
remote sensing  

Article

MHHT-Based Method for Analysis of Micro-Doppler
Signatures for Human Finer-Grained Activity Using
Through-Wall SFCW Radar

Fugui Qi, Hao Lv, Fulai Liang, Zhao Li, Xiao Yu and Jianqi Wang *
Department of Medical Electronics, School of Biomedical Engineering, Fourth Military Medical University,
Xi’an 710032, China; qifgbme@outlook.com (F.Q.); fmmulvhao@fmmu.edu.cn (H.L.);
liangfulai@fmmu.edu.cn (F.L.); lizhaofmmu@fmmu.edu.cn (Z.L.); yuxiao@fmmu.edu.cn (X.Y.)
* Correspondence: wangjq@fmmu.edu.cn; Tel.: +86-29-8477-4843

Academic Editors: Francesco Soldovieri, Raffaele Persico, Xiaofeng Li and Prasad S. Thenkabail
Received: 1 February 2017; Accepted: 10 March 2017; Published: 12 March 2017

Abstract: Ultra-wideband radar-based penetrating detection and recognition of human activities
has become a focus on remote sensing in various military applications in recent years,
such as urban warfare, hostage rescue, and earthquake post-disaster rescue. However, an excellent
micro-Doppler signature (MDS) extracting method of human motion with high time-frequency
resolution, outstanding anti-interference ability, and extensive adaptability, which aims to provide
favorable and more detailed features for human activity recognition and classification, especially
in the non-free space detection environment, is in great urgency. To cope with the issue, a multiple
Hilbert-Huang transform (MHHT) method is proposed for high-resolution time-frequency analysis
of finer-grained human activity MDS hidden in ultra-wideband (UWB) radar echoes during the
through-wall detection environment. Based on the improved HHT with effective intrinsic mode
function (IMF) selection according to the cosine similarity (CS) principle, the improved HHT is applied
to each channel signal in the effective channel scope of the UWB radar signal and then integrated
along the range direction. The activities of swinging one or two arms while standing at a spot 3 m
from a wall were used to validate the abilities of the proposed method for extracting and separating
the MDS of different moving body structures with a high time-frequency resolution. Simultaneously,
the corresponding relationship between the frequency components in MHHT-based spectra and
structures of the moving human body was demonstrated according to the radar Doppler principle
combined with the principle of human body kinematics. Moreover, six common finer-grained
human activities and a piaffe at different ranges under the through-wall detection environment were
exploited to confirm the adaptability of the novel method for different activities and pre-eminent
anti-interference ability under a low signal-noise-clutter ratio (SNCR) environment, which is critical
for remote sensing in various military application, such as urban warfare, hostage rescue, earthquake
post-disaster rescue.

Keywords: Hilbert-Huang transform; finer-grained human activities; micro-Doppler signatures;
through-wall detection

1. Introduction

Remote sensing for the recognition and classification of various human activities using radar has
attracted great attention from researchers [1–8] since Victor Chen introduced micro-motion in radar
observation [9–11], especially for finer-grained human activities (e.g., waving, jumping, picking up an
object, standing with random micro-shaking, etc.). It has a critical and promising applicability in many
fields, such as anti-terrorism, post-disaster search and rescue, border control, and patient monitoring
in hospitals.
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In addition to the constant Doppler frequency shift induced by the bulk translation of a moving
target when electromagnetic waves transmitted by a radar system illuminate a target, the basic
micro-motions, such as the oscillatory or rotational motion of the target or any structural components,
will generate additional sideband frequencies around the main Doppler shift, known as micro-Doppler
signatures (MDS) [11], which contain additional detailed characteristics related to these structures
and serve as favorable characteristic signatures for identifying different human activities depicted by
the distinct MDS. Consequently, an effective analysis and extraction method for MDS has gradually
become the focus of many studies [3,12,13]. Though some work on human activity classification
has also been done in the millimeter-wave regime [1,14], the MDS information derived from the
millimeter-wave echo is so poor, and the effective through-wall work range is limited, due to its weak
anti-interference, and no distance resolution and structure of single-frequency continuous-wave. The
emerging ultra-wide band (UWB) radar technology shows excellent performance for grasping the
motion features of multiple scatters resulted from the movements of different human body segments
because of its high distance resolution [15,16]. All of the detailed MDS of different scatters are
distributed in a range scope that has many range bins. From another perspective, different range bins
can also be viewed as different channel signals. Therefore, the key to extract and analyze the MDS of
human activity hidden in the UWB radar echo is, effectively, making full use of each valuable channel
signal [17] and ensuring reasonable channel integration.

Time-frequency (T-F) analysis is being adopted as the main tool to analyze the radar signals of
moving targets because it presents a signal in a 2D feature space, which facilitates the visualization
and interpretation of complex electromagnetic signal characteristics. Several studies on the MDS
of moving targets have been conducted for analysis and recognition based on conventional T-F
methods, and encouraging progress has been achieved. For example, the MDS features derived from
short-time Fourier transform (STFT) spectra were exploited to analyze multifarious human motions
and classify them based on certain pattern-recognition algorithms. These included the classification of
seven activities (running, walking without a stick, walking while holding a stick, crawling, boxing
while moving forward, boxing while standing at one position, and sitting) using a support vector
machine (SVM) [5] or artificial neural network (ANN) [18], classification of six kinds of finer-grained
human activities (piaffe, picking up an object, waving, jumping, standing with random micro-shaking,
breathing while sitting) under a through-wall environment using an optimal self-adaption SVM [7],
classification of five kinds of targets (human, dogs, car, bicycles, and vehicles) using an SVM [19],
unarmed/armed personnel classification based on the Bayes classifier [20], and investigation of the
MDS characteristics for 14 different human movements at stationary and forward-moving statuses
under free or through-wall environments [1]. However, these classifications rely excessively on
the intelligent pattern recognition algorithm instead of the crucial basis features. The classification
performance degrades significantly when the T-F analysis methods are slightly affected by external
factors. Other conventional T-F analysis methods were also applied for depicting the MDS, such as the
bilinear Winger–Ville distribution (WVD), log-Gabor filters [21], and the S-method [22]. However, only
relatively regular activities, such as swinging of arms and walking with or without arm movements,
were analyzed in these studies.

