({NEIi}, dmax)

8: For j = 0 to size({PTi}) do
9: If DI({PTi}(j)) == true
10: Go to Row 4
11: End If
12: End For
13: {PT} ← {PT} ∪ {PTi}
14: Update {DI} for all the points in {PTi} {DI} ← D({DI}, {PTi})
15: End For
16: Merge non-dirty points to their nearest patch {PT} ← E({PT}, {DI}, dmax)

17: Compute covariance matrix for each {PTi} in {PT} {CM} ← F({PT})
18: Sort initial patches based on their determinants with descending order {PT} ← G(PT, CM)

19: Normalize covariance matrices {CM} ← H(CM)

Output: {PT}, {CM}

As shown in Algorithm 3, the parameter kp is utilized in Row 2 and 6 to determine how many
neighbors of a query point will be detected for kd_tree search. The parameter dmax is utilized
in Row 7 to restrict the distance between a neighbor and the query point. Only neighbors with
the distance smaller than dmax are extracted to construct an initial patch. After all the initial
patches are extracted, their covariance matrices are computed (Row 17). Let pi = (xi, yi, zi) for
i = 1, 2, . . . , N, be the points in an initial patch, the covariance matrix M is defined as:

M =
1

N − 1 ∑N
i=1(pi − pu)(pi − pu)

T , (3)

where pu is the mean vector of all the points in the patch.

After all the covariance matrices are determined, these initial patches in PT are sorted by the
determinants of their covariance matrices. Finally, each covariance matrix is normalized by its
determinant. The result of the initial patch construction is shown in Figure 3b.

(2) Patch growing

The patch growing is similar to the RG with redefined constraints procedure. Therefore, we do not
present the pseudo code in the following. In this procedure, the growing unit is an initial patch
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rather than an individual point. Each initial patch is considered as a seed and grew in the order
obtained in the initial patch construction procedure (Row 18 of Algorithm 3). Two constraints for
patch growing are defined as follows:

• Constraint 1: local connectivity

Only adjacent patches of the seed patch can be added into the current segment.

• Constraint 2: geometrical similarity

The geometrical difference Dpa of two patches in a segment has to be smaller than a threshold thsp.
Dpa is defined by using log Euclidean Riemannian metric [58] which measures how close two
covariance matrices are. Given two covariance matrices M1 and M2, Dpa is computed as follows:

Dpa = ||log M1 − log M2||F, (4)

where log(·) is the matrix logarithm operator and ||·||F is the Frobenius norm.

After these two steps have been performed, points are clustered into three kinds of segments,
i.e., planar, smooth, and rough surfaces. If small segments with a size smaller than the minimum size
threshold smin still exist, we merge them with their nearest neighbor segments. This step, which is an
optimizing procedure, will iterate until all the segments are traversed. The result of the step-wise point
cloud segmentation method is shown in Figure 3c.

2.2. Employed Features and Their Calculation

The difference of our method from the others is that we extract features of segments rather than
individual points. Herein, we focus on four groups of geometric features, namely projection-area-based
ones [18], eigenvalue-based ones [19], elevation-based ones [18], and other ones.

2.2.1. Projection-Area-Based Features

Projection-area-based features are first proposed in [39], and then are applied to 3D point cloud
classification [18]. In this paper, we borrow the idea from literature [18] which is shown in Figure 4.
However, the difference of our method is that the basic processing unit is a segment rather than an
individual point. A segment has no fixed size compared to the neighborhood of an individual point.
Therefore, a larger segment has larger projection area than a smaller segment. This problem affects the
distinctiveness of this kind of features. We define two ratios to overcome this problem. The first one is
the tangent plane projection ratio PRt, and the second one is the horizontal projection ratio PRh.

• Tangent plane projection ratio PRt

First of all, a covariance matrix is computed from all points in a segment. The normal vector is
determined via the eigenvector corresponding to the lowest eigenvalue and a new 2D coordinate
system with two coordinate axis corresponding to the largest and middle eigenvectors is
constructed. Next, we project all the points in the segment along the normal direction into
the coordinate system. The maximum and minimum coordinates in the coordinate system are
determined, and a 2D grid is constructed by a given gird bin size. Then, we determine the number
of non-bare bins that have projection points as the tangent plane projection area PAt. Finally,
the ratio PRt is defined as:

PRt =
PAt

PAAt
, (5)

where PAAt is the number of all bins in the 2D grid.

• Horizontal projection ratio PRh
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This feature extraction procedure is similar to that of the tangent plane projection ratio, but
we select the direction parallel to the Z-axis as the normal direction. Next, we construct 2D
grid in XY-plane, and then accumulate the number of non-bare bins as the horizontal projection
area PAh. Finally, the ratio PRh is defined as PRh = PAh/PAAh, where PAAh is the number of
all bins. Figure 5a depicts this feature. In this paper, the bin size is set to 0.2 m for both the
two projection-area-based features.
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2.2.2. Eigenvalue-Based Features

Herein, the covariance matrix is first determined by a segment, and then a set of positive
eigenvalues λ1, λ2, λ3(λ1 > λ2 > λ3) [19] and normalized eigenvalues ei = λi/ ∑λ with i ∈ {1, 2, 3}
are computed. We employ ten eigenvalue-based features: highest eigenvalue λ1, medium eigenvalue
λ2, lowest eigenvalue λ3, linearity λl , planarity λp, scattering λs, anisotropy λa, omnivariance λo,
eigenentropy λe (see Figure 5b) and change of curvature λc. The latter seven features are computed as:

λl =

√
λ1 −

√
λ2

λ1
, (6)

λp =

√
λ2 −

√
λ3

λ1
, (7)

λs =

√
λ3

λ1
, (8)

λa =
e1 − e3

e1
, (9)

λo = 3
√

e1e2e3 (10)

λe = −
3

∑
i=1

ei ln(ei), (11)
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λc =
e3

e1 + e2 + e3
. (12)

2.2.3. Elevation-Based Features

In this part, we define four elevation-based features, the latter three borrow the idea from the
height-based features for individual points presented in [18].

