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Abstract: Light detection and ranging (LiDAR) has become a mainstream technique for rapid
acquisition of 3-D geometry. Current LiDAR platforms can be mainly categorized into spaceborne
LiDAR system (SLS), airborne LiDAR system (ALS), mobile LiDAR system (MLS), and terrestrial
LiDAR system (TLS). Point cloud registration between different scans of the same platform or
different platforms is essential for establishing a complete scene description and improving geometric
consistency. The discrepancies in data characteristics should be manipulated properly for precise
transformation estimation. This paper proposes a multi-feature registration scheme suitable for
utilizing point, line, and plane features extracted from raw point clouds to realize the registrations
of scans acquired within the same LIDAR system or across the different platforms. By exploiting
the full geometric strength of the features, different features are used exclusively or combined with
others. The uncertainty of feature observations is also considered within the proposed method,
in which the registration of multiple scans can be simultaneously achieved. The simulated test with
an ideal geometry and data simplification was performed to assess the contribution of different
features towards point cloud registration in a very essential fashion. On the other hand, three real
cases of registration between LIDAR scans from single platform and between those acquired by
different platforms were demonstrated to validate the effectiveness of the proposed method. In light
of the experimental results, it was found that the proposed model with simultaneous and weighted
adjustment rendered satisfactory registration results and showed that not only features inherited
in the scene can be more exploited to increase the robustness and reliability for transformation
estimation, but also the weak geometry of poorly overlapping scans can be better treated than
utilizing only one single type of feature. The registration errors of multiple scans in all tests were all
less than point interval or positional error, whichever dominating, of the LiDAR data.
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1. Introduction

Light detection and ranging (LiDAR) has been an effective technique for obtaining dense and
accurate 3-D point clouds. Related applications have emerged in many fields because of advances made
in the evolutions of data acquisition and processing [1,2]. Different LiDAR platforms are designed to
operate with different scanning distances, scanning rates, and scanning directions. Therefore, point
clouds generated from different platforms may vary in density, accuracy, coordinate systems, and
scenic extent. Airborne LiDAR system (ALS) renders point clouds covering explicit top appearance of
objects (Figure 1a), while mobiles LiDAR system (MLS) and terrestrial LiDAR system (TLS) provide
façades and object surfaces (Figure 1b). To make use of the complementary information and generate
a complete dataset of 3-D scenes (Figure 1c,d), data integration of different platforms or scans is
indispensable. Even if the global navigation satellite systems (GNSS) and inertial navigation systems
(INS) are available to the ALS and MLS, problems caused by position and orientation system, mounting
errors, and shadowed effect warrant a rectification step for quality products. Thus, registration can be
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regarded as a pretreatment in terrestrial LiDAR data processing to transfer point clouds collected from
different scans onto a suitable reference coordinate system, and also utilized as a refinement procedure
to adjust small misalignments either between adjacent strips of airborne or neighboring mobile LiDAR
data or between the data collected through two different platforms. A proper registration methodology,
being able to tackle the inconsistency between different point clouds, appears crucial to numerous
point cloud applications.

Indeed, considerable solutions for point cloud registration have been proposed in the literature.
Existing methods can be classified into several types, in which surface- and feature-based
approaches are commonly employed and yield high-quality results. The iterative closest point (ICP)
algorithm developed by [3,4] is the most commonly used surface-based algorithm. Many follow-up
improvements [5–8] have promoted ICP efficiency. In addition, other related studies, such as the
iterative closest patch [9], the iterative closest projected point [10], and the least-squares surface
matching method (LS3D) [11,12], have also proven their effectiveness in point cloud registration. On the
other hand, numerous feature-based techniques have been developed based on geometric primitives,
such as points, lines [13–16], planes [13,17–20], curves and surface [21], and specific objects [22].
Methods manipulating image techniques for laser scans [23–26], and refining the 3D fusion based
on the correlation of orthographic depth maps [27] have also been studied for registration purposes.
Wu et al. [28] employed points, lines, and planes to register lunar topographic models obtained by
using different sensors. Han [29] and Han and Jaw [30] applied hybrid geometric features to solve
a 3-D similarity transformation between two reference frames. An extended work of Chuang and
Jaw [31] aimed at finding multiple feature correspondences with a side effect of sequentially gaining
3-D transformation parameters, facilitating the level of automatic data processing. Furthermore,
the ideas of 2D feature descriptors, such as scale-invariant feature transform (SIFT) [32], smallest
univalue segment assimilating nucleus (SUSAN) [33], and Harris [34] operators, were also extended as
Thrift [35] and Harris 3D [36] to work with 3-D fusion and similarity search applications [37–42], but
the current studies mostly undertook the evaluation of shape retrieval [43] or 3D object recognition [44]
using techniques such as the shape histograms [45], scale-space signature vector descriptor [46], and
local surface descriptors based on salient features [47].

Studies with a focus on cross-based registration can be found as in [15,48] which registered
terrestrial and airborne LiDAR data based on line features and combinations of line and plane
features extracted from buildings, respectively. Teo and Huang [49] and Cheng et al. [50] proposed a
surface-based and a point-based registration, respectively, for airborne and ground-based datasets.
However, the inadequate overlapping area of the point clouds of the ALS and MLS or TLS as the
scenarios demonstrated in Figure 1a,b raises challenges for acquiring sufficient conjugate features
and thus is apt to result in unqualified transformation estimation. In addition, the majority of
post-processing methods perform pair-wise registration rather than simultaneous registration for
consecutive scans, and the uncertainty of related observations has rarely been considered during
the transformation estimation. The registration errors tend to accumulate as running each pair
transformation sequentially. On the other hand, the ignorance of varying levels of feature observations
errors would lead to the bias of the estimation.

It also drew our attention to the fact that the existing studies of feature-based point cloud
registration employing line and plane features either utilized only partial geometric information [13,28]
or needed to derive necessary geometric components with alternative ways [29,30]. In this study, we
focused on the employment of features versatile in types as well as both complete and straightforward
in geometric trajectory and quality information. The main contribution of this paper is the rigorous
mathematical and statistical models of the multi-feature transformation capable of carrying out global
registration for point cloud registration purposes. Considering the point, line, and plane features,
the transformation model was driven by the existing models to improve the exploitation of features
on both geometric and weighting aspects and to offer a simultaneous adjustment for global point
cloud registration. Each type of feature can be exclusively used or combined with the others to resolve
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the 3-D similarity transformation. Since the multiple features with full geometric constraints are
exploited, a better quality of geometric network is more likely to be achieved. To correctly evaluate
the random effect of feature observations derived from the different quality of point cloud data, the
variance–covariance matrix of the observations is considered based on the fidelity of data sources.
Thus, the transformation parameters among multiple datasets are simultaneously determined via a
weighted least-squares adjustment.Remote Sens. 2017, 9, 281 3 of 3 
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Figure 1. The demonstration of cross-platform point cloud registration.