In reality, for various random, finer-grained human activities, the body usually does not move
at a constant amplitude and velocity, causing irregular, non-uniform, transient, and non-stationary
signals [23]. Hence, conventional STFT, which assumes linearity and stationarity in each window
segment of the signal, is not applicable, and the mutual restriction between the time resolution and
frequency resolution cannot be avoided [24]. Although the wavelet transform (WT) has better time
and frequency resolution, it is sensitive to the mother wavelet and it is inconvenient to alter [25].
The bilinear WVD has a better time and frequency resolution in the spectrum than the linear
distribution, but it suffers from the problem of cross-term interference, which is difficult to fix [24,26].
In addition to these imperfections, the common T-F transforms, including the STFT, WT, WVD,
and Choi-Williams distribution, require an a priori base function of the signal to obtain the best
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analysis performance [23,27], such as the cosine function in the STFT and the mother wavelet in the WT.
For the various random human motion signals, the optimal a priori base function is difficult to
determine, and it cannot adaptively change with the signal characteristics; thus, it usually cannot
achieve the best analysis performance owing to various types of restrictions. Owing to these
shortcomings, although these T-F transform methods have made some contribution to the analysis and
feature extraction of extremely sketchy and general MDS of human motion, the T-F resolution, detail
resolution, and anti-interference capability are very poor; hence, more detailed MDS of different limbs
and torsos cannot be separated and displayed clearly in the 2D T-F spectrum [5,28]. In addition, as our
previous manuscript [7] and other studies [5,13] demonstrated, the MDS resulting from the common
methods will attenuate sharply or become too weak and blurred under the through-wall or remote
detection conditions. Consequently, the MDS of various components of motion will be intertwined
or concealed in ineluctably strong noise and clutters; consequently, the corresponding instantaneous
MDS features related to different target components will be difficult to extract and distinguish with
the conventional method.

The Hilbert-Huang transform (HHT), first developed by Huang [27], provides a new approach
that is applicable to various non-stationary signals. It does not rely on the a priori base function
and offers a higher frequency resolution and more accurate timing of transient information [29].
The HHT involves two steps of empirical mode decomposition (EMD) and the Hilbert spectrum
(HS). The EMD decomposes a signal into a series of T-F components, adaptively, according to the
characteristics of the signal itself, called the intrinsic mode function (IMF). Each IMF reflects the
inherent oscillation characteristics of the original signal in different frequency scales. In addition, the
HS displays the instantaneous frequency and amplitude of different IMFs on the two-dimensional
(2D) T-F plane. Researchers have attempted to apply the EMD or HHT to the analysis or classification
of human motion based on continuous-wave (CW) radar [13,30,31]. Additionally, the conventional
ensemble empirical mode decomposition (EEMD) was also applied to make analysis and extraction
of MDS of moving human targets under through-wall detection environment [32,33]. However, the
results are unsatisfactory because the information from the CW radar signal is poor and there is
no effective approach to denoising, causing serious mode fusion. Moreover, there is no effective
self-adaptive method to eliminate the redundant IMFs in HHT, which is crucial for generating a high
signal-noise-clutter ratio (SNCR). In addition, these papers just made signal decomposition in the
time domain based on EMD or EEMD to provide weakly characteristic features as the base of human
activities classification, but not make clear separation and theoretical demonstration of valuable MDS
components resulting from different moving body parts, which is critical for accurate and efficient
classification and recognition of different human activities. Though a rough framework of the novel
time-frequency analysis method based on multiple HHT was proposed in last paper [34], not only is its
performance in adaptability and anti-interference ability are unsatisfactory, but also the correspondence
between different MDS components and various moving body parts are still illegible.

Therefore, this paper proposes an EEMD-based multiple HHT (MHHT) combined with the
channel integration method to enable high-resolution T-F analysis of finer-grained human activity MDS
hidden in UWB radar echoes in a through-wall detection environment. It first delimits the valuable
channels of the UWB radar signal along the range axis and performs the EEMD on each channel signal.
During the EEMD, for each valuable channel datum, the cosine similarity (CS) in vector space between
the channel data and corresponding IMFs, is applied for valuable IMF selection, and the HS is applied
to each selected IMF for spectrum analysis. Finally, the MHHT method accumulates the HS from all
valuable channels of the UWB radar signal that contain different motion information distributed in
different range positions for better visualization and convenient analysis. The experiments show that
the proposed method not only has excellent ability to extract the different detailed MDS derived from
distinct movements of human body parts but also displays outstanding anti-interference ability in a
low-SNCR detection environment. All of these advantages of this novel method were testified and
evaluated qualitatively and visually based on the experimental results.
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This paper is organized as follows: Section 2 describes the Materials and Methods,
mainly including the UWB radar system for the collection of human motion data, the experimental
setup, and the principle of the MHHT-based T-F analysis method. Based on the experimental results,
various performance tests of the proposed method considering multiple aspects are presented in
Section 3. Finally, a discussion and conclusion are presented in Sections 4 and 5, respectively.

