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Abstract: Sea ice drift strongly influences sea ice thickness distribution and indirectly controls air-sea
ice-ocean interactions. Estimating sea ice drift over a large range of spatial and temporal scales is
therefore needed to characterize the properties of sea ice dynamics and to better understand the
ongoing changes of the climate in the polar regions. An efficient algorithm is developed for processing
SAR data based on the combination of feature tracking (FT) and pattern matching (PM) techniques.
The main advantage of the combination is that the FT rapidly provides the first guess estimate of
ice drift in a few unevenly distributed keypoints, and PM accurately provides drift vectors on a
regular or irregular grid. Thorough sensitivity analysis of the algorithm is performed, and optimal
sets of parameters are suggested for retrieval of sea ice drift on various spatial and temporal scales.
The algorithm has rather high accuracy (error is below 300 m) and high speed (the time for one
image pair is 1 min), which opens new opportunities for studying sea ice kinematic processes. The
ice drift can now be efficiently observed in the Lagrangian coordinate system on an irregular grid
and, therefore, used for pointwise evaluation of the models running on unstructured meshes or for
assimilation into Lagrangian models.
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1. Introduction

Sea ice drift strongly influences sea ice thickness distribution and, as a consequence, indirectly
controls air-sea ice-ocean interactions, e.g., energy fluxes [1]. In both the Arctic and Antarctic, sea ice
ends drifting towards lower latitudes, where it finally melts. Sea ice melt represents a significant source
of surface fresh water and plays an important role in the dynamics of the World Ocean. Estimating
sea ice drift over a large range of spatial and temporal scales is therefore needed to understand and
characterize the properties of sea ice dynamics at large, but also to help better understand the ongoing
changes of the climate in the polar regions and beyond [2].

The need for more accurate and high-resolution near-real-time sea ice drift estimates is becoming
more crucial than ever before, in particular in the context of the ongoing shrinking of the Arctic sea ice
cover [3]. Indeed, as a consequence of the sea ice decline, we observed a positive trend in the volume
of marine transport [4] and offshore activities in the Arctic, which are likely to accelerate in light of
the predicted expansion of open water [5]. We also note in this context the importance for current or
future sea ice models used in forecasting platforms to simulate sea ice drift accurately in order to plan
operations in ice-covered waters and reduce the risk of incidents. Fast-changing sea ice brings hazards
that are still a challenge to predict with today’s available observing and modeling systems [6]. As an
example, an exploratory oil drilling in the Chukchi Sea was suddenly halted in summer 2012 when an
unpredicted incursion of broken-up ice threatened the safety of personnel and vessels. Such events
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will become more common as Arctic maritime activity grows and as the sea ice gets mechanically
weaker [7] and more mobile [8]. The combination of an efficient algorithm to retrieve sea ice drift from
Synthetic Aperture Radar (SAR) images with a state-of-the-art forecasting platform based on a skillful
sea ice model, especially with respect to sea ice kinematics simulation, appears like one possible way
to go in order to tackle the aforementioned challenge.

Assimilation of sea ice deformation derived from high-resolution (SAR) sea ice drift into sea ice
models is becoming possible if the model uses, e.g., an elasto-brittle rheology and the local level of
damage as a model variable [9,10]. The combination of observations with such models looks promising
as it can significantly improve the sea ice drift and deformation forecasting skills. However, in order
to be able to combine observations and models efficiently, both observed and simulated sea ice drift
have to capture the known characteristics of sea ice drift at a given spatial and temporal scale. With
the current satellite observations available and the last generation of sea ice models, one should target
to provide accurate daily drift of sea ice at 1-km resolution in near-real-time over the largest possible
area.

The motion of sea ice is mainly driven by winds and ocean currents, but there does not exist
a simple linear relationship between them, especially in winter when the ice is compact and its
mechanically-induced sea ice internal stresses are high. Indeed, as opposed to current and wind fields
that are relatively smooth over scales larger than kilometers, the sea ice motion field is characterized
by the presence of sharp and extremely localized spatial gradients. From a mechanical point of view,
those gradients can be related to the brittle behavior of sea ice, which should be viewed as the intrinsic
response of solids to strong-enough external mechanical forcing. When strong winds blow over sea
ice, the sea ice cover breaks up along fractures, along which the two individual blocks of ice are
moving independently and possibly in opposite directions. Ice motion gradients therefore correspond
to areas of convergence, divergence or shear deformation associated with the formation of ridges,
opening/closing of leads and shear along faults, respectively. The brittle behavior of sea ice is at the
origin of the scaling properties of observed sea ice deformation fields, i.e., heterogeneity (in space) and
intermittency (in time) [11]. Since sea ice motion in the high ice concentration areas is controlled by
the aforementioned deformation fields, sea ice displacement estimates are scale dependent, as well,
meaning that their correct interpretation requires their spatial and temporal scales of estimation to
be known.