The workflow of the multi-feature registration involves three steps comprising the feature
extraction, feature matching, and transformation estimation. Although considerable researches
on extracting point, line [51], and plane [49,52] features from point clouds have been reported,
fully automated feature extraction is still a relevant research topic. We leveraged a rapid plane
extraction [53] coupled with a line extractor [51] to acquire accurate and evenly-distributed features
and then performed the multiple feature matching approach called RSTG [31] to confirm the conjugate
features and to derive approximations for the nonlinear transformation estimation model. Nevertheless,
the authors placed a focus on transformation estimation modeling and left aside the feature extraction
and feature matching with a brief address referred to the existing literature. Two equivalent formulae
for line and plane features, respectively, using different parametric presentation were proposed in the
transformation model. The detailed methodology of how the transformation models were established
and implemented is given in the following paragraph. The terms “point feature” stands for “corner or
point-like feature”, while “line feature” employs only straight line feature throughout the paragraphs
that follow.

2. Concepts and Methodology

The proposed multi-feature transformation model integrates point-, line-, and plane-based 3-D
similarity transformations to tackle various LiDAR point cloud registrations. Seven parameters,
including one scale parameter (s), three elements of a translation vector ([tX tY tZ]

T), and three
angular elements of rotation matrix (R{ω, ϕ, κ}), are considered for the transformation of scan
pairs. The feasible parametric forms of observations used in this paper are the coordinates
of points (P(Xi, Yi, Zi)), two endpoints (Le{Xi,1, Yi,1, Zi,1, Xi,2, Yi,2, Zi,2}) as well as six-parameter
(Lp{ti, ui, vi, X0i, Y0i, Z0i}) or four-parameter (Lp{di, ei, 1, pi, qi, 0}) forms of lines, and two
parametric forms of planes (Plp{θi, ϑi, ρi} and Pln{ai, bi, ci}). The different parametric forms for the
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same type of feature were proposed to fit to the need of feature collection or measurement. In fact, they
are mathematically equivalent. Note that the geometric uncertainty, namely the variance–covariance
matrix, of these feature observations has been integrated into the transformation estimation in
this study.

2.1. Transformation Models

At the methodological level, the spatial transformation of point clouds can be established by the
correspondence between conjugate points, the co-trajectory relation of conjugate lines, or conjugate
planes. Equation (1) presents the Helmert transformation formula for two datasets on a point-to-point
correspondence. To balance the transformation equation for solving seven parameters while providing
a sufficient geometric configuration, at least three non-collinear corresponding point pairs are required
for a non-singular solution. Furthermore, Equation (1) is employed to derive line- and plane-based
transformations in the following paragraphs.

FPi =

 X(2)i
Y(2)i
Z(2)i

− sR

 X(1)i
Y(1)i
Z(1)i

−
 tX

tY
tZ

 =

 0
0
0

 (1)

with

R =

 m11 m12 m13

m21 m22 m23

m31 m32 m33


=

 cos(κ)cos(ϕ) sin(κ)cos(ω) + cos(κ)sin(ϕ)sin(ω) sin(κ)sin(ω)− cos(κ)sin(ϕ)cos(ω)

−sin(κ)cos(ϕ) cos(κ)cos(ω)− sin(κ)sin(ϕ)sin(ω) cos(κ)sin(ω) + sin(κ)sin(ϕ)cos(ω)

sin(ϕ) −cos(ϕ)sin(ω) cos(ϕ)cos(ω)


where s is the scale parameter; [tX tY tZ]

T is translation vector; R is a rotation matrix; and ω, ϕ and κ

are the sequential rotation angles.
(

X(1)i, Y(1)i, Z(1)i

)
and

(
X(2)i, Y(2)i, Z(2)i

)
represent the coordinates

of the ith conjugate point in systems 1 and 2, respectively.

2.1.1. Transformation for Line Features

Two types of 3-D line expressions commonly employed in data acquisition were considered.
The transformation model for the two-endpoint type of the line features (Figure 2a) is established by
collinear endpoints of the line features with their conjugate counterparts when transformed to another
coordinate system. The collinearity property for one endpoint may present three alternative forms,
one of which is formulized in Equation (2).

FLe =

 u(2)i

(
Xo(2)i − X(1′)i,j

)
− t(2)i

(
Yo(2)i −Y(1′)i,j

)
= 0

v(2)i
(

Yo(2)i −Y(1′)i,j

)
− u(2)i

(
Zo(2)i − Z(1′)i,j

)
= 0

(2)

where i denotes the ith line; j = {1, 2};
(

X(1′)i,j, Y(1′)i,j, Z(1′)i,j

)
shows the transformed jth endpoint(

X(1)i,j, Y(1)i,j, Z(1)i,j

)
by Equation (1) from coordinate system 1 to system 2; for

(
Xo(2)i, Yo(2)i, Zo(2)i

)
,

either endpoint of
(

X(2)i,j, Y(2)i,j, Z(2)i,j

)
represents the reference point of the ith conjugate line in

coordinate system 2; and
[
t(2)i u(2)i v(2)i

]T
, derived by subtracting the corresponding coordinate

component of the first end-point from the second one, represents the dicovt of the ith line in coordinate
system 2.
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As revealed in Equation (2), one pair of 3-D line correspondences contributes four equations
(two for each endpoint) to the transformation. Similar to the two-endpoint model, the condition for
the transformation model based on four-parameter line features can be established by constraining
the direction vector and penetration point (which is determined by selecting the X–Y, Y–Z, or X–Z
plane, called penetration plane, that supports the best intersection for the 3-D line) of the 3-D line
to attain collinearity with their conjugate correspondents when transformed to another coordinate
system (Figure 2b).
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The right-hand side of Equation (3) shows the four independent parameters of the 3-D line
when choosing X-Y intersection plane and they can also be derived from the six-parameter set.
The mathematical formula of transformation based on four-parameter lines can be established in
Equation (4).  Xi

Yi
Zi

 =

 X0i
Y0i
Z0i

+ ki

 ti
ui
vi

 =

 pi
qi
0

+ zi

 di
ei
1

 (3)

where (X0i, Y0i, Z0i) and
[

ti ui vi

]T
represent the reference point and direction vector of the ith

line, respectively; (pi, qi, 0) is the penetration point on the X–Y plane;
[

di ei 1
]T

is the reductive
direction vector; and ki and zi are the scaling variables.

F+
Lp

=


u(2)i

(
X0(2)i − X0(1′)i

)
− t(2)i

(
Y0(2)i −Y0(1′)i

)
= 0

v(2)i
(

Y0(2)i −Y0(1′)i

)
− u(2)i

(
Z0(2)i − Z0(1′)i

)
= 0

u(2)it(1′)i − t(2)iu(1′)i = 0
v(2)iu(1′)i − u(2)iv(1′)i = 0

(4)

where
(

X0(1′)i, Y0(1′)i, Z0(1′)i

)
denotes the transformed reference point (six-parameter type) or

penetration point
(

X0(1)i, Y0(1)i, Z0(1)i

)
of the ith line by Equation (1) from coordinate system 1
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to system 2;
(

X0(2)i, Y0(2)i, Z0(2)i

)
is the reference point or penetration point of the ith conjugate

line in coordinate system 2; and
[
t(1′)i u(1′)i v(1′)i

]T
represents the transformed direction vector[

t(1)i u(1)i v(1)i
]T

of the ith line by Equation (5) from coordinate system 1 to system 2.

 t(1′)i
u(1′)i
v(1′)i

 = R

 t(1)i
u(1)i
v(1)i

 (5)

The six positional variables in Equation (4) may vary with the different penetration planes.
Moreover, the conjugate lines from different coordinate systems may have varied penetration planes.
Table 1 shows the appropriate use of parameters according to the facing condition.