• Relative elevation Hr

We first determine the adjacent segments for a query segment Sq in the XY-plane. Neighbors
of all the points in Sq are searched in XY-plane by a kd_tree with a given distance threshold.
The segments Si

a for i = 1, . . . , N which contain the searched neighbors are the adjacent segments
of Sq. Next, a point pi

a which is closest to Sq is determined in Si
a. Then, a point pi

q which is closest
to Si

a is determined in Sq, and pi
a and pi

q construct a neighboring point pair which represents the
relationship between Si

a and Sq. Finally, the relative elevation Hr is defined as:

Hr = max
(

Z
(

pi
q

)
− Z

(
pi

a

))
for i = 1, . . . , N (13)

where Z
(

pi
q

)
is the z-coordinate of pi

q, and Z
(

pi
a
)

is the z-coordinate of pi
a. Hr is shown in

Figure 5c.

• Elevation variance Hv

This feature Hv is the variance of elevation values of all points in each segment. Hv is computed as:

Hv =
1
N

N

∑
i=1

(Hi − Have)
2, i = 1, . . . , N, (14)

where N is the total number of points in the segment, Have is the average elevation of all points in
the segment, Hi is the elevation of the i-th point in the segment.

• Elevation difference Hdi f f

This feature is the difference between the highest elevation Hhighest and the lowest elevation
Hlowest of a segment. In other words, the elevation difference Hdi f f is computed as Hdi f f =

Hhighest − Hlowest.

• Normalized elevation Hn

This feature is the elevation difference between the centroid point and the lowest point of a
segment. The normalized elevation Hn is defined as:

Hn = Have − Hlowest, (15)

where Have is the elevation of the centroid point, and the Hlowest is elevation of the lowest point.

2.2.4. Other features

• Area Oar

The number of points in a segment is defined as area feature Oar, which reflects the area of
the segment.

• Slope Osl

This feature Osl is computed as the included angle between the normal of a segment and a vertical
vector. Osl is shown in Figure 5d.
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Overall, the extracted four groups of features are list in Table 1.

Table 1. The extracted features.

Features Sign

Projection-area-based features PRt, PRh
Eigenvalue-based features λ1, λ2, λ3, λl , λp, λs, λa, λo, λe, λc
Elevation-based features Hr, Hv, Hdi f f , Hn

Others Oar, Osl

2.3. Random Forests Based Feature Selection and Classification

2.3.1. Random Forests

The RF classifier [50] is an ensemble of a set of decision trees. These trees in RF are created by
drawing a subset of training data through a bagging approach. The bagging randomly selects about
two thirds of the samples from a training data to train these trees. This means that the same sample can
be selected several times, while others may not be selected at all [51]. Then, the remaining samples are
used in an internal cross-validation technique for estimating performs of RF. In addition, the Weighted
Random Forest [59] method is utilized for solving the imbalanced sample problem in RF.

Two parameters, i.e., the number Ntree of trees and the number N f eas of features, are required
for using a RF classifier. Then, each tree in RF is independently produced without any pruning.
The number N f eas of features is used for training each tree. Each node in a tree is split by selecting
N f eas features from the d-dimensional input feature space at random. The splitting function usually
uses Shannon entropy or Gini index as a measure of impurity. In prediction, each tree votes for a class
membership for each test sample, the class with maximum votes will be considered as the final class.

2.3.2. Feature Selection

The objective of feature selection is to identify a small set of discriminative features that can still
achieve a good predictive performance [19]. The RF provides a measure VIi of variable importance
based on averaging the permutation importance measure of all the trees which is shown to be a reliable
indicator [60]. The permutation importance measure is based on Out-Of-Bag (OOB) errors, and is
utilized to select features.

Herein, we use the variable importance measure in RF and the backward elimination method [52]
to select features. The backward elimination method removes the most relevant features by iteratively
fitting RF. In our approach, only one feature with the lowest importance value is eliminated at each
iteration, and then a new forest is built by the remained Nrm f features. At the end of each iteration,
we compute the mean decrease permutation accuracies [19] VIi for i = 1 . . . Nrm f and rank the
remained features by them. To measure the importance of the remained features at each iteration, the
overall mean decrease permutation accuracy ODk is computed by averaging all the remained features’
importance values. ODk is computed as follow:

ODk =
1

Nr f

Nrm f

∑
i=1

VIi for k = 1 . . . Nbi (16)

where k corresponds to the iteration times, and Nbi is the total number of iterations. The iterative
procedure stops and all the RFs are fitted when Nrm f is equal to N f eas.

After all the RFs are fitted, we computed the range Ir between the maximum and the
minimum overall mean decrease permutation accuracies (ODmax = max(ODk) f or k =

1 . . . Nbi, and ODmin = min(ODk) f or k = 1 . . . Nbi). Then, we select a critical point according
to the variation tendency of ODk. In this paper, the principle of the selection is that the variation of
ODk caused by the eliminated features should be lower than 20%, i.e., the critical point which divides
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the range Ir by a ratio of at least 8:2 is selected. At last, we select the most important features according
to the critical point and the backward elimination results.

2.3.3. Supervised Classification

After the feature selection, the training samples with selected feature set are utilized to train a RF
classifier, and the classifier is used to predict the labels of unlabeled segments.

2.4. Post-Processing

There may be some misjudgments in the above initial classification results. Actually, both natural
and artificial objects generally have been associated with specific semantic information. For example,
cars occupy small areas and are parked on ground, most of building roofs are composed of planar faces
and have relatively large area, and wires are elevated over ground. Moreover, semantic information is
more convenient to be detected via segments than individual points. Therefore, semantic information
is utilized to define several rules for optimizing the initial results. Note that the post-processing stage
cannot correct all the misjudgments.

To define the semantic rules, two types of neighborhoods are determined. The first one Ngbr1 is
determined in 3D space, and the second one Ngbr2 is determined in XY-plane. In the post-processing
stage, if we find a misjudged segment based on these rules, we first detect labels of its adjacent
segments based on Ngbr1, then we relabel it as the class which arises the most times. Herein, we only
list the useful rules for our approach. The rules for each class are shown as follows.

(1) Rule for ground

• In the neighborhood Ngbr1 of a query ground segment Sgs, Si
ga1 for i = 1, 2, . . . , Ns is the

i-th adjacent segment. The elevation difference between each segment pair containing Sgs

and Si
ga1 is in a small interval Intgs.

• In the neighborhood Ngbr2 of a query ground segment Sgs, there is no adjacent segment
Si

ga2, i = 1, . . . , Ns whose maximum elevation much lower than the minimum elevation
of Sgs.