This poses one of the difficulties of estimating sea ice drift from satellite remote sensing data, as
the employed images have their own inherent spatial resolution, and the geometry of the satellite orbit
(or orbits of multiple satellites) defines the actual frequency of observations. In addition, the algorithms
to derive sea ice drift introduce their own spatial and temporal scales of “averaging” throughout the
drift estimation procedure.

That being said, sea ice drift has been retrieved from various sources of satellite remote sensing
data over the last few decades. The maximum cross-correlation (MCC) approach has been applied
for automatic processing of the optical data from the Advanced Very High Resolution Radiometer
(AVHRR) since 1984 [12]. Nowadays, MCC is adapted for processing low resolution passive
microwave [13], scatterometer [14] and high resolution SAR data [15–17]. Other approaches for
motion detection on 2D data are also applied, including feature tracking [18], optical flow [19,20] and
the combination of different methods [21,22]. These studies focus on methodological aspects of the
algorithms, and the questions of temporal and spatial scales of ice drift are seldom addressed.

An additional challenge emerging recently is the enormous amount of data available from the
SAR instrument onboard the two European Space Agency (ESA) satellites Sentinel-1A and B [23].
Observations from these two satellites cover the Arctic Ocean at least once or, in very high latitudes,
twice and even thrice per day with a spatial resolution of 80 m providing 100 TB of data every day [24].
The unprecedented flow of data sets new demands on the efficiency of the ice drift retrieval algorithms.

The goal of our study is to develop an efficient algorithm for processing SAR data based on
the combination of feature tracking (FT) and pattern matching (PM) techniques and to study its
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applicability for retrieval of sea ice drift on various spatial and temporal scales. The main advantage
of the combination is that the FT rapidly provides the first guess estimate of ice drift in a few
unevenly-distributed keypoints, and PM accurately provides drift vectors on a regular grid. The
algorithm is calibrated/validated for processing SAR data primarily from Sentinel-1 satellite. It
is supplied with a methodology for sensitivity testing, which can also be applied to find optimal
parametrization for processing data from other SAR instruments.

The paper is organized as follows: the section ‘Data’ briefly describes available satellite and in situ
data; the section ‘Methodology’ provides a description of the ice drift retrieval algorithm, sensitivity
tests and the validation approach; the section ‘Results’ shows the calibration/validation results; the
section ‘Discussion’ highlights the main advantages of the algorithm and focuses on interpretation of
the algorithm performance in three use cases.

2. Data

2.1. Sentinel-1A Data

For calibration and validation of the algorithm, 322 Sentinel-1 SAR images were downloaded
from the ESA Sentinel Scientific Hub [24]. In our study, we utilized Level-1 (L1) data in Extra Wide
Swath mode (EW) from the ground product in medium resolution (GRDM, pixel spacing is 40 m)
in cross-polarization (1SDH)[25]. Radiometric calibration was applied to the digital numbers (DN)
provided in the TIFF file and calibration look-up-table (A) provided in accompanying metadata XML
files in order to compute the normalized radar backscatter cross-section (σ0) in dB [26]:

σ0 = 10log10(DN2/A2) (1)

Values of σ0 were scaled to the range 0–255 and converted from the 32-bit floating-point to the
eight-bit integer data type compliant with the OpenCV library [27,28] using the following formula:

σ0
8 = 255(σ0 − σ0

MIN)/(σ
0
MAX − σ0

MIN), {σ0
8 ∈ Z|0 ≤ σ0

8 ≤ 255} (2)

where σ0
MAX , σ0

MIN are minimum and maximum values of σ0 identified individually for HH and HV
polarizations (see Sections 3.3 and 4.1).

The spatial resolution was reduced by down-sampling by two in both directions (pixels size
equals 80 × 80 m) using averaging of the nearest pixels in order to reduce speckle noise. Images were
used in swath projection and were not collocated on the same grid (reprojected).