Table 1. Variable setting in the four-parameter model of line-based transformation.

Penetration Plane Parameter Constant

X–Y X0i = pi, Y0i = qi, ti = di, ui = ei Z0i = 0, vi = 1
Y–Z Y0i = pi, Z0i = qi, ui = di, vi = ei X0i = 0, ti = 1
X–Z X0i = pi, Z0i = qi, ti = di, vi = ei Y0i = 0, ui = 1

The dual representation forms of the line-based transformation model given in Equations (2) and
(4) are mathematically equivalent and suggest that one pair of conjugate lines offer four equations.
At least two non-coplanar conjugate 3-D line pairs must be used to solve the transformation parameters.
Furthermore, the line trajectory correspondence underpinning the 3-D line transformation allows
flexible manipulation of feature measurements compared with the point-to-point approach.

2.1.2. Transformation for Plane Features

With the similar manipulation mentioned in the line-based model, two equivalent formulae using
three independent parameters for plane-based transformation model were formed. A plane can be
formulated in a normal vector form by considering the dot product of the normal vector and the point
vector of the plane as one (Equation (6)) (zero if the plane includes the origin), or it can be formulated
in a polar form by utilizing horizontal angle (ϑ) and zenith angle (θ) along with the projection distance
(ρ) from the origin (Equation (8)). Notice that the normal vector employed in Equation (6) is the
normalized normal vector of the plane divided by the projection distance. The transformation models
are expressed in Equations (7) and (9) and both forms are depicted in Figure 3.

Pln{ai, bi, ci} = aiX + biY + ciZ =

 ai
bi
ci

·
 X

Y
Z

 = 1 (6)

Fpln
=


a(1)i − s

(
a(2)im11 + b(2)im21 + c(2)im31

)
/
(

1− a(2)itX − b(2)itY − c(2)itZ

)
= 0

b(1)i − s
(

a(2)im12 + b(2)im22 + c(2)im32

)
/
(

1− a(2)itX − b(2)itY − c(2)itZ

)
= 0

c(1)i − s
(

a(2)im13 + b(2)im23 + c(2)im33

)
/
(

1− a(2)itX − b(2)itY − c(2)itZ

)
= 0

(7)

where i denotes the ith plane; and
[

a(1)i b(1)i c(1)i
]T

and
[

a(2)i b(2)i c(2)i
]T

stand for the normal vectors
of the ith conjugate plane in coordinate systems 1 and 2, respectively.

sinθicosϑiX + sinθisinϑiY + cosθiZ = ρi (8)
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F+
Plp

=


sinθ(1)icosϑ(1)i/ρ(1)i − F1/F4 = 0
sinθ(1)isinϑ(1)i/ρ(1)i − F2/F4 = 0

cosθ(1)i/ρ(1)i − F3/F4 = 0
(9)

with
F1 = s

(
sinθ(2)icosϑ(2)im11 + sinθ(2)isinϑ(2)im21 + cosθ(2)im31

)
;

F2 = s
(

sinθ(2)icosϑ(2)im21 + sinθ(2)isinϑ(2)im22 + cosθ(2)im23

)
;

F3 = s
(

sinθ(2)icosϑ(2)im31 + sinθ(2)isinϑ(2)im32 + cosθ(2)im33

)
;

F4 = ρ(2)i − sinθ(2)icosϑ(2)itX − sinθ(2)isinϑ(2)itY − cosθ(2)itZ;

where (θ(1)i, ϑ(1)i, ρ(1)i) and (θ(2)i, ϑ(2)i, ρ(2)i) represent the parameter sets of the ith conjugate planes
in coordinate systems 1 and 2, respectively. In fact, with sinθicosϑi/ρi = ai, sinθisinϑi/ρi = bi,
and cosθi/ρi = ci, Equations (7) and (9) are mathematically equivalent.
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2.2. Contributions of Features toward the Transformation Model

The characteristics of geometric constraints provided by these three types of observations vary
from one type to another. A single point only contributes to translational (or locative) information,
whereas unknown rotation and scale must be solved by points that span the area of interest. By contrast,
a line feature provides the co-trajectory constraint along the line. This feature leaves the degrees
of freedom of one scale, one translation, and one rotation parameter. A plane feature results in
singularities in one scale, one rotation, and two translation parameters on the plane. Thus, line-based
and plane-based approaches require features that supply complementary constraints for an entire
solution. The application of different primitives is extremely appealing for the support of effective
geometric constraints and can resolve situations that are considered difficult when the traditional
point-based approaches are used.

Table 2 summarizes the transformation modes for the three primitives, where the numbers
of independent pair correspondences for points, lines, and planes are notated by nPt, nL, and nPl ,
respectively, and ns is the number of scans. The effective number of equations generated by each
feature is identical to the number of independent parameters, i.e., three, four, and three for a pair
correspondence of point, line, and plane, respectively. The third column in Table 2 shows that the line
features outperform the others in terms of redundancy.
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Table 2. The configurations of the transformation models.

Mode Number of Equations Redundancy Number of Features for a
Minimum Solution as ns = 2

Point-based 3nPt 3nPt − 7(ns − 1) 3
Line-based 4nL 4nL − 7(ns − 1) 2
Plane-based 3nPl 3nPl − 7(ns − 1) 4

When dealing with two scans, three point feature pairs with nine equations or two non-coplanar
line feature pairs with eight equations are able to solve seven parameters of transformation.
Nevertheless, according to Equations (7) and (9), it simply states that one conjugate plane pair will
produce three equations which convey all the transformation parameters. However, four pairs of
independent and well-distributed conjugate planes are the minimum requirements to solve seven
parameters because planes, even if spatially isolated, may not be so complementary as an effective
response to the transformation parameters. This statement can be understood by considering that
three planes mutually perpendicular to each other contain only the information of three translation
elements and three rotation angles even they supply nine equations. The scale factor cannot be fixed
until a fourth plane is added.

Moreover, the intersected feature may gain geometric significance together with good quality
of positional location at the expense of failing to completely represent the geometric property of the
original data used for the intersection. An obvious example is that a corner point resulting from
intersecting three neighboring planes brings forth only three equations for transformation, whereas
these three planes are able to solve six parameters of 3-D rigid-body transformation. Besides the
distinctive geometric characters elaborated by the individual primitive, appreciating the feature
combinations realized by one point + one line, one point + two planes, one line + two planes, or two
points + one plane in a minimum solution for seven-parameter similarity transformation of two scans
is practically meaningful. Such configurations are arranged and analyzed in the experiments.