2. Materials and Methods

2.1. UWB Radar System and Experimental Setup

The SFCW radar system developed by our group was the UWB radar system used for through-wall
detection of finer-grained human activities in this study. It realizes the UWB by transmitting a series
of discrete tones in a stepwise manner to cover the wide radar bandwidth in the time domain.
Study shows that the SFCW have some technology advantages over the phase-modulated
continuous-wave (PMCW) radar and frequency-modulated continuous-wave (FMCW) radar [35],
including: (1) It can effectively inhibit the noise of the receiving signal by controlling the bandwidth
(IF Bandwidth) of the receiver; and (2) the transmitting and receiving signals are both frequency domain
signals, which can be convenient for applying the signal processing technology in the frequency domain
for target echo processing and analysis. The schematic diagram of the SFCW system is illustrated
by the Figure 1. The data shown in this paper are generated by the radar system with the following
parameters: the 3.0 GHz bandwidth within a 0.5–3.5 GHz operating frequency band with a 30-MHz
stepping frequency allows not only good penetration ability, but also excellent range resolution.
A 4-ms pulse duration is used for sweeping the entire band. A 250-Hz pulse repetition frequency and
5-m maximum unambiguous range allow for acquisition of micro-motion information of the whole
body within the unambiguous Doppler region. In addition, the transmitting and receiving antennas
adopt cross-polarization, the maximum transmitting power is 10 dBm with a dynamic range >72 dB,
and the sensitivity of the receiver is −90 dBm. The analog-to-digital conversion (ADC) accuracy is
>12 bit, and the sampling rate is 250 Hz. The detailed working principle and formula derivation are
presented in our previous paper [7]. During the latter processing, we used only one channel signal
derived from one of two receiving antennas, which has a better performance.
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The data presented in this paper are collected in our SFCW radar experiment shown in Figure 2a.
During the experiment, a subject is positioned on one side of the laboratory brick wall (which is ~30 cm
thick) and the SFCW radar system is set on the other side. Then, as illustrated in Figure 2a, the subject
performs eight types of specific finer-grained human activities roughly on the spot, including swinging
one arm while standing on the spot, swinging two arms while standing on the spot, performing a piaffe,
picking up an object, waving, standing up, standing with micro-shaking, and breathing while sitting.

Remote Sens. 2017, 9, 260 5 of 16 

 

performing a piaffe, picking up an object, waving, standing up, standing with micro-shaking, and 
breathing while sitting. 

 
Figure 2. (a) SFCW radar system and experimental setup. (b) Eight finer-grained human activities. 

2.2. The EEMD-Based MHHT T-F Analysis Algorithm 

In this section, we present a novel T-F method for MDS analysis for the UWB radar signals of 
finer-grained human activities. Based on the basic framework of the novel method proposed on the 
previous paper [34], we made some improvements. This mainly includes three steps: signal 
preprocessing, effective channel scope selection, and MHHT: EEMD-based multiple HHT (MHHT) 
combined with the channel integration method for high-resolution T-F analysis of finer-grained 
human activity MDS hidden in UWB radar echoes in a through-wall detection environment. 
Simultaneously, the effective IMF adaptive selection based on the CS standard was exploited in the 
EEMD. 

2.2.1. Signal Preprocessing 

Owing to the excellent range resolution of UWB radar, the echoes at different time delays, which 
are at different ranges from the radar, can be acquired and generated simultaneously. After 
amplification and sampling through the hardware circuit, the echoes are stored in a 2D data matrix 	܀ഥ: ܀ഥ = ሼݎ௠(݊):݉ = 1,… ,ഥܯ, ݊ = 1,… ഥܰሽ (1) 

As the SFCW radar signal of finer-grained human motion shown in Figure 3a, the rows 
addressed as fast-time are associated with the range and the columns are associated with time. Each 
row contains one received waveform. ܯഥ  is the sampling number in the range and determines the 
detection range of the radar. 	 ഥܰ is the sampling number in the slow time that determines the total 
duration of the data together with the sampling frequency. As shown in Figure 3a, echoes detected 
by the UWB radar system are usually 2D ones that can be viewed as a set of time series in multiple 
channels, which can be referred to as a multichannel time series with ܯഥ  channels of length 	 ഥܰ. 

Before performing MHHT, the UWB echo data are preprocessed to eliminate stationary clutter 
and noise, such as background clutter and white Gaussian noise, as depicted in Figure 3a of the SFCW 
radar signal of piaffe activity 3 m behind the wall. Firstly, averaging and downsampling were 
performed for the data both in the range and time dimensions, resulting in not only the SNCR being 
improved, but also the data size being reduced. Secondly, a finite impulse response (FIR) motion 
filter is exploited for windowed mean subtraction in the time dimension, which aims to remove 
stationary background clutter resulting from scattering by rubbles and the human body. After the 
preprocessing, the UWB data are denoted as ܀ = ሼݎ௠(݊):݉ = 1,… ,ܯ, ݊ = 1,…ܰሽ ܀ .  becomes  ܯ ܯ)	ܰ× ≪ ܰ,ഥܯ < ഥܰ). For the above SFCW radar signal, the background noise and strong direct 
wave were eliminated effectively after preprocessing, as shown in Figure 3b. 

Figure 2. (a) SFCW radar system and experimental setup. (b) Eight finer-grained human activities.

2.2. The EEMD-Based MHHT T-F Analysis Algorithm

In this section, we present a novel T-F method for MDS analysis for the UWB radar signals of
finer-grained human activities. Based on the basic framework of the novel method proposed on
the previous paper [34], we made some improvements. This mainly includes three steps: signal
preprocessing, effective channel scope selection, and MHHT: EEMD-based multiple HHT (MHHT)
combined with the channel integration method for high-resolution T-F analysis of finer-grained human
activity MDS hidden in UWB radar echoes in a through-wall detection environment. Simultaneously,
the effective IMF adaptive selection based on the CS standard was exploited in the EEMD.

2.2.1. Signal Preprocessing

Owing to the excellent range resolution of UWB radar, the echoes at different time delays,
which are at different ranges from the radar, can be acquired and generated simultaneously. After
amplification and sampling through the hardware circuit, the echoes are stored in a 2D data matrix R:

R =
{

rm(n) : m = 1, . . . , M, n = 1, . . . N
}

(1)

As the SFCW radar signal of finer-grained human motion shown in Figure 3a, the rows addressed
as fast-time are associated with the range and the columns are associated with time. Each row contains
one received waveform. M is the sampling number in the range and determines the detection range of
the radar. N is the sampling number in the slow time that determines the total duration of the data
together with the sampling frequency. As shown in Figure 3a, echoes detected by the UWB radar
system are usually 2D ones that can be viewed as a set of time series in multiple channels, which can
be referred to as a multichannel time series with M channels of length N.