The ground control points (GCPs) provided in the accompanying metadata files were used to
transform the coordinates of the features identified on the image from the image coordinate system
(rows, columns) to the geographic coordinate system (longitude, latitude) and back. Geolocation
accuracy of the GCPs was estimated by manual comparison of the position of a reference point (a sharp
tip of a small island in Svalbard archipelago) selected on one image to the position of this point on 30
other images acquired within one month. The average difference between positions of the reference
point (a proxy for the geolocation accuracy) proved to be 4.9 ± 3.3 pixels (197 ± 135 m).

All preprocessing steps including radiometric calibration, downsampling and geolocation were
performed using the Nansat package [29,30].

2.2. Sea Ice Drifters

During the N-ICE2015expedition, 42 buoys of various types were deployed from helicopter or the
research vessel Lance in an ice-covered area north of Svalbard in January–February and April–May
2015 [31,32]. GPS receivers of the buoys were set to record position every hour (or every three hours
on some buoys) with average accuracy of 50 m [33].

The buoys were deployed in ice pack, but during the drift, the ice concentration was constantly
diminishing, and eventually, some of the buoys ended up in open water, where the FT or PM algorithms



Remote Sens. 2017, 9, 258 4 of 17

are not applicable (see the map of buoy position in Figure 1). Eight hundred seventy seven buoy
positions were selected as “valid” for our analysis only if a buoy was positioned on the ice (sea ice
concentration from Ocean and Sea Ice Satellite Application Facility (OSI SAF) [34] must be above 85%),
and the difference in time between satellite image acquisition and buoy GPS reading must be less that
one hour. Valid match-ups were randomly split into two equal parts: one part was used for sensitivity
tests (see Section 3.3), another part for independent validation (see Section 3.2). Buoy coordinates in
the spherical coordinate system (longitude, latitude) were converted into the Cartesian coordinate
system of a matching SAR image (rows, columns) utilizing the georeference information from the
corresponding GCPs using Nansat [29].

Figure 1. Position of buoys used for validation and deployed in winter (blue dots) or in spring (red dots).

3. Methodology

3.1. Combination of Feature Tracking and Pattern Matching

The proposed algorithm is based on subsequent application of the feature tracking [35] and
pattern matching [36] techniques (flowchart shown in Figure 2). At the first step, FT is applied to a
pair of Sentinel-1 SAR images covering the same area, but at a given time interval δT. The detailed
description of the FT method is provided in [18], and here, we discuss only the steps important for
understanding of the combined algorithm.

FT automatically identifies keypoints (distinct features) on the images and describes each keypoint
with a vector of 256 binary descriptors [35]. The keypoints are matched using the brute-force matching
(all keypoints on one image are compared to all keypoints on another image) and the Hamming
distance (number of the descriptors in the vector with different values). For each keypoint on the
first image, a ratio between the smallest and the second smallest Hamming distance to keypoints on
the second image is computed. If the ratio is below a threshold (LT), the keypoints with the smallest
Hamming distance are considered as matched.

As a result, FT provides the location of matched features characterized by pixel/line coordinates
on the first image (x1, y1) and corresponding coordinates on the second image (x2, y2). Two filters
are applied to identify rogue vectors: First, vectors where ice drift exceeds a threshold F1 m/s are
omitted as incorrect. Second, in order to remove inconsistent drift vectors, the values of x1 and y1

are approximated using the second order polynomial functions of x2 and y2 computed by the least
squares method (Equation (3)). The approximated coordinates are compared with the actual ones, and
the vectors that have a start position further than threshold F2 km away from the simulated point are
discarded.

Although FT is very fast, the generated vectors are heterogeneously distributed in space. Note that
in this form, this set of drift vectors cannot be used further for studying, e.g., sea ice deformation, as it
is a scale-dependent dynamical process. Therefore, the ice drift is to be further estimated on a regular
grid with a given resolution.
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Figure 2. Flowchart of the combination of feature tracking and pattern matching algorithms.

At the second step (see Figure 2), the FT results are approximated at the regular grid or, generally
speaking, in any point inside the overlap between the two SAR images. The approximation by a linear
interpolation [37] is performed in the geographic space between the matched keypoints (Figure 3,
blue dots from Image 1 and green dots from Image 2). In the surrounding area, the approximation is
performed using N-th-order polynomial:

x∗2 =
n

∑
i,j=0

Ai,jxi
1yj

1, i ≤ N, j ≤ N, i + j ≤ N

y∗2 =
n

∑
i,j=0

Bi,jxi
1yj

1, i ≤ N, j ≤ N, i + j ≤ N
(3)