2.3. Simultaneous Adjustment Model for Global Registration

As mentioned before, the registration process for multiple scans often follows a pair-wise
approach and then combines all results for the entire datasets. Consequently, registration errors
between neighboring point clouds would gradually accumulate and result in a larger impact on those
data distant from the reference one. In contrast, a global adjustment approach that simultaneously
addresses the registration of all involved scans would minimize errors among all datasets. In such
a simultaneously global registration manner, each feature observation in a scan is associated with
only one residual, instead of receiving a residual as it is conducted by passing the pairs if the feature
appears in more than two scans.

The Gauss–Helmert model of the least-squares adjustment is used to cope with diversified
uncertainty treatment of registration tasks. Equation (10) expresses the mathematical form of the
simultaneous adjustment model. Once a data frame is chosen as the reference, all other frames are
co-registered by conducting the multi-feature transformation.

wj×1 = Aj×[7(ns−1)]ξ[7(ns−1)]×1 + Bj×k(yk×1 + ek×1), e ∼
(

0, Σ = σ2
0 W−1

)
(10)

with {
j = ∑

nmPt
i=1 (3(nPoint,i − 1)) + ∑

nmL
i=1 (4(nLine,i − 1)) + ∑

nmPL
i=1 (3(nPlane,i − 1))

k = 3 ∑
nmPt
i=1 nPoint,i + nl ∑

nmL
i=1 nLine,i + 3 ∑

nmPL
i=1 nPlane,i

where Equations (2) and (7) are used for line and plane features in this formula. y, e, w, and ξ denote
the observation vector, error vector, discrepancy vector, and incremental transformation parameter
vector, respectively; W is the weight matrix; A and B are the partial derivative coefficient matrices with
respect to unknown parameters and observations, respectively; σ2

0 is the variance component; nmPt ,
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nmL , and nmPL are the numbers of total matched mates of points, lines, and planes, respectively; nPoint,i,
nLine,i, and nPlane,i represent the numbers of the conjugate features of ith matched mate; nl = 6 based
on Equation (2), otherwise nl = 4 based on Equation (4); and ns is the number of all scans. On the other
hand, if Equations (4) and (9) are employed, the FLe i and FPlni

in matrices A and B should be replaced

with F+
Lpi

and F+
Plpi

, and the
{

Le(1),i, Le(2),i

}
and

{
Pln(1),i, Pln(2),i

}
are replaced with

{
Lp(1),i, Lp(2),i

}
and

{
Plp(1),i, Plp(2),i

}
, respectively.

According to the Equation (10), the convergent least-squares solutions of the estimated parameter
vector ξ̂, residual vector ẽ, posterior variance component σ̂2

0 , and posterior variance–covariance matrix
of the estimated parameter Σ̂ξ̂ can be computed through Equations (11) to (14), where r represents
the redundancy.

ξ̂ =

(
AT
(

BW−1BT
)−1

A
)−1

AT
(

BW−1BT
)−1

w (11)

ẽ = W−1BT
(

BW−1BT
)−1(

w− Aξ̂
)

(12)

σ̂2
0 = ẽTWẽ/r (13)

Σ̂ξ̂ = σ̂2
0

(
AT
(

BW−1BT
)−1

A
)−1

(14)

with

W = σ2
0

 Σ−1
Point ΣΣ−1

Point, Line ΣΣ−1
Point,Plane

ΣΣ−1
Point, Line Σ−1

Line ΣΣ−1
Line,Plane

ΣΣ−1
Point,Plane ΣΣ−1

Line,Plane Σ−1
Plane

;

The uncertainty of the observations, resulting from feature extraction, is considered and
propagated based on how the feature parameters, namely the parametric forms as previously
introduced, are acquired to form the variance–covariance matrix (Σ) of the observed features. The ΣΣ

indicates the covariance between two different feature observations if needed. The quantities revealed
in the variance–covariance matrix present the feature quality that often results from the measuring
errors and discrepancy between the real scene and the hypothesized scene. Basing the observation
uncertainty on the fidelity of the data source is considered an optimal way of assessing and modeling
weights in this work. The weight matrix (W), which is derived from the variance–covariance matrix of
the observations, is then fed into the adjustment model.

3. Experiments and Analyses

The effectiveness of the registration quality provided by the individual and combined features
was validated using the simulated data. The configurations of simulated data were designed to put
more concerns on validating mathematical models in solving the transformation parameters with
varied features, different levels of data errors, minimal and nearly minimal observations, thus rendered
so ideal as well as fundamental as compared to the practical data that often involved much complicated
scenes with feature distribution and quality demanding cautious treatment.

Real scenes with feature appearances collected by TLS, ALS and MLS that dealt with both
single- and cross-platform registrations were subsequently demonstrated to reveal the feasibility and
effectiveness of the proposed method. To fairly evaluate the merits of the proposed registration scheme
in handling multiple scans, we compared our results with those obtained by the ICP algorithm initiated
by Besl and McKay [3] and the line-based method [51]. These methods were coded in Matlab and
realized on a Windows system.

The customary way of assessing transformation and registration quality is to
utilize the root mean square error (RMSE) based on the check points with RMSE_P =√
(RMSE_X)2 + (RMSE_Y)2 + (RMSE_Z)2. Under the mode of multi-feature transformation,
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the positional discrepancies of the conjugate points, geometric relationships quantified by angles
and distances for both conjugate lines and planes are considered as registration quality indicators.
Apart from the RMSE criterion, a distance indicator Qdistance in Equation (15), the average of the
spatial distances of all the conjugate line segments and plane patches, is used to evaluate positional
agreement. Similarly, an angular indicator Qangle in Equation (16), the average angle derived from all
the conjugate line segments and plane patches, is used for evaluating geometric similarity.

Qdistance = 0.5
(
∑mline

i=1 DLi /mline + ∑
mplane
i=1 DPli /mplane

)
(15)

Qangle = 0.5
(
∑mline

i=1 ALi /mline + ∑
mplane
i=1 APli /mplane

)
. (16)

where DLi is the average distance of each middle point of the ith conjugate line segments to its line
counterpart along the direction perpendicular to the line, and DPli is the average distance of each
centroid of the ith conjugate planes to its plane counterpart along the normal direction. mline and mplane
are the total numbers of independent conjugate line and plane pairs, respectively. ALi is the angle of
the ith conjugate line pair computed by the direction vectors. APli is the angle of the ith conjugate
plane pair computed by the normal vectors.

The positional accuracy of each laser point is a function of range, scanning angles, and
positioning/pose observations, if applicable. The proposed quality indicators reflect the registration
accuracy upon the reference data. The point interval of a point cloud intimates the minimum
discrepancy of the raw quality considering the discrete and blind data nature. Thus, we intuitively
included the point spacing of the point cloud into quality analysis for the real datasets, particularly
if it prevails over the point error. In addition to employing check features, we also introduced the
registered features into Equation (15) to derive internal accuracy (IA), which has the same meaning as
the mean square error (MSE) index of the ICP algorithm [3]. The index resulting from transformation
adjustment would not only be used to assess the registration quality but also suggest whether the
internal accuracy and the external one derived from check features are consistent.