Before performing MHHT, the UWB echo data are preprocessed to eliminate stationary clutter and
noise, such as background clutter and white Gaussian noise, as depicted in Figure 3a of the SFCW radar
signal of piaffe activity 3 m behind the wall. Firstly, averaging and downsampling were performed for
the data both in the range and time dimensions, resulting in not only the SNCR being improved, but
also the data size being reduced. Secondly, a finite impulse response (FIR) motion filter is exploited
for windowed mean subtraction in the time dimension, which aims to remove stationary background
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clutter resulting from scattering by rubbles and the human body. After the preprocessing, the UWB
data are denoted as R = {rm(n) : m = 1, . . . , M, n = 1, . . . N}. R becomes M× N (M � M, N < N).
For the above SFCW radar signal, the background noise and strong direct wave were eliminated
effectively after preprocessing, as shown in Figure 3b.Remote Sens. 2017, 9, 260 6 of 16 
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2.2.2. Effective Channel Scope Selection

During this stage, the channel scope of valuable data that characterize motion features is acquired
from the preprocessed UWB data based on the energy principle. Firstly, the preprocessed empty
mining signal along the channel direction is averaged to obtain the channel average energy E0, which
represents the average level of background noise and clutter of UWB signals after preprocessing.
The channel with the greatest energy will be located at the center of the motion scope along the range
direction, referred to as d0, because most of the direct waves and the noise are removed after the
preprocessing, and the strongest motion will result in the greatest energy. According to characteristic
analysis of finer-grained human motion [7,36], the energy of the human motion radar signal will
decay gradually from the center to both sides. By traversing from the center to both sides, taking two
channels with energy values close to E0 as the valuable channel boundaries, recorded as dc and d f , the
number of valuable channel scopes is M′ = d f − dc + 1. Then, the UWB data are denoted as follows:

R̃ =
{

r̃m(n) : m = 1, . . . , M′, n = 1, . . . N′
}

(2)

where r̃m is the m-th channel of the M′ channel radar profiles. Thus, R̃ becomes
M′ × N′(M′ � M, N′ = N).

2.2.3. MHHT

Similar to the MHHT process illustrated in Figure 4, HHT is conducted on each effective channel
datum to obtain Hilbert T-F spectra. As a result, the joint-time-channel-frequency representation
(JTCFR) is acquired. Finally, based on the channel calculation operation of the JTCFR along the channel
direction, the joint-time-frequency representation will be generated, which is intuitive and convenient
for characteristic analysis and feature extraction. However, most importantly, during the HHT analysis
for each effective channel datum, the EEMD is exploited to obtain signal adaptive decomposition
according the characteristics of the signal itself and to avoid the mode-mixing problem. Moreover, the
CS in vector space between each channel datum and its corresponding imfs is applied to pick out the
valuable imfs, which will form the original time series for the sequential Hilbert spectrum analysis.
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The following steps 1–3 will be executed on all of the M′ channel signals in a similar manner such
that the next three steps will be introduced by taking one channel signal as an example for the analysis,
referred to as r̃′.

1st step: EEMD.

Adding some random white noise with appropriate intensity into r̃′.

(a) Conduct the conventional EMD operation [37] on the added noise signal: Based on the local
characteristics of the time series of the signal sequence, EMD decomposes the complex signal
into a finite number of intrinsic mode functions.

(b) Q imfs will be acquired after EMD operation and each imf component represents a single
component signal at a certain frequency, as the following:

IMF =
{

imfq(n) : q = 1, . . . , Q, n = 1, . . . N′
}

. (3)

Repeat the above steps (a) and (b) on r̃′, but the white noise series added per time of decomposition
is different. After decomposition for the total time of iterations of L, we obtain different corresponding
IMFs as follows:

LIMF = (IMF1, IMF2, . . . , IMFl . . . IMFL), (4)

where each IMF contains Q imfs with different frequency characteristics for each time of
EMD operation.

Averaging the corresponding IMFs resulting from the L times of EMD and considering it as the
final imf of r̃′, we obtain the following:

imf′q =
1
L

L

∑
l=1

IMFlq, l = 1, . . . , L. (5)

As is known, if the amplitude of the added white noise is much smaller compared to the original
data, the extreme value of the original signal may not be changed, resulting in a failed solution of the
model aliasing problem of the EMD. If the amplitude of the added white noise is too large compared
to the original data, it will cause a significant amount of falsification in the process of decomposition.
Moreover, too much decomposition will increase the computational time and computational burden.
In this study, by conducting contrastive analysis of the intensity characteristics on the background
signals and the measured signals of human activity, the intensity of white noise is set as 0.3 dBW.
In addition, by observing the decomposition effect based on different iterations of decomposition
and the corresponding computational time, we found the number of decomposition iterations
L = 30 reached the demand.
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2nd step: Effective selection of the imfs.

Even after the EEMD processing, there still exist parts of redundant components in imfs that
decrease the signal-to-noise ratio of the signal and dim the motion feature in the later Hilbert spectrum.
Therefore, conducting adaptive selection of valuable imfs is crucial.