• Considering an extreme case, if we want to obtain a high precision DTM from a complex
mountainous region, we can combine the initial ground segments with the segment-based
PTD (progressive TIN densification) filtering method [61] or a progressive graph cut
method [62]. First, the ground segments in the initial classification result are considered as
latent ground segments. Next, a 2D grid is constructed with a bin size equal to the maximum
building size. Then, a latent ground segment which contains the lowest point in each bin
is recognized as a ground seed segment. Finally, points in the ground seed segments are
utilized to construct a TIN as the initial ground surface, and ground points will be extracted
by a PTD or a progressive graph cut method.

(2) Rule for building roofs

In the neighborhood Ngbr1 of a query building roof segment Sbs, it has the same characteristics as
ground. However, in the neighborhood Ngbr2, we can find an adjacent segment Si

ba2, i = 1, . . . , Ns

whose maximum elevation is much lower than the minimum elevation of Sbs, the elevation
difference threshold of this elevation difference is denoted as Dmm.

(3) Rule for vehicles

• A car segment should have a certain range of area: [Arvmin, Arvmax].
• In the neighborhood Ngbr1 of a query car segment Svs, there is at least one adjacent segment

Si
va1, i = 1, . . . , Ns labeled as ground.
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(4) Rule for wires

• In the neighborhood Ngbr1 of a query wire segment Sps, there is no adjacent segment
Si

pa1, i = 1, . . . , Ns with a label of ground or car.

• The 3D shape of a wire segment can be linear or planar, however, cannot be volumetric.

(5) Rule for vegetation

• Vegetation segments are often confused with vehicle segments. Besides, the misjudged
segments in the initial classification result tend to arise in high vegetation rather than low
vegetation. Therefore, the misjudged segments in high vegetation are able to be corrected by
the rules for vehicles simultaneously.

• Considering an extreme case, we assume that some vehicle segments are misjudged as
low vegetation segments. First, a misjudged query segment should have a neighbor
labeled as ground, then, if the height, width and length of the segment are in certain
ranges

[
TCarmin

H
, TCarmax

H

]
,
[

TCarmin
W

, TCarmax
W

]
,
[

TCarmin
L

, TCarmax
L

]
, the segment will be relabeled

as vehicle. The thresholds of these ranges are cited from the approach in literature [24].
Besides, the height, width and length of a segment are computed in a local coordinate
framework composed of v1, v2 and v3. The v1, v2 and v3 are eigenvectors of the covariance
matrix M constructed by points in the segment as formula (3).

3. Experiments and Discussions

We developed a protype framework for the proposed segment-based point cloud classification
method using C++ language and Point Cloud Library (PCL) [63]. We also implemented segment-based
point cloud classification using SVM and the RG segmentation [57], in which the open source
libSVM [64] is used for the implementation of SVM and PCL is used for the implementation of
RG segmentation.

The experiments are conducted on a workstation running Microsoft Windows 7 (×64) with
two 16-Core Intel Xeon E5-2650, 64GB Random Access Memory (RAM) and 3TB hard disk.

There are two parts in the experiments and discussions. The first part is experimental setting
which includes study areas and evaluation metrics. The second part is results and discussions which
are presented in Sections 3.2–3.6.

In the second part, there are three improvements compared with existing classification methods,
i.e., the step-wise point cloud segmentation, the integration of RF and the segment-based classification,
and the employment of semantic rules in the post-processing stage. Therefore, we first discuss
the impact of the three improvements and analyze the advantages of them in Sections 3.2–3.4.
Then, the classification results and accuracies of the protype framework are shown in Sections 3.5
and 3.6. Note that the classification results should be presented after the discussion of the three
improvements. Because the classification results are obtained by the parameters which are determined
by the discussion in Sections 3.2–3.4.

3.1. Experimental Setting

3.1.1. Study Areas

Three study areas are involved in our experiments. The first one is selected from a publicly
available ALS dataset which is obtained by the University of Iowa in 2008 [65]. The data are collected
to survey the Iowa River Flood along the Iowa River and Clear Creek Watershed. The data collection
is funded by NSF Small Grant for Exploratory Research (SGER) program. Area 1 is shown in Figure 6a
and it contains 1,512,092 points with an average point spacing of 0.6 m. In Figure 6a, the point cloud
of Area 1 is colored by elevation. In this area, the ground is flat and smooth. On the ground, there
are some parking lots where many vehicles are parked. In addition, some vehicles are parked under
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tree crowns, or close to houses. Buildings in this area are composed of several planar faces with
different geometric shapes and a number of building elements such as chimneys. Several wires are
intersected, and cross the trees with high elevation. Most trees and building roofs are overlapped.
After the step-wise point cloud segmentation performed, 5949 segments are extracted from Area 1.
250 segments are selected as training samples for the RF classifier. Details of the training samples in
Area 1 are shown in Table 2. Specifically, only one sample is selected for the class ground. Ground
in Area 1 is flat and smooth, and points on the ground are clustered into only one segment by the
step-wise point cloud segmentation.
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The second one is selected from a publicly available ALS dataset which is collected in Sonoma
County [66] between 28 September and 23 November 2013 by the Watershed Sciences, Inc. (WSI).
The dataset is provided by the University of Maryland and the Sonoma Country Vegetation Mapping
and Lidar Program under grant NNX13AP69G from NASA’s Carbon Monitoring System. Area 2 is
shown in Figure 6b and it contains 1509228 points with an average point spacing of 1.0 m. In Figure 6b,
the point cloud of Area 2 is colored by elevation. In this area, there is a mountain which is full of
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trees and ornamented by several houses. Buildings are overlapped with tree canopies significantly.
Moreover, building elements such as skylights have complex 3D structure. Wires go across the trees
have high elevations and are intersected with each other. A large number of vehicles are parked
under tree crowns or near low vegetation. After the step-wise point cloud segmentation performed,
10697 segments are extracted from Area 2. 414 segments are selected as training samples for the RF
classifier. Details of the training samples in Area 2 are shown in Table 2. Specifically, the number
of training samples for the class ground is smaller than other classes. Although a mountain exists in
Area 2, a majority of ground regions are flat and smooth. Therefore, points on ground in Area 2 are
clustered into a smaller number of segments than other classes.