3.1. Simulated Data and Evaluation

To simplify the scene geometry and concentrate on validating the mathematical models, simulated
data with a size of approximately 10 m × 10 m × 10 m were generated in this experiment. Figure 4a
shows a point cloud forming a cube, in which 6 planes, 12 lines, and 8 points can be extracted as
observations. Four layers of check points, denoted as rhombuses in a total of 400 points, as shown in
Figure 4b, were densely arranged and situated inside the cube for exclusively evaluating the registration
quality. The point cloud was transformed using a pre-defined set of similarity transformation
parameters to represent the data viewed from another station. To simulate the random errors of
terrestrial scans, both the simulated and transformed point clouds were contaminated with a noise of
zero mean and σ cm standard deviation, where σ ∈ {0.5, 1.5, 2.5, 3.5, 4.5} in each coordinate component.
In this case, the points and lines directly measured from the point clouds were considered the coarse
features as they (points and endpoints) were determined with the same positional quality as that of the
original point. On the other hand, features extracted by fitting process or by intersecting neighboring
fitted planes were deemed the fine observations with better accuracy than original point cloud.

First, the influence of the coarse features versus fine features on the transformation quality
was observed as well as the registration effectiveness derived from individually and unitedly as
the observations when σ = 1.5 cm was added. This exhibited that transformation can be solved by
either applying a single type of features or the combination of multiple features. Figure 5 reveals
the registration quality. To assess the quality of estimated transformation parameters, the solved
parameters were used to transform the 400 check points from one station to another and computed
the RMSE_P.
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Figure 5. Quality assessment.

In light of Figure 5, applying fine features only in this case achieves registration quality ranging
from 0.23 cm to 0.35 cm under the 1.5 cm standard deviation in each coordinate component of the
point clouds, which is much better than the results of applying coarse features only, ranging from 1.26
to 2.68 cm. Using fine features even supplies transformation parameter estimation with sub-point
accuracy of point clouds in this case. Obviously, combining all features also results in satisfactory
registration quality. Further, to hypothesize the TLS data acquisition with reasonable error range,
Figure 6 shows the RMSE_P obtained from each observation set when the standard deviation of
the point clouds is set as σ ∈ {0.5 cm, 1.5 cm, 2.5 cm, 3.5 cm, 4.5 cm}, respectively. As anticipated,
combining all types of fine features resulted in the best RMSE_P under each data quality. As the
deviation increased, namely worsened observations, the advantage of the feature integration became
more obvious. It can be seen in Figure 6 that the error trend of employing feature combination,
benefiting from the accurate observations and high redundancy (83 in this case), grew moderately as
compared to those utilizing single feature type.
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Further, nine minimal or nearly minimal configurations of observations for transformation
estimation were investigated to show the complementariness among observed points, lines, and planes.
The distribution of the features is illustrated in Figure 7a–i. Specifically, Figure 7a–c was designed to
analyze the different benefits gained from an intersected point versus three planes that determined
the point. Figure 7d–i was configured to verify the feasibility of multiple feature integration by laying
out the feature combinations under the condition of only a few or nearly minimum measurements for
estimating the transformation parameters. The evaluations of transformation quality in relation to all
the cases are presented in Figure 8, where r indicates the redundancy.Remote Sens. 2017, 9, 281 12 of 12 
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Again, transformations in all nearly minimal solution configurations were resolved. From the
comparison of transformation results of Figure 7b versus Figure 7c, both sharing the three coarse
points as shown in Figure 7a, it showed that when the three fitted planes, deemed as fine features,
were added, the transformation accuracy was slightly increased with a lower RMSE_P (0.07 cm) than
adding the fine point intersected by these three planes. This effect gave a numerical example to
further add to what was stated in Section 2.2. In the configurations of Figure 7d–h, the transformation
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estimations using the united features under the minimum measurement condition were demonstrated.
It should be noted that the specified number of each feature was insufficient to solve the transformation
alone in these cases. Considering the RMSE results in Figure 8, the combination of one point and
one line (Figure 7d) resulted in dramatic transformation errors because of its poor distribution and
zero redundancy. Transformation errors were reduced with better-distributed features, as those in
Figure 7a,e–h. On the other hand, the configuration of Figure 7i which combined the well-situated two
points, one line, and two planes, gained the best transformation quality among all the cases.

Considering points are relatively likely to be obstructed between scans than other features as
well as the distribution of planes in urban scenes is often monotonous, combinations of these feature
primitives would bring more adaptability to conquer distribution restrictions frequently confronted in
practical cases. The simulated experiments demonstrated the flexibility of feature combinations and
quantified the merits of solving the point cloud registration in a multi-feature manner.

3.2. Real LiDAR Data

To validate the advantage of the proposed registration scheme on real scenes, three cases consisting
of the registration of terrestrial point clouds, the registration between terrestrial and airborne LiDAR
point clouds, and the registration between mobile and airborne LiDAR point clouds were conducted.
The first case demonstrated the routine terrestrial point cloud registration, while the second and third
cases tackled the point clouds with different scanning directions, distances, point densities, accuracy,
and having rare overlapping areas which is unfavorable for most surface-based approaches, e.g.,
ICP [3] or LS3D [11].

To evaluate the effectiveness of the registration quality, the registration results were compared with
those derived from the ICP algorithm [3] and the line-based transformation model [51]. The comparison
with the ICP highlighted the essential differences of the algorithm in terms of operational procedures
(e.g., calculating strategy and with/without the need of manual intervention) and the adaptability for
cross-based LiDAR platforms. On the other hand, the comparison with the line-based transformation
was to illustrate the advantages of feature integration on the operational flexibility and accuracy
improvement. Moreover, the last case demonstrated both the feasibility and working efficiency of the
proposed method in an urban area with larger extent as compared to the other two cases. Notably, the
experiments were performed on the point clouds without any data pre-processing including noise
removal, downsampling, or interpolation.

3.2.1. Feature Extraction and Matching

As fully automated point cloud extraction is still a developing research topic, the proposed
registration scheme may couple with existing feature extraction approaches. From a standpoint of
point cloud registration, to efficiently acquire qualified and well-distributed features is more important
than acquiring complete features of the point cloud. In this study, we leveraged a rapid extractor [51,53]
to acquire line and plane features and subsequently intersected neighboring lines or planes for points as
long as an intersection condition is met [53]. Afterward, a 3D multiple feature matching approach [31]
was implemented to obtain corresponding features and the approximations of similarity transformation
between two data frames. The results were then introduced into the proposed model for rigorous
transformation estimation. Figure 9 shows the workflow of feature acquisition in this study.