where x∗2 , y∗2 are the extrapolated coordinates of point from Image 2, Ai,j and Bi,j are polynomial
coefficients derived using the least squares methods applied to all valid FT results and N is order of
the polynomial discussed in Section 4.1. By definition, the approximation of the ice drift is inaccurate.
The distance to the nearest keypoint (Figure 3, distance Z) may serve as a measure of the approximation
uncertainty (Figure 3, distance D). The established approximation can now be used for estimating
coordinates X∗2 , Y∗2 of the first guess point in Image 2 (Figure 3, green triangle) based on the coordinates
X1, Y1 of any points of interest (POI) on Image 1 (Figure 3, blue triangle). Hereafter, block letters
are used to denote sets of coordinates (e.g., x1, y1 denote coordinates of all output vectors from FT);
capital letters are used to denote a single value (e.g., X1, Y1 denote coordinates of a point on the
example image).
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Figure 3. Explanation of the combination of feature tracking (FT) and pattern matching (PM)
algorithms. Blue (green) semitransparent square: Footprint of Image 1 (2) in coordinates of Image 1.
Blue (green) dots: Keypoints identified on Image 1 (2) by FT. Black arrows: Ice drift vectors identified
by FT. Blue triangle: Point of interest on Image 1. Green triangle: The first guess point on Image 2.
Blue square: Original template from Image 1. Blue square with dashed outline: Rotated template.
Green square: sub-image from Image 2. Letters Z, T and D denote the distance to the nearest keypoint,
template size and searching range.

At the third step (see scheme on Figure 2), the approximated ice drift is used as the first guess
for the precise PM technique (Figures 3 and 4) in the following order. Azimuth angle (α0) between
the SAR scenes is calculated based on the georeference information. A template t (blue empty square
on Figure 3) is subset from Image 1 around a starting point of interest with coordinates X1, Y1 (blue
triangle on Figures 3 and 4A) and size T × T pixels. The corresponding approximate coordinates X∗2 ,
Y∗2 (green triangle on Figures 3 and 4C) are found using the aforementioned approximation. A larger
sub-image s (green empty square on Figures 3, 4C) is subset from Image 2 with the center at X∗2 , Y∗2
and size S× S pixels.

The template t is rotated within the range of angles [α0 − β, α0 + β] with step ∆β (Figure 4B).
For each rotation, cross-correlation matrix r is calculated between the rotated template tROT and
s (Figure 4D). Hereafter, the size of the cross-correlation matrix D = S − T is referred to as a
searching range. The rotation that provides maximum cross-correlation is recorded. The position
(∆X2, ∆Y2) of the cross-correlation maximum rMAX is found in the cross-correlation matrix r [36].
The result coordinates of ice drift on Image 2 are estimated as X2 = ∆X2 + X∗2 and Y2 = ∆X2 + Y∗2
(blue triangle in Figure 4C). Ice drift components U and Vare found by converting X1, Y1 and X2, Y2

into geographic coordinates and calculating corresponding eastward and northward displacement.
If the cross-correlation maximum rMAX is below a predefined threshold rMIN , the derived drift vector
is discarded as unreliable.

The output of the combined algorithm consists of four values: u, ice drift eastward component; v,
ice drift westward component; rMAX maximum normalized cross-correlation; α, angle of ice rotation.
We note that the following parameters of the algorithm are affecting its accuracy, effective resolution
and speed: T size of the template; D, searching range; β, range of rotation; ∆β, rotation step; N, order
of the first guess polynomial; rMIN , minimum required cross-correlation; F1 and F2, thresholds for
rogue vector filters of the FT algorithm (see the beginning of the section).
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Figure 4. Explanation of the maximum cross-correlation (MCC) method with rotation. (A) Template
t (71 × 71 pixels) is taken from Image 1 around the starting point shown as the blue triangle; (B) the
template is rotated by 210◦ (tROT); (C) sub-image s (101 × 101 pixels) is taken from Image 2 around
the first guess point (green triangle); the blue boundary and the blue dot indicate the position and
the center of the template, which corresponds to the best match; (D) the cross-correlation matrix r is
computed from the rotated template tROT and the subimage s.

3.2. Comparison with Sea Ice Drifters’ Data

Calibration and validation of the combined algorithm was performed using the ice drifting buoys
(Section 3.2). Image pairs overlapping in time and space with the position of the buoys were found
using the Nansen-Cloud software [38]. A validation match-up consisted of two ice drift vectors: an
in situ drift vector has been calculated as the difference between the starting and ending positions
of the buoy closest to the image’s acquisition time. A satellite drift vector has been calculated as
the difference between the starting position of the corresponding buoy and ending position derived
with the combined FT-PM algorithm. The retrieval error Ewas calculated as the distance between the
derived end position on the second image and the buoy GPS position using the following equation:

E =

√
(x f

2 − xb
2)

2 + (y f
2 − yb

2)
2 (4)

where x f
2 and y f

2 are final coordinates retrieved by the combined algorithm and xb
2 and yb

2 are the
buoys coordinates.