Table 2. Number of training samples (segments) per class for the three study areas.

Data
Class

Ground Building Vegetation Vehicle Wire ∑

Area 1 1 47 107 65 30 250
Area 2 4 66 228 94 22 414
Area 3 19 65 81 - - 165

The third one is selected from the same dataset of Area 2. Area 3 is shown in Figure 6b and it
contains 685870 points with an average point spacing of 1.0 m. In Figure 6b, the point cloud of Area 3 is
colored by elevation. In this area, all the points are on a mountainous ground which is full of trees and
ornamented by several houses. Area 3 is utilized to test the transplanting of the proposed classification
framework to mountainous areas. There are only three types of objects, i.e., ground, buildings and
vegetation. The ground of Area 3 is rugged with step edges. All the buildings are surrounded by
vegetation. After the step-wise point cloud segmentation performed, 6658 segments are extracted
from Area 3. 165 segments are selected as the training samples for the RF classifier. Details of the
training samples in Area 3 are shown in Table 2. Specifically, the number of training samples for the
class ground in Area 3 is larger than those in Area 1 and 2 because of the complex topographies.

In this paper, we classify Area 1 and 2 into five classes, i.e., ground, building, vegetation, vehicle
and wire, and Area 3 into three classes, i.e., ground, building and vegetation. Area 1 and 2 are utilized to
analyze the impact of the step-wise point cloud segmentation, the integration of RF and segment-based
classification method, and the post-processing stage. Area 3 is employed to analyze to the classification
result of a mountainous area with complex topographies.

To quantitatively analyze the classification accuracy, we obtain ground true for the three study
areas by manual labelling. The details of the ground true for the three study areas are shown in Table 3.
Note that quantitative analysis is derived by individual points rather than segments, because the
hypothesis that no error exists in segments is unreasonable. Therefore, we present the ground true
using individual points rather than segments.

Table 3. Number of points per class in ground true of the three study areas.

Data
Class

Ground Building Vegetation Vehicle Wire ∑

Area 1 949,431 218,835 309,889 24,138 9799 1,512,092
Area 2 589,231 227,442 651,022 36,520 5013 1,509,228
Area 3 202,755 64,337 418,778 - - 685,870

3.1.2. Evaluation Metrics

For evaluation, we employ the confusion matrix and consider five commonly used measures:
overall accuracy OA, Kappa coefficient KA. , precision P, recall R, and F1-score. They are computed
according to the confusion matrix as follows:
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OA =
∑m

i=1 tpi

N
, (17)

KA =
N ∑m

i=1(tpi)−∑m
i=1((tpi + f pi)× (tpi + f ni))

N2 −∑m
i=1((tpi + f pi)× (tpi + f ni))

(18)

P =
tpi

tpi + f pi
(19)

R =
tpi

tpi + f ni
(20)

F1 = 2· P·R
P + R

(21)

where tpi is the main diagonal element in i-th row, f pi is computed from the sum of i-th column,
excluding the main diagonal element, f ni is the sum along i-th row, excluding the main diagonal
element, m is the number of classes, and N is the number of all the points in an input point cloud.

3.2. Impact of the Step-Wise Point Cloud Segmentation

Our proposed step-wise point cloud segmentation method can extract three kinds of segments,
i.e., planar, smooth and rough surfaces. We compare our method with the RG method [57], which has
been published in PCL. The PCL supplies two kinds of processes based on the RG method. The first
one is designed for plane extraction (RG-based plane segmentation) and the second one is designed
for smooth surface extraction (RG-based smoothness segmentation). Six parameters in RG method
published in PCL are used, i.e., the number kn of neighbors for normal estimation, the number kg

of neighbors for growing, the smoothness threshold thθ , the curvature threshold thc, the residual
threshold thr, and the minimum size threshold smin.

3.2.1. Qualitative Comparison

To visually compare our segmentation method with the RG methods, we select a small part from
Area 1 to present the segmentation results. The parameter setting of our segmentation method is
shown in Table 4 and the parameter setting of the RG method is shown in Table 5. Figure 7 presents
the comparison of these segmentation results. We can find that our segmentation method not only
can detects three kinds of segments, but also can clusters the ground points into a small number
of segments, especially a single segment. Besides, intersecting planes, building roofs covered by
vegetation, and small or narrow planes can be extracted by our segmentation method (see Figure 7a).
The plane segmentation has the following shortcomings: (1) The segmentation result of the intersection
between two planes is insufficient; (2) Small objects such as cars cannot be extracted; (3) Most majority
of scattered points such as tree points cannot be segmented. The smoothness segmentation has the
following shortcomings: (1) Intersected planes cannot be divided; (2) Small objects such as cars cannot
be extracted, although it is implemented to extract smooth surfaces; (3) The building points and tree
points could be clustered into the same region if they overlap with each other.

Table 4. The parameter setting of our method for a small part in Area 1.

Parameters kn dr thθ smin kp dmax thsp

Our method 50 0.1 0.1 30 15 1.0 1.5

Table 5. The parameter setting of RG method for a small part in Area 1.

Parameters kn kg thθ thc thr smin

RG-based plane segmentation 50 50 0.1 0.1 0.3 0
RG-based smoothness segmentation 50 50 0.1 0.1 0.5 0



Remote Sens. 2017, 9, 288 20 of 34

Remote Sens. 2017, 9, 288 20 of 34 

 

 
(a)

(b) (c)

Figure 7. Comparison of our segmentation method with the RG methods presented in Point Cloud 
Library (PCL): (a) The result of our method; (b) The result of the RG-based plane segmentation; (c) 
The result of the RG-based smoothness segmentation. 

3.2.2. Quantitative Comparison 

To quantitatively analyze the advantages of our segmentation method, the entire data of Area 1 
and Area 2 are utilized. The time costs of our proposed segmentation method for processing Area 1 
and 2 are 3.7 min and 4.4 min, respectively. We compare our method with the RG methods in terms 
of the classification measure ܨଵ	score. In order to facilitate an objective comparison, all results based 
on the RG methods are averaged over 20 runs. The parameter setting of the step-wise point cloud 
segmentation method is shown in Table 6. The ܨଵ-score comparison is shown in Figure 8. The red bar 
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Figure 7. Comparison of our segmentation method with the RG methods presented in Point Cloud
Library (PCL): (a) The result of our method; (b) The result of the RG-based plane segmentation; (c) The
result of the RG-based smoothness segmentation.