Conceptually, the extractor conducted a coarse-to-fine strategy to increase working efficiency.
The point clouds were first converted into a range image and a 2.5-D grid data with a reasonable grid
size according to the data volume, and the correspondence of coordinates was preserved. Although
the process deteriorated the quality of the original data, the computational complexity was reduced.
For line features, Canny edge detection and Hough transformation were implemented in the range
image for detecting straight image lines. The image coordinates of line endpoints were then referred
back to the original point cloud and used to collect candidate points for 3-D line fitting. On the
other hand, the normal vectors of each 2.5-D grid cell were computed and clustered to find the
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main directions of planes in the point cloud. The information was introduced to the plane Hough
transformation as constraints to reduce the searching space, so the computational burden for the plane
extraction can be eased. Subsequently, lines or planes that met the intersection condition were used to
generate point features [53]. Taking lines as an example, the extreme points within the group of points
which described the line were first computed. Then, the extreme points of the line, being the endpoints,
were used to compute the distances with the extreme points of other lines. If the shortest distance
between the two lines was smaller than a tolerance (pre-defined by point space of data), the two lines
were regarded as neighbors and used to intersect point feature. With the aid of this condition, virtual
and unreliable intersected points, along with unnecessary calculations, were avoided. Besides, the
quality measures of the resulting features were provided in the form of a variance–covariance matrix.
Indeed, even though the coarse-to-fine procedure, which reveals approximate areas where features are
possibly located and then aims at these areas to precisely extract the features from the raw point cloud,
promotes the working efficiency and encourages the level of automation, the feature extraction is still
the most computationally expensive step in this study.
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Afterward, the extracted features were introduced to the multiple feature matching approach,
called RSTG [31], to confirm the feature correspondence and to derive the initial values for the
transformation estimation. The RSTG is the abbreviation of the matching approach which comprises
four steps, namely rotation alignment, scale estimation, translation alignment, and geometric check.
It applied a hypothesis-and-test process to retrieve the feature correspondence and to recover the
Helmert transformation in an order of rotation, scale, then translation. The rotation matrix was
determined by leveraging the vector geometry [29] and singular value decomposition, whereas the
scale factor was calculated by a distance ratio between two coordinate systems. After that, the
translation vector was derived from a line-based similarity transformation model [51] based on a
collinearity constraint. The approach got rid of the point-to-point correspondence of the Helmert
transformation, leading to a more flexible process. Details of the extraction and matching processes
can be referred to [31,51,53].

3.2.2. Registration of Terrestrial Point Clouds

In this case, five successive scans, which cover a volume of 26 m (length) × 18 m (width) × 10 m
(height), collected by Trimble (Mensi) GS200 describing the main gate of National Taiwan University
in Taipei, Taiwan, were used. The nominal positional accuracy of 4 shots as reported by the Trimble
manufacturer was up to 2.5 mm at 25 m range. The details of this dataset and the point clouds are
shown in Table 3 and Figure 10, respectively.

The number of acquired features in all scans was 95 features in total, consisting of 17 points,
57 lines, and 21 planes. They were passed on to the RSTG matcher. Figure 11a illustrates these features
superimposed on the point clouds. The extracted lines were highlighted in red lines, the extracted
points were marked in blue rhombuses, and the points belonging to the same plane were coded by the
same color. Figure 11b shows the feature correspondences, where the corresponding planes are in blue.
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Table 3. Information of the terrestrial point clouds.

Scan 1 Scan 2 Scan 3 Scan 4 Scan 5

Number of points 529,837 624,229 1,432,191 1,105,417 635,438
Avg. scanning distance (m) 26.0 29.7 21.9 22.6 28.2

Density (pts./m2) 8726 1190 2475 2383 1409
Avg. point spacing (cm) 1.1 2.9 2.0 2.0 2.7

Nominal positional accuracy (mm) 2.6 3.0 2.2 2.3 2.8
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Figure 11. The feature extraction and matching results.

The RSTG approach successfully matched three points, 17 lines, and seven planes among all
overlapping scan pairs. The feature correspondences and the approximations of transformation
parameters were delivered to the process of transformation estimation. The registration of the
terrestrial LiDAR point clouds was performed by the proposed simultaneous adjustment model
of the multi-feature transformation. In addition, the approximations were applied to the ICP algorithm
and the line-based transformation. To evaluate the registration quality, there were 24 check points
acquired by best-fit spherical markers as well as 18 check lines and six check planes measured evenly
and manually serving as independent check features.

The overall quality of registration indicated in Table 4 revealed that the positional and distance
discrepancies were about 1 cm, and the angle deviation was about 0.3 degrees. The positional
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discrepancy RMSE_P derived from check points was quite close to the distance discrepancy (Qdistance)

calculated by check lines and planes. The angle deviation also represented similar spatial discrepancy
as the other two indicators when considering the employed line features within 3 m length.
This suggested that these three quality indicators were effective and consistent.

Table 4. The quality assessment of the registration results.

MSE (cm) IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm) RMSE_P (cm)

ICP 0.01 - 0.48/0.04 1.30/0.23 1.36
Line-based - 0.87/0.13 0.32/0.02 1.09/0.18 1.17

Proposed method - 0.75/0.12 0.31/0.02 1.04/0.15 1.03

In light of Table 3, the quality and density of the point cloud data were high. As a result, the
three approaches yielded similar registration performances at the same quantitative level. Both the
internal accuracy (IA) and the external accuracy derived from the check features reported satisfactory
registration. The proposed multi-feature method slightly outperformed the baseline implementation
of the ICP and line-based transformation methods based on the same configuration: the same initial
values and one-time execution. It is well known that the ICP method has numerous variants which
apply other techniques, such as limiting the maximum distance in the X, Y and Z directions or filtering
points containing large residuals, to reduce the number of inadequacy points because points far from
the data center do not contribute important information about the scene and some of them could
even be considered as noise. The afore-mentioned process would trade between the points in the
vertical and the horizontal surfaces to avoid a final misalignment if the point number of one of the
surfaces greatly dominates the other. Indeed, the registration quality can be improved by adjusting
parameters and executing the calculation repeatedly. However, our study was interested in comparing
the fundamental methodologies without ad-hoc parameter tuning and repeated manual intervention
to assess the feasibility and effectiveness of these algorithms.

The results in Table 4 validated that integrating multiple features not only offered better
operational flexibility, but also gained better registration quality than just exploiting line features.
The visual inspections of the registration results of the proposed method can be found in Figure 12.
The point clouds of each scan are drawn with different colors, where the discrepancy in overlapping
areas is nearly undetectable and the facades collected by different scans are registered precisely.
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The registration working process is nearly fully automated. In this case, the execution time for
feature acquisition was about 3.24 min, and the matching and estimation process was about 41 and
2.7 s, respectively. The working time of the extraction and matching processes highly relates to the
amount and complexity of point cloud data. Once the corresponding features are determined, the
transformation estimation will be done in few seconds.

3.2.3. Registration of Terrestrial and Airborne Point Clouds

A complete scene of man-made structures that often appears in urban areas was considered in this
case. A total of seven successive scans of terrestrial LiDAR point clouds were collected by the Optech
ILRIS-3-D system. As displayed in Figure 13a–g, the scans cover the facades of a campus library
building with a size of approximately 94 m (length) × 75 m (width) × 40 m (height). The nominal
positional accuracy of a single shot for ILRIS-3-D is 8 mm at a range of 100 m. In addition, the airborne
point cloud of the same building as shown in Figure 13h was collected via Optech ALTM 3070 at a
flying height of 450 m with a reported elevation accuracy of up to 15 cm at a range of 1200 m and
horizontal accuracy better than (1/2000) × flying height, which is approximately 23 cm in this case.
Table 5 presents the information of all point clouds, in which scan 6 rendered the largest number of
points and the highest density due to the large coverage of the target and the perpendicular scanning
to the building facade.
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Table 5. Information of the point clouds.