Under the assumption that the template centered at the initial buoy position should exactly match
the subimage centered at the next buoy position, we first have tested the accuracy of collocation of
buoys and SAR image pattern in the following way. The PM method was initiated from the buoys’
position (blue triangle in Figure 4A, green triangle in Figure 4C) and the displacement between the
actual position of the cross-correlation maximum (blue triangle in Figure 4C) and the buoy position
was calculated using Equation(4). The dependence of the PM error E and number of match-ups N on
the maximum correlation R was studied.

For the validation of the combined algorithm, the template was also centered at the initial buoy
position. The subimage center and searching range D were set based on the approximated first guess
from the FT algorithm. The X and Y components of the combined algorithm error (EX = x f

2 − xb
2,

EY = y f
2 − yb

2), as well as the total error E were studied.
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3.3. Sensitivity Tests

The effect of various parameters on the accuracy and speed of the algorithm was analyzed in
three sensitivity tests. The first test included assessment of the σ0

MIN and σ0
MAX (Section 2.1) impact

on the number of identified keypoints and matched features. Values of σ0HH were scaled within the
following limits: σ0HH

MIN ∈ {−24,−22,−20,−18,−16,−14} dB, σ0HH
MAX ∈ {−12,−10,−8,−6,−4,−2}

dB; and σ0HV was scaled within the following limits: σ0HV
MIN ∈ {−34,−32,−30,−28,−26,−24}

dB, σ0HV
MAX ∈ {−20,−18,−16,−14,−12,−10} dB. For each combination of σ0

MIN and σ0
MAX

10,000 keypoints were identified by the FT algorithm on each pair of the validation Sentinel-1A
images, and the number of matching features per image pair was recorded. Keypoints were matched
using four values of the Lowe ratio test LT [35]: 0.6, 0.65, 0.7, 0.75.

The second test aiming at studying the approximation accuracy (using linear or polynomial
interpolation) of the first guess was run for all pairs of Sentinel-1A images. For each pair, the FT
algorithm was used to identify 100,000 keypoints, to match the keypoints and filter rogue vectors
(Section 3.1). The remaining matched keypoints were randomly split into two equal subsets: the
‘training’ subset was used for gridding of the first guess, and the ‘testing’ subset for validation.
Gridding was performed using either only 200, or 1000, or 2000 keypoints and using either the first
order polynomial, or the second order polynomial, or the linear interpolation on a triangulated grid.
The gridded x2 and y2 coordinates were compared with the coordinates of the keypoints from the
testing subset. The gridding error was calculated using Equation (4), and the distance to the nearest
keypoint Zwas recorded. The error E was averaged for each combinations of number of keypoints
within realistic ranges of Z ∈ [0, 20] km.

The third test aimed at studying how the accuracy of the PM method depends on the template size
T, searching range D and the distance to the nearest keypoint Z. For each match-up, a template with
size T ∈ {20, 40, 80} pixels was centered at the buoy initial position. All available matched keypoints
were used for gridding. If the initial buoy position was between the matched keypoints, the gridding
was performed using linear interpolation, otherwise using the second order polynomial. The PM
algorithm was applied with searching range D ∈ {5, 10, 20, 40, 80}. The combined algorithm error E
was calculated using Equation (4), and the nearest keypoint distance Z was recorder. The error E was
averaged for each combination of D and T and for four realistic ranges of Z: 0 ≤ Z < 5 km, 5 ≤ Z < 10
km, 10 ≤ Z < 20 km, 20 ≤ Z < 40 km.

The processing speed of the combined algorithm was tested on a personal computer with a
2.7-GHz processor clock frequency utilizing only a single CPU core with 4 GB RAM. FT was tested
on one image pair with 80% overlap with detection and matching of 5000, 10,000, 50,000, 100.,000
and 200,000 initial keypoints. Generation of the first guess was tested with 1000, 2000, 5000 and
10,000 of matched keypoints. PM was tested with template size T ∈ {20, 40, 80} and searching range
D ∈ {10, 20, 40, 80}.