3.2.2. Quantitative Comparison

To quantitatively analyze the advantages of our segmentation method, the entire data of Area 1
and Area 2 are utilized. The time costs of our proposed segmentation method for processing Area 1
and 2 are 3.7 min and 4.4 min, respectively. We compare our method with the RG methods in terms
of the classification measure F1 score. In order to facilitate an objective comparison, all results based
on the RG methods are averaged over 20 runs. The parameter setting of the step-wise point cloud
segmentation method is shown in Table 6. The F1-score comparison is shown in Figure 8. The red bar
describes the F1-score of our segmentation method, while the green bar describes the F1-score of the
RG-based smoothness segmentation method, and the blue bar describes the F1-score of the RG-based
plane segmentation. All classes’ F1-score values of our segmentation method are larger than those of
the RG methods for both Area 1 and 2. Specially, the F1-score values of the class vehicle derived by our
method are significantly higher. The reason is that our segmentation method clusters all the points in a
small-scale object into a few segments.

Table 6. The parameter setting of our method for Area 1 and 2.

Parameters kn dr thθ smin kp dmax thsp

Area 1 50 0.1 0.1 30 15 1.0 1.5
Area 2 50 0.1 0.1 30 15 3.0 2.0
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score values of Area 1; (b) ܨଵ-score values of Area 2. 
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The two parameters in the RF classifier, i.e., ௧ܰ௥௘௘  and ௙ܰ௘௔௦  are utilized not only in the 
classification procedure, but also in the feature selection task. In the feature selection task, ௙ܰ௘௔௦ is 
set to 4 according to the existing studies [19,38], which is a default setting and turned out to be a good 
choice of OOB rate [19]. However, different studies have different settings of ௧ܰ௥௘௘. Therefore, we 
have to unfold a test before feature selection for finding an appropriate value of ௧ܰ௥௘௘. Besides, this 
test is also meaningful for supervised classification tasks in which the setting of ௧ܰ௥௘௘  is still 
stochastic [23]. 

To find an appropriate value of ௧ܰ௥௘௘  for a stable classification, we test the classification 
procedure with ௧ܰ௥௘௘  varying from 100 to 1000 and ௙ܰ௘௔௦  from 1 to 9. For evaluating the 
classification results, we utilize overall accuracy and Kappa coefficient to analyze the overall 
performance. Figure 9a,b show the variation tendency of overall accuracy and Figure 9c,d show the 
variation tendency of the Kappa coefficient. To make them more concise, we compute the mean and 
the standard deviation of the derived overall accuracy and kappa coefficient values under different 
settings of ௧ܰ௥௘௘  (see Figure 10a–d). The stability of the classification result will increase with an 
increasing value of ௧ܰ௥௘௘. It is surprising that the overall accuracy and Kappa coefficient increase 
rapidly and the standard deviation decreases markedly with the augment of ௧ܰ௥௘௘ until it reaches 
400. This case occurs in both Area 1 and Area 2. It may be the reason that 500 is the default value of ௧ܰ௥௘௘ in the R package for random forests [51]. Therefore, setting ௧ܰ௥௘௘ to 400 is reasonable in our 
approach, especially for decreasing the computational burden. 
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Figure 8. All classes’ F1-score values of different segmentation methods for Area 1 and Area 2:
(a) F1-score values of Area 1; (b) F1-score values of Area 2.

3.3. The Integration of RF and Segment-Based Classification

3.3.1. Parameter Tuning for Random Forests

The two parameters in the RF classifier, i.e., Ntree and N f eas are utilized not only in the classification
procedure, but also in the feature selection task. In the feature selection task, N f eas is set to 4 according
to the existing studies [19,38], which is a default setting and turned out to be a good choice of OOB
rate [19]. However, different studies have different settings of Ntree. Therefore, we have to unfold a test
before feature selection for finding an appropriate value of Ntree. Besides, this test is also meaningful
for supervised classification tasks in which the setting of Ntree is still stochastic [23].

To find an appropriate value of Ntree for a stable classification, we test the classification procedure
with Ntree varying from 100 to 1000 and N f eas from 1 to 9. For evaluating the classification results,
we utilize overall accuracy and Kappa coefficient to analyze the overall performance. Figure 9a,b
show the variation tendency of overall accuracy and Figure 9c,d show the variation tendency
of the Kappa coefficient. To make them more concise, we compute the mean and the standard
deviation of the derived overall accuracy and kappa coefficient values under different settings of Ntree

(see Figure 10a–d). The stability of the classification result will increase with an increasing value of
Ntree. It is surprising that the overall accuracy and Kappa coefficient increase rapidly and the standard
deviation decreases markedly with the augment of Ntree until it reaches 400. This case occurs in
both Area 1 and Area 2. It may be the reason that 500 is the default value of Ntree in the R package
for random forests [51]. Therefore, setting Ntree to 400 is reasonable in our approach, especially for
decreasing the computational burden.
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3.3.2. RF-Based Feature Selection 

To select features, we utilize the backward elimination method and iteratively fit a RF with the 
aforementioned parameter setting. In each fitted RF, the importance of each feature is estimated. 
Figure 11 shows all the feature importance values of Area 1 and 2 which are estimated in the first 
time fitting. 
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Figure 10. The variation tendencies of mean overall accuracy values and standard deviation values of
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3.3.2. RF-Based Feature Selection

To select features, we utilize the backward elimination method and iteratively fit a RF with the
aforementioned parameter setting. In each fitted RF, the importance of each feature is estimated.
Figure 11 shows all the feature importance values of Area 1 and 2 which are estimated in the first
time fitting.
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Figure 11. Feature importance values based on the mean decrease permutation accuracy estimated by
the first time fitted RF: (a) is for Area 1; (b) is for Area 2.

The backward elimination method first fits a RF from the feature set S f eas, then the feature with
the lowest importance value is eliminated from S f eas. The two steps are iterated until the number of
features in S f eas is equal to 4. Subsequently, we select features based on the eliminating order.