The most direct and obvious signs of the human motion feature are the changes in the movement
direction and phase changes at different times. Coincidentally, the CS in vector space is an effective
parameter to evaluate the similarity of two vectors, which is not sensitive to the absolute value, but
emphasizes on the difference between the two vectors. Hence, for the imfs resulting from the EEMD,
by determining the corresponding CS between the imfs and r̃′, and simply keeping the imfs with CS
values over the threshold, the effective Q′ imf s representing the human motion feature can be selected
as the follows:

Scosθq = sim
(

imf′q , r̃′
)
=

∑n=N′
n=1 imfq(n)× r̃′(n)√

(∑n=N′
n=1 imfq

2(n))(∑n=N′
n=N′ r̃′

2
(n))

(6)

CS =
(
S_cosθ1, S_cosθ2, . . . , S_cosθq, . . . , S_cosθQ

)
(7)

In this study, the CS threshold is set to 0.3 by observing the relationship between the signal shape
and CS value of numerous experiments. Moreover, according to the frequency analysis of numerous
imfs with the corresponding CS less than 0.3, we found that the spectra of those imfs do not contain
only chaotic frequencies and cannot display regular motion characteristics. After the selection of
effective imfs, the final IMF is constructed as follows:

IMF =
{

imfq(n) : q = 1, . . . , Q′, n = 1, . . . N′, Q′ < Q
}

(8)

The advantages of EEMD and effective selection of imfs are as follows: On the one hand, for
each EMD decomposition, the added white noise is uniformly distributed in the entire time-frequency
space. The different frequency scales of the signal are projected automatically to the corresponding
frequency scales in the uniform time-frequency space established by the white noise. As the added
white noise in each time of EMD decomposition is different, and they are not related to each other,
the artificially-added noise will be offset after conducting overall averaging on the corresponding
imfs derived from all of the EMD decompositions. Compared with EMD decomposition, EEMD
can eliminate mode mixing, suppress the noise of the original signal, and obtain accurate imfs with
clearer physical meaning. On the other hand, the effective selection of imfs eliminates redundant
imf s without valuable motion features according the external shape features of motion signal and the
internal time-frequency characteristics in the T-F spectrum. Therefore, these two steps can suppress
and eliminate the noise and clutter, as well as improve SNCR, which helps in obtaining a clearer
T-F distribution.

3rd step: Hilbert transform.

The HHT approach defines the instantaneous frequency as the rate of change of phase from
Hilbert transform.

The Q′ imfs in Equation (8) actually represents the Q′ time series, which forms the new signal
Z(t). Then, the i−th imf can be represented by its analytic function Zi(t) as follows:

Zi(t) = X(t) + jH{X(t)} = X(t) + jY(t) = ai(t)eiθi(t) = ai(t) ej
∫

ωi(t)dt (9)

where H{X(t)} denotes the Hilbert transform and:

a(t) =
√

X2(t) + Y2(t), (10)
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ω(t) =
d
dt

{
tan−1

(
Y(t)
X(t)

)}
(11)

are the instantaneous amplitude and instantaneous frequency of the imf , respectively.
Therefore, the signal Z(t) can be expressed as a linear combination of the real parts of Zi(t):

Z(t) = H(ω, t) = Re

{
Q′

∑
i=1

ai(t) ej
∫

ωi(t)dt

}
. (12)

This implies that amplitude is a function of time and frequency. The T-F distribution of amplitudes
is designated as the Hilbert spectrum H(ω, t), and it can be contoured on the T-F plane. Thus far,
we can obtain instantaneous Doppler frequencies from the Hilbert spectrum.

4th step: Multiple channel accumulation of T-F spectrum.

For the radar data R̃{r̃m(n)}, M′ corresponding to the T-F representations are generated by
executing steps 2–4 on the M′ channels of the radar data, denoted as M′H(ω, t):

M′H(ω, t) = (H1(ω, t), . . . , Hm(ω, t), . . . , HM′(ω, t)). (13)

The joint-time-frequency-channel-representation (JTFCR) cube based on HHT will be acquired by
collecting the Hilbert spectrum of each channel signal together, as shown in Figure 4.

In order to facilitate the observation and post feature extraction, the JTFCR is accumulated along
the channel axis. Finally, a comprehensive time-frequency-representation is acquired, which contains
rich feature information of human motion:

H(ω, t) = ∑ M′
m=1Hm(ω, t). (14)

2.3. Micro-Doppler Analysis

The Doppler shift induced by a moving target at a constant velocity v facing the radar is given as:

fd = 2
f × v

c
, (15)

where f is the frequency of the carrier wave and c is the speed of light. For complex human motion,
the micro-motion of different moving structural body parts will induce different micro-Doppler
frequency components. Assuming that the number of structural body parts is N, and their
corresponding velocity is vi(t)(i = 1, 2, . . . N), the resulting comprehensive Doppler effect is the sum
of that of each moving body parts:

fD = ∑ N
i=12

f × vi(t)
c

. (16)

However, in practice, as illustrated in Figure 5, the structural body parts are all three-dimensional
with different lengths and thicknesses, such as the upper arm and lower arm in the action of swinging
one arm. Therefore, the upper arm with larger scattering area will cause stronger MDS than the
lower arm with smaller scattering area. In addition, these two body parts always perform vibrating
motion, taking the shoulder as the origin. Each body parts with a certain of scattering area will contain
numerous scattering points, which will cause different MDS. As depicted in Figure 5, setting the
origin as O, the speed of scattering point Sj positioned in the pendulum shaft length Rj(t) of different
structures is vj(t). In order to unify these two structures, we can express them as:

Rj(t) =

{
LOS, LOS ≤ LOA

LOA + LAS, LOS > LOA
, (17)
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where LOS represents the pendulum shaft length Rj(t) from the origin O to the scattering point Sj. LOA
represents the length of the upper arm and LAB represents the length of the lower arm. The scattering
points positioned at different pendulum shaft lengths will generate different speeds. Based on the
principle that Doppler frequency is proportional to the speed, frequencies from the lower arm are
much higher than those from the upper arm. Moreover, the frequency range of the lower arm is also
higher than that of the upper arm due to the physical structure that the lower arm is longer than the
upper arm: LAB > LOA.
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3. Experimental Results

This section mainly utilizes the novel method to analyze and extract micro-Doppler signatures of
human activities hidden in the UWB radar signal under the through-wall environment, with the aim to
investigate and demonstrate the advantages of the novel method, including the T-F resolution, broad
applicability for different human activities, and anti-interference ability of the strong noise and clutter
arising from penetration from the wall or increase of the detection range. Moreover, we employ the
comprehensive T-F analysis method [7] based on STFT (0.42 s Hanning window), which is considered
as the most commonly used and stable method, as the reference method.