4. Results

4.1. Sensitivity of the Algorithm

The first sensitivity test (Section 3.3) showed that values of σ0 follow the normal distribution
(Figure 5) with a peak at −16 dB for HH and −26 dB for HV polarizations. Typical ranges (95% of
all values) are σ0HH ∈ [−27,−2] dB, σ0HV ∈ [−34,−16] dB. The number of matched features is
maximum (Figure 6) when σ0HH is scaled within [−18,−8] dB and σ0HV is scaled within [−28,−14]
dB. The number of features matched on the HV channel is almost ten-times higher than on HH.

The value of the Lowe ratio test LT significantly affects the number of matched and the ratio
of rejected keypoints. With LT increasing from 0.6–0.75, the average number of matched keypoints
linearly increases from 1700± 2000–4000± 4000 points for one scene, while the average ratio of rejected
keypoints decreases from 0.97± 0.12, to 0.96± 0.15, to 0.94± 0.2, to 0.85± 0.25.
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Figure 5. Average probability density function of σ0HH (blue) and σ0HV (green) on all validation
images. Filled areas indicate the standard deviation of the average number of pixels.

Figure 6. Dependence of the average number of matched keypoints per image pair (shown by color)
on σ0

MIN (Y-axis) and σ0
MAX (X-axis) for HH (left) and HV (right) polarizations.

The second sensitivity tests (Section 3.3) showed that in the case of polynomial interpolation,
the error E grows with an increasing distance from the nearest keypoint Z (Figure 7). The first order
polynomial expectedly provides the worst results: the minimum achievable error is 500 m; it rapidly
grows with distance, and when distance exceeds 5 km, the error exceeds 1 km. The second order
polynomial provides more accurate estimates: the error reaches 1 km only when the distance is up to
10 km. Linear interpolation provides the highest accuracy: the error of 500 m is not reached even at the
distance of 15 km from the nearest point. The number of matched keypoints does not affect the results
significantly (not shown in the figure).

The third sensitivity test showed how significant was the role played by all of the three studied
parameters taken together (template size T, searching range D and distance to the nearest keypoint Z)
in the combined algorithm accuracy. For the HH channel (Figure 8), the template must be larger than
20 pixels, otherwise the error starts to grow rapidly if the searching range is too large (D > 40). With a
large enough template (T > 20) and dense keypoints (Z < 10 km), high retrieval accuracy (E < 400 m) is
obtained for any searching range above 10 pix. With a medium density of keypoints (10 < Z < 20 km),
high accuracy is only obtained if the searching range is large (D> 40), while with sparse keypoints
(Z > 20 km), the retrieval of sea ice drift from the HH channel is just not possible (E > 6 km).

The HV channel (Figure 9) seems more favorable for high resolution sea ice drift retrieval. With
relatively high density of matched keypoints (Z < 10 km), the high accuracy (E < 300) is obtained even
if the template is rather small (T = 20) and the searching range is small (D > 20). If the keypoints are
sparser (10 < Z < 20 km), medium error (500 m) is obtained only if the searching range is large (D > 40).
When the distance to the keypoint is too large (Z > 20 km), the algorithm fails (E > 7 km).
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Figure 7. Dependence of the of the first guess error E (Y-axis) on the distance to the nearest keypoint Z
(X-axis). The three lines show results for the first-order polynomial (blue), second-order polynomial
(green) and linear interpolation (red). The filled area of the corresponding color indicates the standard
deviation.

Figure 8. Dependence of the combined algorithm error E (Y-axis) on template size T (shown by
color), on searching range D (X-axis) and distance to the nearest keypoint Z (four subplots) for
HH polarization.
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Figure 9. Dependence of the combined algorithm error E (Y-axis) on template size T (shown by
color), on searching range D (X-axis) and distance to the nearest keypoint Z (four subplots) for
HV polarization.

4.2. Efficiency of the Combined Algorithm

The speed benchmarks showed that the time required for FT is proportional to the square of the
initial number of keypoints and may vary from 3–800 s (Table 1). Very little time (<3 s) is required for
building the first guess. The time required for PM of one template is negligible and is proportional to
the square of template size T and to the searching range D (Table 2).

Table 1. Time required for identification, matching and filtering of keypoints.

Number of Initial Keypoints 5000 10,000 20,000 50,000 100,000 200,000

Time, s 3.5 5 11 50 190 815

Validation of the algorithm was performed on an independent subsample of match-ups with the
set of the parameters designed for the highest possible accuracy (Table 3), but without considering any
efficiency constraints. As shown in Figure 10, the combined algorithm is capable of deriving sea ice
drift with high accuracy (r = 0.99, E = 286 ± 3 m) for a wide range of displacement magnitude (up to
300 km). The retrieved drift is negligibly biased (−39 and 71 m in X- and Y-directions), and the error is
log-normal distributed.