To determine the number of independent features, we present the variation tendency of the overall
mean decrease permutation accuracy ODk in Figure 12. For Area 1 (see Figure 12a), the maximum
overall mean decrease permutation accuracy ODmax is 0.1834, and the minimum overall mean decrease
permutation accuracy ODmin is 0.03426. When only 11 features are remained, the overall mean decrease
permutation accuracy ODi is 0.05864, which divides the range Ir with a ratio no less than 8:2. Besides,
the tendency in Figure 12a decreases rapidly until the remained feature number reaches 11. For Area 2
(see Figure 12b), the maximum overall mean decrease permutation accuracy ODmax is 0.2215, and the
minimum overall mean decrease permutation accuracy ODmin is 0.03991. When only 10 features are
remained, the overall mean decrease permutation accuracy ODi is 0.07588, which divides the range Ir

with a ratio no less than 8:2. However, the tendency of Figure 12b decreases rapidly from 10 to 11 remained
features, therefore, we select 11 features for Area 2 as a compromised solution. According to the
aforementioned analysis, the number 11 of independent features is reasonable for both Area 1 and 2.

According to the aforementioned procedure, the selected features for Area 1 are slope Osl, lowest
eigenvalue λ3, elevation difference Hdi f f , scattering λs, change of curvature λc, eigenentropy λe,
omnivariance λo, anisotropy λa, highest eigenvalue λ1, normalized elevation Hn and area Oar.
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integrations, the feature selection procedure in our method is not performed, due to the fact that 
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Besides, our method obtains a mean standard deviation 0.0014 of overall accuracy values (0.0017 for 
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Figure 12. Feature selection via iterative elimination for Area 1 and 2 based on the overall mean
decrease permutation accuracy: (a) is for Area 1; (b) is for Area 2.

The selected features for Area 2 are scattering λs, area Oar, elevation difference Hdi f f , lowest
eigenvalue λ3, omnivariance λo, relative elevation Hr, slope Osl , anisotropy λa, medium eigenvalue
λ2, eigenentropy λe and normalized elevation Hn. The selected features are listed in elimination orders
for Area 1 and 2 respectively.

3.3.3. Robustness of the Integration of RF and the Segment-Based Classification

To test this robustness and the stability of the integration of RF and the segment-based classification,
we add some noisy vectors to the computed feature set. It is worth noting that we do not record which
feature vector is noisy, and therefore, we do not know which one is the noisy vector in the feature set
when we train a RF and make prediction. Then, we analyze the overall accuracy and Kappa coefficient
values of the classification results with different numbers of noisy vectors.

Besides, we implement the integration of SVM and the segment-based classification presented
in [36] and analyze its robustness. It is worth noting that both the two integration methods have
no complemental step for dealing with noises. To impartially compare the robustness of the
two integrations, the feature selection procedure in our method is not performed, due to the fact
that feature selection is not employed to the integration in [36].

As shown in Figure 13, when there is no noisy feature vector, the two integration methods get the
classification results with similar overall accuracy and kappa coefficient values. When the noisy vector
number is increasing, the values of the integration presented in the literature [36] decrease. Besides,
our method obtains a mean standard deviation 0.0014 of overall accuracy values (0.0017 for Area 1
and 0.0012 for Area 2), and a mean standard deviation 0.0024 of kappa coefficient values (0.003 for
Area 1 and 0.002 for Area 2), with the noisy feature vector number from 0 to 10.

In a close-up theoretical inspection, when RF classifier splits a subset of features in a node, it finds
a feature with the maximum entropy or Gini decrease. In this case, the noisy features can be eliminated
and the best feature corresponding to the maximum decrease is selected. Therefore, our method which
integrates RF with the segment-based classification is more stable and robust.
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3.4. Impact of the Post-Processing Stage Based on the Semantic Rules 

After the supervised classification, an initial classification result is obtained, in which misjudged 
segments may exist. In the post-processing stage, we first define several semantic rules for each class, 
and then utilize them to optimize the initial classification result. Note that the utilized semantic rules 
may be different for different input data, and the post-processing stage cannot correct all the 
misjudgments, however is an optimizing procedure. The rules for ground and the rule 2 for 
vegetation are not employed when we optimize Area 1 while others are employed. The rule 3 for 
ground and the rule 2 for vegetation are not employed when we optimize Area 2 while others are 
employed. Some thresholds are utilized to constrain the optimization which are list in Table 7. These 
threshold values are determined based on the natural form of an object and the point spacing of the 
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Table 7. The threshold values for the post-processing stage used for Area 1 and 2. 
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To qualitatively analyze the impact of the post-processing stage, we select two small areas in 
Area 1 and 2 respectively. Figure 14 shows the initial and the final results of the small areas. In the 
initial classification results (see Figure 14a,c), a number of segments are mislabeled as the class vehicle 
or wire. For example, building elements such as chimneys are often mislabeled as vehicle, tree 
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Figure 13. Comparison between the two integrations under different numbers of noisy feature vectors,
(a,b) depict the accuracy values of our method for Area 1 and 2 respectively, (c,d) depict the accuracy
values of the literature [36] for Area 1 and 2 respectively.

3.4. Impact of the Post-Processing Stage Based on the Semantic Rules

After the supervised classification, an initial classification result is obtained, in which misjudged
segments may exist. In the post-processing stage, we first define several semantic rules for each
class, and then utilize them to optimize the initial classification result. Note that the utilized semantic
rules may be different for different input data, and the post-processing stage cannot correct all the
misjudgments, however is an optimizing procedure. The rules for ground and the rule 2 for vegetation
are not employed when we optimize Area 1 while others are employed. The rule 3 for ground and
the rule 2 for vegetation are not employed when we optimize Area 2 while others are employed.
Some thresholds are utilized to constrain the optimization which are list in Table 7. These threshold
values are determined based on the natural form of an object and the point spacing of the input
point cloud.

Table 7. The threshold values for the post-processing stage used for Area 1 and 2.