3.1. Micro-Doppler Feature Analysis Based on MHHT and Validation of Structural Characteristics

For any human activity, both the multiple specific frequency components generated by the
motion of different body parts, and the large-scale uncertain frequency components arising from the
random noise and clutter, will embed in the UWB radar echo. Only the T-F analysis method with
excellent T-F resolution could extract detailed MDS and make them more visible and dissociative.
During this experiment, the proposed method and reference method are performed separately on the
activities of swinging one arm (right arm) or swinging two arms while standing on the spot behind
the wall for MDS analysis, and the spectra are as shown in Figure 6. In addition, the corresponding
relationship between the frequency components and structures of the moving human body were
also analyzed according to the radar Doppler principle combined with the principle of human body
kinematics. According to the high time-frequency resolution and the ability to extract the detailed MDs
of various moving body components, the advantages of the novel method were evaluated qualitatively
and visually.
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Figure 6. Spectra based on the two methods of the subject swinging one arm or two arms while
standing on a spot 3 m behind the wall: (a) STFT-based spectrum of the activity of swinging the right
arm. (b) MHHT-based spectrum of the activity of swinging the right arm. (c) STFT-based spectrum of
the activity of swinging both arms. (d) MHHT-based spectrum of the activity of swinging both arms.

For the activity of swing one arm, compared to the spectrum based on the reference method using
the proposed method shown in Figure 6a,b, we can determine: (1) The frequency range with valuable
motion characteristics in the range of 0–60 Hz in the two spectra. (2) The specific corresponding
frequencies related to the motion of different body parts cannot be separated effectively based on
the reference method shown in Figure 6a; however, they exhibit remarkable region segmentation in
the T-F domain in the spectrum based on the proposed method shown in Figure 6b. (3) In the high
frequency parts ranging from 30–60 Hz, the frequency components characterizing motion features
were contaminated by the noise and clutter severely for the reference method, while the proposed
method shows excellent performance. (4) We can observe the instantaneous frequency characteristic
changing with time in the results of the proposed method but not in the reference method.

As illustrated by the high time-frequency resolution spectrum shown in Figure 6b, we can perform
a detailed corresponding relationship analysis between the frequency components and structures of
the moving human body based on the human body kinematics of swinging one arm, which mainly
includes four structures (lower arm, upper arm, shoulder and the adjacent chest, and the torso) with
different motion speeds from high to low, as shown in Figure 5. The analysis process are as follows:
(1) The average motion cycle is about 1.5 s in the experiment and the arm swings forward and backward
one time in turn for one cycle. Thus, as shown in Figure 6b, we can find two frequency peaks during
1.5 s in the spectrum. (2) Based on the principle that the Doppler frequency is proportional to the
speed, the lower arm deserves the highest and widest frequency band in the range of 28–60 Hz
because it is the longest moving cylindrical component in this activity causing the largest range
of velocity change. However, its strength is the weakest, owing to its smallest scattering area.
(3) The second-highest frequency band ranging from 13–28 Hz originates from the motion of the
upper arm. (4) The third-highest frequency components ranging from 5–10 Hz, marked by the yellow
curve, result from the motion of the shoulder and the adjacent chest. (5) The frequency component of
the torso, marked by the black curve, is the smallest but strongest, centered at 2 Hz, which is caused by
the micro-rock-back-and-forth motion driven by the swinging arm, but with the widest scattering area.

Comparing the results based on the two methods of swinging only the right arm or swinging both
of the arms, the reference method cannot distinguish and display the respective characteristics between
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the left and right arms, as shown in Figure 6c. Nevertheless, not only the frequencies of different
structures, but also their affiliation to responding arms, could be distinguished, as shown in Figure 6d,
such as the different phase information in the left and right arms marked by white and red curves,
respectively, and in the left and right shoulders, marked by yellow and purple curves, respectively.

3.2. Adaptability Test

To demonstrate the wide adaptability of this proposed method to different finer-grained human
activities, another six common finer-grained human activities were exploited to conduct T-F analysis
and their corresponding T-F spectra are shown in Figure 7.
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Just as these spectra show in Figure 7, we find that this proposed method could approach favorable
analysis performance for different activities and extract the detailed MDS of different moving body
components and the spectra of different activities display remarkably distinguishable MDS: (1) For the
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spectrum of the piaffe shown in Figure 7a, in addition to the MDS frequency components similar to
those of the activity of swinging two arms shown in Figure 6d, including two arms, shoulders, and
torso, there are two additional strong frequencies positioned at approximately 13 Hz with a fixed phase
difference. Therefore, they must be related to the only added moving body structure of the two upper
legs as compared with the two swinging arms, which move with a higher speed than the shoulders
and have a relatively wide scattering area. (2) The activity of picking up mainly includes two steps
of bending down and standing up; therefore, the upper torso and head will cause the primary MDS.
This activity usually consumes more time, and the speeds of various body parts are low. Therefore,
as shown in Figure 7b, the high-frequency range of 15–30 Hz arises from the head motion while the
strong and the low-frequency range of 2–15 Hz mainly arises from the torso motion. (3) The frequency
components of waving are similar to those of swinging one arm, as shown in Figure 7c, but each part
is lower because the speeds of the corresponding body structures are lower than those in swinging
one arm. (4) The spectrum of jumping up contains the most complex frequency components, and the
highest frequency can be as high as 60 Hz due to the high-speed motion. Moreover, in addition to the
simultaneous swinging of two arms to generate power for take-off, both the arms swinging during
landing, and the after-swing to restore balance after landing, all will cause significant MDS, as shown in
Figure 7d. (5) Standing activity with random micro-shaking generates a very simple and low frequency
component ranging from 0–7 Hz, as shown in Figure 7e, resulting from the free and slow torso shaking.
In addition, the small and weak high frequency components above the torso are derived from the
micro-swing of the two arms driven by the torso motion. (6) There is only one frequency component
positioned at 0.2 Hz, as shown in Figure 7f, and it accurately depicts the frequency characteristic of the
activity of breathing while sitting and extracts the weak breathing periodic motion characteristics.