Scan Number of Points Avg. Scanning
Distance (m)

Avg. Point
Spacing (cm)

Nominal Positional
Accuracy (mm)

Terrestrial scan 1 543,001 37.366 9.0 2.9
Terrestrial scan 2 574,007 37.716 6.7 3.0
Terrestrial scan 3 565,367 37.831 5.5 3.0
Terrestrial scan 4 511,254 37.601 9.1 3.0
Terrestrial scan 5 484,352 33.779 7.3 2.7
Terrestrial scan 6 1,745,490 94.370 4.6 7.5
Terrestrial scan 7 728,603 36.145 7.7 2.9

Airborne scan 37,678 450 44.7 237

The extracted features were superimposed onto the point clouds, as illustrated by colors, following
a similar coding as previous cases, in Figure 14. There were 297 well distributed features extracted
within the scene. The numbers of extracted features are listed in Table 6.
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Table 6. Numbers of extracted features in each scan.

T-1 T-2 T-3 T-4 T-5 T-6 T-7 A-1 Total

Point 11 1 9 8 4 0 7 3 43
Line 33 23 35 29 23 15 22 13 193
Plane 7 6 11 10 7 5 9 6 61
Total 51 30 55 47 34 20 38 22 297

As seen in Figure 15, each terrestrial scan rarely overlaps the airborne point cloud, and no single
feature can fulfill the minimum requirement of the transformation estimation due to the poor overlap
geometry in this case. Therefore, both the matching and transformation tasks were alternatively
turned to process TLS first and then match and transform TLS to ALS. Again, the RSTG approach was
applied to find the corresponding features of seven terrestrial scans and to render the approximations
simultaneously. The successfully matched features among all overlapping scan pairs comprised nine
points, 39 lines, and 15 planes, as shown in Figure 15a–g. The corresponding features were colored
with the blue rhombus points, red lines, and blue planes, respectively. The correspondences along
with the variance–covariance matrix of features and the approximations of transformation parameters
were then introduced into the multi-feature transformation. However, the corresponding features
between terrestrial scan 1 and scan 7 were not sufficient to construct stable transformation leading to an
open-loop registration in this case. With the same basis of the initial transformation values, the ICP and
line-based methods were performed to align all scans onto the reference frame (scan 6) accordingly.

Apart from the observed features, there were 20 lines and six planes, coded by green color in
Figure 15, manually measured serving as independent check features to evaluate registration quality of
the terrestrial registration. With the larger scanning distances and distance variations than the previous
case, the significance of scale factor was studied in this case. Table 7 shows the estimated seven
transformation parameters using the proposed simultaneous adjustment, whereas Table 8 reveals the
six parameter results when the scale factor was fixed as 1. Further, the quantitative quality assessment
of the terrestrial registration results is displayed in Table 9.
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Table 8. The estimated transformation parameters.

Parameters S ω (rad) ϕ (rad) κ (rad) TX (m) TY (m) TZ (m) σ̂0

Scan 1-6 1.0 −3.4493 2.8075 −1.6508 −94.614 53.323 −18.798

0.894

Scan 2-6 1.0 −3.2476 2.9891 −1.8388 −71.118 34.456 −12.530
Scan 3-6 1.0 −3.1344 9.4287 −15.905 0.105 0.028 0.310
Scan 4-6 1.0 18.248 −12.14 2.3005 −68.692 126.67 −53.180
Scan 5-6 1.0 −3.0229 −3.559 −14.151 −152.290 88.495 −13.466
Scan 7-6 1.0 2.8475 15.355 −7.9346 −93.779 53.097 −17.995

Table 9. The quality assessment of the terrestrial point cloud registration.

MSE (cm) IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm)

ICP 3.31 - 9.30/1.31 6.82/2.42
Line-based - 1.97/0.23 0.64/0.40 2.04/0.27

Proposed method - 1.35/0.11 0.42/0.31 1.61/0.21
Proposed method (S = 1) - 1.61/0.47 0.44/0.39 1.73/0.64

In the six-parameter case, the scale factor was fixed as 1, ignoring this effect as most rigid
body-based methods would do. Considering Tables 7–9, the values of posterior variance σ̂0, internal
accuracy, Qangle, and Qdistance report that taking the scale factor into account can obtain better
registration results. The scale may bear certain systematic and random errors in this case, suggesting
that solving seven parameters should render more comprehensive applications. However, the solved
scale parameter needs also to be verified through significance test or based on prior information, if any,
as not to accept a distorted solution. For example, the scale factor provided upon RSTG can be a very
good approximation to be referred to. In Table 9, the proposed method yielded the best registration
result, about 0.4 degrees in angle deviation and 1.6 cm in distance discrepancy, which is smaller than
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the average point spacing of the raw point clouds. Both the line-based and the proposed methods kept
the consistency between the internal and external accuracy while the ICP did not. The MSE estimates
resulted from each registration pair of the ICP nevertheless reached up to 3.3 cm, which indicated
high internal consistency, even though the external accuracy was quite poor compared to either the
proposed or line-based methods. This would suggest that the computation of the ICP might converge
toward a local minimum. In addition, it could be understood that the ICP was affected by noise and its
sequential pair-wise registration scheme made the cumulative errors grow significantly while dealing
with open-loop scans.

Figure 16 shows the distance and angular discrepancies at each scan pair. It reveals that the
misalignment errors of the line-based and proposed methods were spread more uniformly among
successive point clouds, while the discrepancies of the ICP were accumulated. Figure 17 illustrates
the visual inspections of the registration result, where the point clouds of each scan are depicted in
different colors. With the better feature distribution and redundancy (186 in this case), this terrestrial
experiment highlighted the merits of the proposed simultaneous least-squares adjustment and the
multiple feature integration in dealing with the global registration of successive scans.
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After accomplishing the terrestrial registration, all features had been transformed onto the same
coordinate system. Again, the RSTG approach was implemented to the terrestrial and airborne feature
datasets for finding the conjugate features. There were nine lines and one plane correspondences
found between the local coordinate and the global coordinate systems. It should be noted that the
bulk of these data involved large geometric discrepancy raising the challenge of finding feature
correspondences and the unavailability of reliable conjugate points. Nevertheless, it can be seen in
Figure 15 that the normal vectors of plane features either in terrestrial or airborne scans are of less
variation in geometric distribution. That is, most of the normal vectors of planes point to similar
directions. It is intrinsically due to the specific scanning axis of LiDAR platform which would restrict
the usage of surface-based approaches and plane features in cross-platform point cloud registration.