Intgs Arcmin Arcmax Dmm

Area 1 — 10 500 2.5
Area 2 2.0 10 300 3.0

To qualitatively analyze the impact of the post-processing stage, we select two small areas in
Area 1 and 2 respectively. Figure 14 shows the initial and the final results of the small areas. In the
initial classification results (see Figure 14a,c), a number of segments are mislabeled as the class vehicle
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or wire. For example, building elements such as chimneys are often mislabeled as vehicle, tree segments
with small size are often mislabeled as the class vehicle or wire. In the post-processing stage, the second
rule for vehicles can deal with the initial false results where other classes of objects are mislabeled as
vehicle, the rules for wires can deal with the initial false results where tree segments are mislabeled as
wire. In the final results presented in Figure 14b,d, the initial false results are corrected based on these
semantic rules.
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3.5. Classification Results and Accuracies 

The final results of Area 1 and 2 are shown in Figure 16. The time costs of our proposed 
classification framework for processing Area 1 and 2 are 21 min and 25 min, respectively. The feature 
extraction procedure is the most time consuming step which costs 9 min and 12 min for Area 1 and 
2, respectively. To quantitatively analyze the accuracies of classification, we compute the confusion 
matrix and the aforementioned five measures in Tables 8 and 9 based on the reference data generated 
by manual labelling. In addition, there may be missing points after the step-wise point cloud 
segmentation performed. These missing points will exist in the finial classification results and but are 
not labeled. In the quantitative evaluation, if some missing points belong to a class according to the 
ground true, they will be considered for evaluation. The revealed missing points are shown in the 
confusion matrices. Note that quantitative analysis is derived by individual points rather than 
segments, because the hypothesis that no error exists in segments is unreasonable. 

As shown in Tables 8 and 9, the proposed method achieves a mean overall accuracy of 0.95255 
(0.9697 and 0.9374 for Area 1 and 2 respectively), and a mean kappa coefficient of 0.9231 (0.9442 and 

Figure 14. Analysis of the impact of the post-processing stage based on semantic rules: (a) The initial
result of the first small area; (b) The final result of the first small area: (c) The initial result of the second
small area; (d) The final result of the second small area.

For quantitative analysis, we compare each class’s F1-score for the initial results and the final
results. Figure 15a,b show the F1-score comparison for Area 1 and Area 2. We can find that the F1-score
of the class vehicle is improved obviously both in Area 1 and 2. Besides, the F1-score values of other
classes are also improved at different levels.
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3.5. Classification Results and Accuracies

The final results of Area 1 and 2 are shown in Figure 16. The time costs of our proposed classification
framework for processing Area 1 and 2 are 21 min and 25 min, respectively. The feature extraction
procedure is the most time consuming step which costs 9 min and 12 min for Area 1 and 2, respectively.
To quantitatively analyze the accuracies of classification, we compute the confusion matrix and the
aforementioned five measures in Tables 8 and 9 based on the reference data generated by manual
labelling. In addition, there may be missing points after the step-wise point cloud segmentation
performed. These missing points will exist in the finial classification results and but are not labeled.
In the quantitative evaluation, if some missing points belong to a class according to the ground true,
they will be considered for evaluation. The revealed missing points are shown in the confusion
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matrices. Note that quantitative analysis is derived by individual points rather than segments, because
the hypothesis that no error exists in segments is unreasonable.

As shown in Tables 8 and 9, the proposed method achieves a mean overall accuracy of 0.95255
(0.9697 and 0.9374 for Area 1 and 2 respectively), and a mean kappa coefficient of 0.9231 (0.9442 and
0.9020 for Area 1 and 2 respectively). The accuracy values of classes ground, building and vegetation are
rather good. The accuracy values of vehicle and wire, are relatively lower than those of the other classes.
The class vehicle achieves a mean F1-score of 0.8504 (0.8519 and 0.8488 for Area 1 and 2, respectively),
and the class wire achieves a mean F1-score of 0.7531 (0.8155 and 0.6907 for Area 1 and 2, respectively).

The classification of small objects such as vehicles is the most challenging task. Generally,
vegetation points make a 3D urban scene more complex and affect the classification of small objects.
For example, wires often go across the trees with high elevation and vehicles are often parked near
low vegetation or under tree canopies. Therefore, in the confusion matrices, vegetation points are
often confused with another class points, and thus decrease the classification accuracy of other classes,
especially for the classes of vehicle and wire. However, the accuracy of class vegetation achieves a mean
F1-score of 0.9422 (0.9429 and 0.9415 for Area 1 and 2, respectively) which is superior.

Table 8. The accuracy analysis of Area 1.

Overall Accuracy: 0.9697, Kappa Coefficient: 0.9442
Ground Building Vegetation Vehicle Wire Missing Points Recall

Ground 942,652 129 5546 463 32 609 0.9929
Building 2161 199,672 13,493 435 782 2292 0.9124

Vegetation 933 6514 296,124 1575 1038 3705 0.9556
Vehicle 1604 569 2053 19,771 67 74 0.8191

Wire 0 547 995 35 8067 155 0.8232
Precision 0.9950 0.9626 0.9306 0.8874 0.8078
F1-score 0.9939 0.9368 0.9429 0.8519 0.8155

Table 9. The accuracy analysis of Area 2.

Overall Accuracy: 0.9374, Kappa Coefficient: 0.9020
Ground Building Vegetation Vehicle Wire Missing Points Recall

Ground 576,460 232 9337 201 225 2776 0.9783
Building 2837 187,101 28,992 282 306 7924 0.8226

Vegetation 8495 9737 616,655 4636 1042 10,457 0.9472
Vehicle 1467 629 3023 30,855 314 232 0.8449

Wire 0 37 846 206 3640 284 0.7261
Precision 0.9783 0.9462 0.9360 0.8528 0.6586
F1-score 0.9783 0.8801 0.9415 0.8488 0.6907
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Area 2; (d) is the classification result of Area 2.

3.6. Transplantation to Mountainous Areas

To test the transplanting of the proposed method, extracted features and obtained parameters to
mountainous areas, we classify a different 3D scene represented by Area 3. Area 3 is a mountainous
area with step edges and rock faces. First, Area 3 is segmented by the proposed step-wise point cloud
segmentation method with the same parameters as Area 2, and segment features are extracted. Next,
a small feature set is selected by the obtained parameters of RF, i.e., Ntree = 400, and N f eas = 4. 9
features are selected by the backward elimination method presented in Section 3.3.2, and they are
lowest eigenvalue λ3, scattering λs, omnivariance λo, slope Osl , change of curvature λc, planarity λp,
anisotropy λa, eigenentropy λe, tangent plane projection area PAt. Then, the ALS point cloud of Area 3
is classified by the select feature set. None of the semantic rules are utilized in the post-processing
stage. 16 min are costed during the whole procedures among which the feature extraction procedure is
the most time consuming step. The confusion matrix contained recall, precision, and F1-score values
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is shown in Table 10, and its corresponding segmentation and classification results are shown in
Figure 17.