Table 2. Dependence of PM speed (expressed as the number of ice drift vectors per 1 s) on template
size T and searching distance D.

D Template Size (T)
20 40 80

10 4660 2699 960
20 4463 2072 839
40 2413 1677 703
80 974 818 494
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Table 3. Values of the algorithm parameters used for validation.

Parameter Value

σ0HV
MIN , dB −28

σ0HV
MAX , dB −14

Initial number of keypoints 100,000
F1 0.5 m/s
F2 8 km
T 40
D 80

rMIN 0.3
LT 0.7

Figure 10. Results of validation on independent match-ups (not used in sensitivity tests).
Upper scatterplots compare the X-component (left) and Y-component (right) of ice drift detected
by in situ buoys (X) with drift derived by the combined algorithm (Y); r stands for correlation. The
lower left scatterplot compares the X- and Y-components of difference between in situ and the combined
algorithm drift; µ indicates the mean and σ the standard deviation. The histogram on the lower right
shows the probability distribution of the retrieval error E (log-scale); N indicates the number of
match-ups; µ the mean error (meters); σ the standard deviation (meters).

5. Discussion

One of the major advantages of FT and PM techniques’ combination is the ability to retrieve the
sea ice drift vector in any point of interest at very high speed. The algorithm’s agility is due to several
reasons: time-consuming spatial collocation (reprojection) of two SAR images is not needed; FT is
very fast by nature; the first guess estimate from the FT results is computed only once for the entire
image; the first guess helps to restrict time-consuming PM. The quickness of the algorithm opens new
opportunities for studying sea ice kinematic processes. The ice drift can now be derived not only on
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the traditional regular grid, but also on an irregular grid used by the models with the elasto-brittle
rheology [9,10]. The classical Eulerian observations of ice drift can now be replaced by Lagrangian
observations, when the location of a virtual ice drifter (or a set of drifters) evolves in time, so that the
starting position of an ice drift vector changes at every step.

Several parameters affect the efficiency of the algorithm. Increasing the initial number of keypoints
will decrease the FT speed, but will also create a denser field of matched keypoints, providing higher
accuracy of the first guess, and allow higher resolution sea ice drift retrieval. Increasing the size
of template T will decrease PM speed, but increase the robustness of the algorithm. Increasing the
searching range D compensates for the low accuracy of the first guess (e.g., due to low number of
initial keypoints), but also decreases speed. The actual requirements for accuracy and spatial resolution
of the eventual sea ice drift product define the optimal parametrization of the algorithm. An optimum
is achieved when the requirements are met within the least time possible. The optimal values of these
parameters are summarized in the Table 4 for three example use cases presented below.

In the first use case, a pan-Arctic daily sea ice drift product is retrieved at a fixed grid with a
spatial resolution of 6.5 km. Independent ice drift vectors at the given resolution can be generated
if the template size is 80 × 80 pixels. At least 250 matched keypoint have to be identified on a
5000 × 5000 pixels image, so that the average distance between keypoints does not exceed 100 pixels
(8 km). Given that on average, only 10% of found keypoints are successfully matched and points may
be distributed unevenly, the FT should be initialized with at least 10,000 points. A searching range
of 40 pixels will provide the required accuracy of 500 m. In such a scenario for an average sea ice
area of 15 × 106 km2, we will need around 350,000 vectors from approximately 100 Sentinel-1 pairs.
Excluding reading of data, just the computation of ice drift will require ca. 40 min.

In the second use case, a regional daily sea ice drift product covering 700,000 km2 (e.g., the Kara
Sea) is generated at a 2-km spatial resolution with the required accuracy of 300 m. These requirements
are met if at least 50,000 keypoints are initialized, the template size is 25 pix and the searching range is
as large as 80 pixels. Retrieval of 175,000 vectors from four scenes will require ca. 7 min.

In the third use case, a virtual drifter is released in the Arctic, and its position is tracked from one
SAR image to another one for 10 days in a row. To assure the best possible accuracy of the first guess,
the FT is initialized with 100,000 keypoints, and a template of 40 pixels is matched within a 100-pix
distance. That may provide accuracy of 300 m and will require 30 min.

Table 4. Summary of the combined algorithm application use cases.