3.3. Anti-Interference Ability Test

The anti-interference ability of noise and clutter is a critical index to evaluate the stability and
environmental adaptability for an algorithm. This ability significantly affects the validity of the
algorithm while analyzing and extracting the MDS of human motion under an imperfect detecting
environment with considerable background noise and clutter, such as in through-wall or long distance
detection. In this study, in order to simulate the strong interference environment in as realistic a
manner as possible, we exploit the piaffe activity radar signal under different through-wall distances
(4, 5, 6 m) to conduct the ability test. Similarly, the STFT is also taken as the reference method.

According to the spectra based on the two methods of the piaffe shown in Figure 8, the MDS of
the moving human body parts fade gradually and inevitably with the increasing penetration range.
However, for the STFT-based spectrum shown in Figure 8a,c,e, the high frequency components of
human motion weaken significantly with increasing range, and regular motion features are also rarely
observed and are simply filled with rambling background noise in the spectrum at 6 m. On the
contrary, although with slight attenuation, the proposed method can still extract and distinguish the
human body MDS components from the complex and unfavorable background with a high degree of
separation. Moreover, the movement rhythm and motion characteristics could be observed clearly
from the spectrum of the proposed method.
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4. Discussion

In this paper, eight kinds of finer-grained human activities were detected by the SFCW radar and
analyzed by the MHHT-based T-F transform method for extracting detailed MDS. For the activities
of swing one arm and two arms, as shown in Figure 6, the proposed method could extract the
different frequency components of body parts effectively and display them in the T-F spectrum clearly.
Compared with the T-F analysis in human activities classification research [5,20], the proposed method
took a very large step in the T-F resolution of the human motion spectrum, which is critical for
obtaining detailed information and grasping the instantaneous motion characteristics. Moreover,
compared with MDS analysis results of human activities using HHT based on EEMD [32], this paper
determined and demonstrated the corresponding relationships between the frequency components and
corresponding body structures, which will provide more accurate and representative motion features
for better classification. What is more outstanding, even the time delay of the MDS changes caused by
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moving left and right arms could be observed. In the aspect of adaptability, the proposed method is
applicable to various non-stationary movements shown in Figure 7, not just to some stationary and
regular actions, such as walking with or without arm swing [20–22]. More importantly, compared
with the weak performance of the conventional T-F analysis method that the MDS will be inundated
by the clutter and noise easily [5], as shown in Figure 8, the proposed method could carry out the
above two advantages even under a through-wall and remote detection environment. In other words,
the proposed method results in a higher signal-noise-clutter ratio to remove the noise and clutter
and can improve the interpretation. Therefore, based on its excellent anti-interference ability, the
proposed method could provide more detailed and accurate motion feature information under a
poor environment, which is highly favorable for the actual application of through-wall detection and
motion classification.

However, the energy of the MDS inevitably attenuates with the increase of the through-wall
detection range, as shown in Figure 8. We still need to find a reasonable and effective approach for
feature enhancement to solve the attenuation problem. Moreover, the discussion of the results is largely
qualitative and mostly made visually. Some effective technologies and indexing should be exploited to
quantitatively verify the performance of the novel method in the further study. In addition, as shown
in all of the MHHT-based spectra, the frequency bands resulted from the motion of various body
structures are composed of discrete points and are also missing in some time periods. Therefore, the
extraction, segmentation, and quantification of different MDS components in the T-F spectrum derived
from the motion of various body structures will be a significantly challenging task in our future work.

5. Conclusions

This paper proposed a novel T-F analysis method named EEMD-based MHHT combined with
the channel integration method for high T-F resolution analysis of MDS from finer-grained human
activities hidden in the UWB radar echo in a through-wall detection environment, which is critical for
remote sensing in various military application, such as urban warfare, hostage rescue, and earthquake
post-disaster rescue.

During the experiments, first, the activities of swinging one or two arms while standing on a spot
3 m behind the wall were analyzed based on the STFT-based and MHHT-based methods. While the
proposed method showed excellent extracting and separating abilities of the MDS of the different
moving body structures with higher T-F resolution compare to the reference method, the corresponding
relationship between the frequency components in the T-F spectra and structures of the moving human
body were also demonstrated according to the Doppler radar principle combined with the principles of
human body kinematics. For the same activity, the proposed method also showed an excellent ability
to grasp instantaneous characteristics. Moreover, six common finer-grained human activities were
applied to test the adaptability of the proposed method for different activities, and the results obtained
in the test were in perfect agreement. Finally, the piaffe at different ranges under the through-wall
detection environment was utilized to simulate different SNCR application environments. Compared
with the reference method, the results of the spectrum based on the proposed method still display
an outstanding ability to extract MDS even under a severely affected detection environment. The
high SNCR of the spectra of the proposed method improves the interpretation accuracy of human
motion and proves its capability to remove noise, which will provide critical advantages in practical
application. Based on these advantages and characteristics, this novel approach could undoubtedly
provide more detailed and accurate feature information of human motion as the foundation for a
pattern recognition device during activity recognition and classification, even under a poor detection
environment, with a considerable amount of noise and clutter.

Acknowledgments: This work was supported by National Science & Technology Pillar Program
(No. 2014BAK12B01), National Natural science Foundation of China (Grant No. 61327805), Shaanxi Technology
Committee (Grant No. 2016KJXX-03) and National Natural science Foundation of China (Grant No. 31600796).