Table 10. The accuracy analysis of Area 3.

Overall Accuracy: 0.9117, Kappa Coefficient: 0.8379
Ground Building Vegetation Missing Points Recall

Ground 182,090 4144 16,159 362 0.8981
Building 495 60,045 3485 312 0.9333

Vegetation 18,120 8568 383,143 8947 0.9149
Precision 0.9072 0.8253 0.9512
F1-score 0.9026 0.8760 0.9327
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As shown in Table 10, the proposed classification framework and obtained parameters of RF
achieve an overall accuracy of 0.9117, and a Kappa coefficient of 0.8379. The class ground achieves a
F1-score of 0.9026 which is lower than Area 1 and 2, because the ground of Area 3 is mountainous
and rugged with step edges. The class building achieves a F1-score of 0.8760, and the class vegetation
achieves a F1-score of 0.9327.

4. Uncertainties, Errors and Accuracies

The above experiments suggest that our proposed method obtains good results. There are
three improvements in our proposed classification framework, which improve the accuracies of the
classification results. However, there are still some errors in the classification results. We will list them
according to missing points and the five aforementioned classes.

In the confusion matrices, the missing points appear more likely in the classes building and
vegetation. For the class vegetation, the laser beam may penetrate the tree surface and collects a point in
an internal branch. The internal point may be an isolated point, however, belong to the class vegetation.
For the class building, the missing points often appear on building facades duo to the fact that building
facades are incomplete and points in them are sparse in large-scale ALS point clouds.
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For the class ground, uncertainties and errors are more likely to arise in the areas with mountainous
and rugged topography. In Table 8, the class ground achieves a F1-score of 0.9939 due to the fact that
the ground in Area 1 is flat and smooth. In Table 9, the F1-score of ground (0.9783) is lower than that of
Area 1, because there is a hill that causes the topographical complexity increasing. In Area 3, all the
ground points are located at a mountainous region which are rugged and full of step edges and rock
faces. The F1-score of class ground in Area 3 is 0.9026 which is much lower than those in Area 1 and 2.
However, according to the recall and precision values of ground in Area 3, our proposed classification
framework achieves the average accuracy of existing ALS point cloud filtering methods.

For the class building, the F1-score (0.9368) in Area 1 is superior to those in Area 2 and 3. A close-up
visual inspection shows that there are more buildings with vegetation confused in Area 2 and 3.
Especially in Area 3, all the buildings are surrounded by vegetation and most of them are overlapped by
tall trees. Although the regions where buildings and vegetation are confused are segmented correctly
by the step-wise point cloud segmentation method, these regions still decrease the classification
accuracy of the class building.

For the class vegetation in confusion matrix, vegetation points are often confused with other classes
points. A close-up visual inspection shows that man-made objects such as buildings, vehicles and
wires are often near vegetation. For example, buildings tend to be surrounded by trees, wires often go
across tall trees. Therefore, vegetation makes a 3D scene more complex and affects the classification
accuracy of other classes. However, the class vegetation achieves a mean F1-score of 0.9390 (0.9429,
0.9415 and 0.9327 for Area 1, 2 and 3, respectively) which is superior due to the large cardinal number.

For the class vehicle, the mean F1-score is 0.8504 (0.8519 and 0.8488 for Area 1 and 2, respectively)
which is lower than the classes ground, building, and vegetation. Most misjudgments are caused by
vegetation according to the confusion matrices, though the scene where vehicles are parked close
to low vegetation is able to be correctly segmented. A close-up visual inspection shows that the
mislabeled points always distribute randomly and irregularly. In an extreme case, it is inevitable that
misjudgments exist in low vegetation which is in the same geometric form as a vehicle. However, the
classification accuracy of the class vehicle is superior to the existing studies according to the analysis
presented in Section 3.2.

For the class wire, the mean F1-score is 0.7531 (0.8155 and 0.6907 for Area 1 and 2, respectively).
The wire is the class with the lowest accuracy in our experiments. The wires in our study areas
are rather common low voltage electrical wires than some special parts of overhead electric power
transmission corridors. The misjudgments arise in the areas where wires go across trees. In these
areas, wires and trees have similar point densities and cannot be divided by the segmentation method.
Therefore, there will be a number of mislabeled points in the classification results of these areas, which
affect the accuracy of the class wire most.

5. Conclusions

In this paper, we classify ALS point clouds via a framework with four stages, i.e., (i) step-wise
point cloud segmentation; (ii) feature extraction; (iii) RF-based feature selection and classification;
(iv) post-processing. In the first stage, the step-wise point cloud segmentation extracts three kinds
of segments, i.e., planar, smooth and rough surfaces. Planar and smooth surfaces are more easy to
characterize piecewise planar objects, and rough surfaces are more easy to characterize objects with
irregular shapes. In the second stage, we extract geometric features from the input ALS point cloud by
considering segments as the basic computational units. In the third stage, we integrate RF with the
segment-based classification method to classify ALS point clouds. Discriminative features are selected
using the backward elimination method based on OOB errors, and an appropriate value (400) for the
number of trees used in RF is determined. At last, we employ semantic information to define several
rules for each class, and utilize them in the post-processing stage to optimize the classification results.

There are two contributions in the framework, i.e., step-wise point cloud segmentation, and
the integration of RF and the segment-based classification method. In the step-wise point cloud
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segmentation, we utilize a RANSAC method to optimize the normal vector and neighborhood of each
point, and next grow a region among the optimized neighborhood for each seed point. Then, scattered
points are detected and initial patches are constructed. Finally, the log Euclidean Riemannian metric is
utilized as a constraint to connect the initial patches to rough surfaces. Experiments validate that the
step-wise segmentation is good at recognizing small-scale objects. To analyze the integration of RF and
the segment-based classification, we first find a suitable parameter setting of RF, then select features
based on these parameters, and finally analyze the robustness and show the benefits of the integration.

There is a limit existing in our method, i.e., objects with less geometric distinguishability cannot
be recognized, such as flat roads which has similar geometric attributes with ground. In future work,
we will take more features and complemental strategies into consideration to classify these kinds
of objects.
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