After feature extraction and matching, the TLS data were registered onto the ALS one by the three
methods, and the registration quality was evaluated by 6 check lines and 1 check plane which were
manually extracted from the point clouds. Figure 18 shows the matched features (red lines and blue
plane) and check features (green).
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As shown in Table 10, the check features point out that the registration quality of the proposed
method is about 12 cm in distance discrepancy, slightly better than that of the line-based method.
Apparently, considering the nature of the data characters, the dominant registered errors would inherit
from the airborne point cloud. On the other hand, the ICP algorithm spoiled the registration in
this case because the terrestrial and airborne datasets barely contained overlapping areas along the
boundaries of the roof. The insufficient overlapping surfaces and the uneven data quality led the
ICP method to converge to a local minimum. Indeed, the uneven data quality also directly affected
the effectiveness of feature extraction and thus resulted in unequal accuracy of feature observations.
The proposed multi-feature transformation did introduce variance–covariance matrices of observations
into the adjustment process based on the fidelity of the data quality. If the uncertainty of features
was not considered, namely unweighted, the registration quality deteriorated and the positional
quality dropped almost 2 cm as compared to weighted result in this case. Therefore, by assigning
appropriate weights and adjusting the feature observations accordingly would lead to the better
transformation estimations.
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Figure 19 shows the visual inspections on the registered point clouds. It can be seen that the
point spacing between airborne and terrestrial scans was extremely distinct. However, the junctions
and the profiles in Figure 19b outlined the build boundary quite consistently. In addition, it is worth
mentioning that the quantity of distance discrepancy listed in Table 10 is far less than the average point
spacing (44 cm) of the airborne point cloud.
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Table 10. The quality assessment of the airborne and terrestrial point cloud registration.

IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm)

ICP - - -
Line-based 11.13/1.13 2.03/0.07 12.48/1.32

Proposed method (unweighted) 12.73/3.41 2.06/0.04 13.62/1.79
Proposed method (weighted) 11.12/1.11 2.02/0.03 11.23/1.24

The registration between TLS and ALS manipulated only the line and plane features since the
conjugate points were not available in this case. As a result, the internal accuracy of the line-based and
the proposed methods appeared very similar but the external accuracy indicated that the proposed
method was slightly better than the line-based method. The registration quality of line-based method
may be influenced by the check plane which was away from the effective area of line observations.
Even though line features were abundant, their reliability could be inferior to plane features considering
their high uncertainty in the discontinuity area of point clouds [54]. Therefore, integrating multiple
features into registration tasks would offer better solutions, especially for those scans rendering poor
overlapping geometry. The total execution time of this case was about 4.5 min for feature extraction,
76.8 s for matching, and 2.4 s for transformation estimation.
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3.2.4. Registration of Mobile and Airborne Point clouds

In this case, we applied the proposed method to the point cloud registration between mobile
LiDAR system (MLS) and airborne LiDAR system (ALS). Regarding ALS and MLS, the exterior
orientation of the sensor is typically known, so point cloud registration serves as a means of producing
a best-fit surface through an adjustment process that compensates for small misalignments between
adjacent data sets. Figure 20 shows the mobile and airborne scans of an urban area in Toronto, Canada.
The mobile point clouds were collected utilizing Optech LYNX system. The absolute accuracy was 5 cm
at 10 m range [55]. The airborne point cloud was collected by Optech ALTM 3100 at a flying height of
385 m with a reported elevation accuracy of up to 15 cm at a range of 1200 m [55] and approximately
19.2 cm horizontal accuracy in this case. The overlap area between the two data was about 412 m in
length and 162 m in width, as shown in Figure 20a. The information of point clouds can be found in
Table 11.
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Figure 20. Mobile and airborne LiDAR data.

Table 11. Information of the point clouds.

Scan Number of Points Avg. scanning
Distance (m)

Avg. Point
Spacing (cm)

Nominal Positional
Accuracy (cm)

Mobile scan 2,911,811 47.7 3 24
Airborne scan 766,488 385 40 19.8

In order to reduce the computational complexity, we trimmed the airborne point cloud according
to the mobile one and left the overlap area for feature extraction and matching. As illustrated
in Figure 21a, there were two points, nine lines, and one plane retrieved from the overlap area,
and even-distributed eight lines and one plane were manually collected as check features for
quality assessment.

The quality indicators in Table 12 show that the remaining discrepancies are 8.7 cm in distance
and 0.01 degrees in geometric similarity. Nevertheless, the visual registration result in Figure 21b
demonstrates the detailed roof and façade of building structures, where the purple and the yellow
points represented the airborne LiDAR and mobile LDAR data, respectively.

Table 12. The quality assessment of the airborne and mobile point cloud registration.

IA-Qdistance/std. (cm) Qangle/std. (deg.) Qdistance/std. (cm)

Proposed method 6.33/1.01 0.017/0.002 8.72/1.18

Apart from the quantity evaluation, three profiles (Figure 21c) were selected to visually inspect
the junctions between MLS and ALS after registration. Profile 1 displayed the road point cloud and
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showed the consistency in plain area; and Profiles 2 and 3 demonstrated the roof and façade of the
same building in two directions. The geometric agreement appeared not only on solid structure objects,
but also on the tree-crown. Figure 21d exhibits the integrated point cloud result colored by height,
which benefits further geometric exploration. The feature extraction process took about 7.5 min since
the space extent of this point cloud data was larger than previous cases. The operation time for the
feature matching and transformation was around 3.12 s.
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4. Conclusions and Further Work

In this paper, the authors presented a multi-feature transformation model, exploiting the full
geometric properties and random information of points, lines, and planes, for the registration of LiDAR
point clouds. Simulated and real datasets were used to validate the robustness and effectiveness of
the proposed method. The essential behavior of individual features through coarse versus fine
measurements, single type of feature versus combined features, different levels of point cloud errors,
and minimal and nearly minimal configuration of combined features applicable to the transformation
was realized and evaluated both qualitatively and quantitatively by simulated data. The experimental
results using real scene datasets, on the other hand, showed that the multi-feature transformation
obtained better registration quality compared with the line-based and the surface-based ICP methods
in the first two cases with features inherited in the scene. This highlights the advantages of integrating
multiple features in a simultaneous registration scheme and suggests a comprehensive transformation
model for dealing with scenes involving complicated structures rich in line and plane features.
Practically speaking, by combining the existing feature extraction and feature matching mechanism,
the multi-feature transformation can be considered an automated and efficient technique for achieving
accurate global registration. Under current computing configuration, it consumed about four and
six minutes for all processes in Sections 3.2.2 and 3.2.3 , respectively, with feature extraction taking
about 80% of total computation time. In addition, this paper investigated into the effectiveness using
different feature primitives to exploit the advantages of feature combinations toward registration
purposes within the same platform and across different platforms. Furthermore, Case 3, with much
larger extent of operation area as compared to the other two cases, successfully demonstrated the
applicability of the proposed method tackling the cross-platform registration between ALS and MLS
point clouds with satisfactory result.

To increase the working flexibility and feasibility, future improvements following the proposed
method will explore other feature types and integrate surface- and feature-based approaches to where
geometric features may serve as constraints to gain registration benefit in an effective way.
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