Remote Sens. 2017, 9, 260 16 of 17

Author Contributions: The authors acknowledge the participants for helping with data acquisition. Thanks are
given to Hao Lv, Fulai Liang, Zhao Li, Xiao Yu, and Jianqi Wang for the their contributions.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Zenaldin, M.; Narayanan, R.M. Features associated with radar micro-Doppler signatures of various human
activities. Int. Soc. Opt. Photonics 2015. [CrossRef]

2. Fioranelli, F.; Ritchie, M.; Griffiths, H. Multistatic human micro-Doppler classification of armed/unarmed
personnel. IET Radar Sonar Navig. 2015, 9, 857–865. [CrossRef]

3. Karabacak, C.; Gurbuz, S.Z.; Gurbuz, A.C.; Guldogan, M.B.; Hendeby, G.; Gustafsson, F. Knowledge
Exploitation for Human Micro-Doppler Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2125–2129.
[CrossRef]

4. Clemente, C.; Pallotta, L.; De Maio, A.; Soraghan, J.J.; Farina, A. A novel algorithm for radar classification
based on doppler characteristics exploiting orthogonal Pseudo-Zernike polynomials. IEEE Trans. Aerosp.
Electron. Syst. 2015, 51, 417–430. [CrossRef]

5. Kim, Y.; Ling, H. Human activity classification based on micro-Doppler signatures using a support vector
machine. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1328–1337.

6. Qi, F.; Li, C.; Wang, S.; Zhang, H.; Wang, J.; Lu, G. Contact-free detection of obstructive sleep apnea based on
wavelet information entropy spectrum using bio-radar. Entropy 2016, 18, 306. [CrossRef]

7. Qi, F.; Liang, F.; Lv, H.; Li, C.; Chen, F.; Wang, J. Detection and classification of finer-grained human
activities based on stepped-frequency continuous-wave through-wall radar. Sensors 2016, 16, 885. [CrossRef]
[PubMed]

8. Forouzanfar, M.; Mabrouk, M.; Rajan, S.; Bolic, M.; Dajani, H.R.; Groza, V.Z. Event recognition for contactless
activity monitoring using phase-modulated continuous wave radar. IEEE Trans. Bio-Med. Eng. 2016, 64,
479–491. [CrossRef] [PubMed]

9. Chen, V.C. Analysis of radar micro-Doppler with time-frequency transform. In Proceedings of the Tenth
IEEE Workshop on Statistical Signal and Array Processing, Pocono Manor, PA, USA, 14–16 August 2000.

10. Chen, V.C.; Li, F.; Ho, S.; Wechsler, H. Analysis of micro-Doppler signatures. IEE Proc.-Radar Sonar Navig.
2003, 150, 271–276. [CrossRef]

11. Chen, V.C.; Li, F.; Ho, S.; Wechsler, H. Micro-Doppler effect in radar: phenomenon, model, and simulation
study. IEEE Trans. Aerosp. Electron. Syst. 2006, 42, 2–21. [CrossRef]

12. Van Dorp, P.; Groen, F. Feature-based human motion parameter estimation with radar. IET Radar Sonar
Navig. 2008, 2, 135–145. [CrossRef]

13. Fairchild, D.P.; Narayanan, R.M. Micro-doppler radar classification of human motions under various training
scenarios. Int. Soc. Opt. Photonics 2013. [CrossRef]

14. Narayanan, R.M.; Smith, S.; Gallagher, K.A. A multifrequency radar system for detecting humans and
characterizing human activities for short-range through-wall and long-range foliage penetration applications.
Int. J. Microw. Sci. Technol. 2014, 2014, 958905. [CrossRef]

15. Yarovoy, A.G.; Ligthart, L.P.; Matuzas, J.; Levitas, B. UWB radar for human being detection. IEEE Aerosp.
Electron. Syst. Mag. 2006, 21, 10–14. [CrossRef]

16. Singh, S.; Liang, Q.; Chen, D.; Sheng, L. Sense through wall human detection using UWB radar. EURASIP J.
Wirel. Commun. Netw. 2011. [CrossRef]

17. Luo, Y.; Zhang, Q.; Qiu, C.; Liang, X.; Li, K. Micro-Doppler effect analysis and feature extraction in ISAR
imaging with stepped-frequency chirp signals. IEEE Trans. Geosci. Remote Sens. 2010, 48, 2087–2098.

18. Kim, Y.; Ling, H. Human activity classification based on micro-Doppler signatures using an artificial neural
network. In Proceedings of the 2008 AP-S Antennas and Propagation Society International Symposium, San
Diego, CA, USA, 5–12 July 2008.

19. Kim, Y.; Ha, S.; Kwon, J. Human detection using Doppler radar based on physical characteristics of targets.
IEEE Geosci. Remote Sens. Lett. 2015, 12, 289–293.

20. Fioranelli, F.; Ritchie, M.; Griffiths, H. Classification of unarmed/armed personnel using the NetRAD
multistatic radar for micro-Doppler and singular value decomposition features. IEEE Geosci. Remote
Sens. Lett. 2015, 12, 1933–1937. [CrossRef]

http://dx.doi.org/10.1117/12.2176760
http://dx.doi.org/10.1049/iet-rsn.2014.0360
http://dx.doi.org/10.1109/LGRS.2015.2452311
http://dx.doi.org/10.1109/TAES.2014.130762
http://dx.doi.org/10.3390/e18080306
http://dx.doi.org/10.3390/s16060885
http://www.ncbi.nlm.nih.gov/pubmed/27314362
http://dx.doi.org/10.1109/TBME.2016.2566619
http://www.ncbi.nlm.nih.gov/pubmed/28113259
http://dx.doi.org/10.1049/ip-rsn:20030743
http://dx.doi.org/10.1109/TAES.2006.1603402
http://dx.doi.org/10.1049/iet-rsn:20070086
http://dx.doi.org/10.1117/12.2016651
http://dx.doi.org/10.1155/2014/958905
http://dx.doi.org/10.1109/MAES.2006.1624185
http://dx.doi.org/10.1186/1687-1499-2011-20
http://dx.doi.org/10.1109/LGRS.2015.2439393


Remote Sens. 2017, 9, 260 17 of 17

21. Tivive, F.H.C.; Phung, S.L.; Bouzerdoum, A. Classification of micro-Doppler signatures of human motions
using log-Gabor filters. IET Radar Sonar Navig. 2015, 9, 1188–1195. [CrossRef]
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