Use Case 1. Pan Arctic 2. Regional 3. Virtual Drifters

Grid type Fixed, Eulerian Fixed, Eulerian Lagrangian
Resolution, km 6.4 2 Not applicable
ROI area, km 15,000,000 700,000 Not applicable

Required accuracy, m 500 300 300
Image pairs 400 4 10

Initial keypoints 10,000 50,000 100,000
Template size 80 25 40

Searching distance 40 80 100
Number of vectors 350,000 175,000 10

Time spent, s 2500 400 1900

It was previously reported [39] that the maximum value of cross-correlation rMAX alone cannot
be effectively used for assessing the uncertainty of PM algorithm. However, our comparison clearly
shows (Figure 11) that the retrieval error E is decreasing from 1750 m–250 m with the correlation rMAX
increasing from 0.15–0.95 both for HH and HV channels. That allowed us to introduce a parameter
rMIN for the removal of rogue vectors with too low MCC. This parameter affects the number of
retrieved drift vectors, and value of 0.3 seems to be optimal for keeping most of the vectors (85%
for HH and 95% for HV) with the highest accuracy (E < 500 m). If rMIN is reduced, an additional
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rogue-vector detection procedure needs to be applied [40]. These results also confirm that the HV
channel is more appropriate to use for sea ice drift estimation.

Calculation of MCC with several rotations of the template clearly reduces speed, but allows,
first, to improve the robustness of retrieval (the correlation rMAX is increased) and, second, identify
consistent rotation of solid ice parcels (single ice floes or aggregates of many floes). An example map
of combined sea ice drift and rotation (Figure 12) demonstrates how vectors with similar rotation are
grouped together. In this example, rotation was applied in the range from +20◦–−20◦ with a 3◦ step.
That decreased speed by seven-times, but on average increased rMAX by 15%. Specific values of these
parameters depend strongly on the geographic region and ice dynamics.

Figure 11. Dependence of the number of match-ups (left axis, gray bars) and retrieval error E (right
axis, black solid line with error bars) on maximum cross-correlation (X-axis) for HH (left) and HV
(right) polarizations.

Figure 12. Pair of Sentinel-1A images of the Wandel Sea taken on 2 (left) and 4 (right) March 2016. Both
images are in swath projection of the first image. Vectors from FT are displayed as red arrows on the left
frame. Vectors from PM are displayed on the right frame with colors indicating rotation and ranging
from blue (−5◦) via white (0◦) to red (+5◦). The length of the vectors shows actual displacement of sea
ice.

As can be seen in Figure 12, some rogue vectors still remain, and the next step of algorithm
improvement could be to implement a better uncertainty estimate than using the r-value alone.
Peakedness/flatness of the cross-correlation function, estimated as the second order spatial derivative
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at the position of the identified maximum, may serve as a good candidate for that purpose [39].
Other improvements required in the future may include the following: rogue vector detection based
on deformation [41]; proper filtering of small-scale drift anomalies that can be seen as spurious
noise when computing the first order spatial derivative of the sea ice velocity field, i.e., sea ice
deformation; different approximation of the first guess based on FT results that takes into account
small-scale variations; improvement of the search for the highest MCC in 3D space (X,Y,rotation) using
multivariate optimization technique.

6. Conclusions

A new algorithm based on the combination of feature tracking and pattern matching techniques
has been developed for efficient retrieval of sea ice drift from SAR data. The algorithm has rather
high accuracy (E < 300 m) and high speed (the time for one image is ca. 1 min). It outperforms the FT
algorithm applied alone (the FT error is 563 m [18]) or together with interpolation (the FT interpolation
error is up to 1500 m) and provides ice drift vectors on a predefined grid. Sources of the observed
error include satellite image geolocation uncertainty, error in buoy GPS position and error of the PM
algorithm per se.

The algorithm is calibrated/validated using 877 match-ups of satellite drift observations with ice
drifter buoys in the Fram Strait where various ice types are present, including first-year ice, multi-year
ice and fast ice. Optimal values of the algorithm parameters for retrieval of sea ice drift on various
spatial and temporal scales are based on thorough sensitivity analysis. The algorithm application is
illustrated on retrieval of sea ice drift and rotation from a pair of Sentinel-1A SAR images in March 2016.
The provided methodology for testing the sensitivity of the algorithm parameters and choosing the
optimal values can be applied to SAR data with other frequencies, polarizations and resolutions.

The algorithm is an open source Python code SeaIceDrift-0.3 available at GitHub [42]. The code is
accompanied by an easy-to-understand example and unit tests and is integrated with the Travis-CI
[43] and Coveralls [44] platforms.
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