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Abstract: Monitoring of aquatic vegetation is an important component in the assessment of
freshwater ecosystems. Remote sensing with unmanned aircraft systems (UASs) can provide
sub-decimetre-resolution aerial images and is a useful tool for detailed vegetation mapping. In a
previous study, non-submerged aquatic vegetation was successfully mapped using automated
classification of spectral and textural features from a true-colour UAS-orthoimage with 5-cm pixels.
In the present study, height data from a digital surface model (DSM) created from overlapping
UAS-images has been incorporated together with the spectral and textural features from the
UAS-orthoimage to test if classification accuracy can be improved further. We studied two levels
of thematic detail: (a) Growth forms including the classes of water, nymphaeid, and helophyte;
and (b) dominant taxa including seven vegetation classes. We hypothesized that the incorporation
of height data together with spectral and textural features would increase classification accuracy as
compared to using spectral and textural features alone, at both levels of thematic detail. We tested
our hypothesis at five test sites (100 m × 100 m each) with varying vegetation complexity and
image quality using automated object-based image analysis in combination with Random Forest
classification. Overall accuracy at each of the five test sites ranged from 78% to 87% at the growth-form
level and from 66% to 85% at the dominant-taxon level. In comparison to using spectral and textural
features alone, the inclusion of height data increased the overall accuracy significantly by 4%–21% for
growth-forms and 3%–30% for dominant taxa. The biggest improvement gained by adding height
data was observed at the test site with the most complex vegetation. Height data derived from
UAS-images has a large potential to efficiently increase the accuracy of automated classification of
non-submerged aquatic vegetation, indicating good possibilities for operative mapping.

Keywords: digital surface model (DSM); drone; growth form; non-submerged aquatic vegetation;
object-based image analysis (OBIA); Random Forest; remotely piloted aircraft system (RPAS); species
identification; sub-decimetre spatial resolution; unmanned aerial vehicle (UAV); unmanned aircraft
system (UAS)

1. Introduction

Unmanned aircraft systems (UASs) offer a potential data source for detailed surveying of aquatic
vegetation with images having centimetre-level spatial resolutions [1]. At this high level of spatial
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resolution, distinguishing structural details of individual plants is possible, for example, floating leaves
on the water surface. In a previous study [2], we showed that a true-colour UAS-orthoimage with 5-cm
pixels allowed for automated classification of growth-forms and six dominant taxa of non-submerged
aquatic vegetation in a lake in northern Sweden. In the previous study, we used object-based image
analysis and a Random Forest classification based on spectral and textural features. Using polygons as
the spatial assessment unit, overall accuracies ranged from 56% to 83% for the growth-form level and
from 52% to 69% for the dominant-taxon level. We found that classification accuracy decreased with
increasing vegetation complexity. One main reason for misclassification was the confusion of taxa that
appeared similar in the UAS-orthoimage, but belonged to different growth forms (emergent versus
floating-leaved). While floating-leaved vegetation generally grows a couple of centimetres above the
water surface, emergent plants can reach a considerable vegetation height, for example, 1–4 m for
Phragmites australis, 1–3 m for Schoenoplectus lacustris, and 0.3–1.5 m for Equisetum fluviatile [3].

Several remote sensing methods are available which can provide three-dimensional (3D) data on
surface and vegetation height, for example, LiDAR [4]. A method with a long tradition is stereoscopy
that uses pairs of photographs of the same area taken from different positions to measure the height
of objects on the Earth’s surface [5]. Thanks to recent developments in digital photogrammetry and
computer vision, in particular the Structure-from-Motion approach, dense 3D point clouds can be built
directly from overlapping images, for example, from images taken from a UAS [6,7]. Cunliffe et al. [8]
showed that this approach is able to resolve the vegetation structure even for small plants such as
grasses and shrubs. A variety of software programs for UAS-image processing are available that can
produce digital surface models [here called UAS-DSMs] and orthorectified image mosaics (here called
UAS-orthoimages; [7]).

The majority of research on using height data in combination with spectral data for the
classification of vegetation has been primarily made related to forestry (e.g., [9–11]). However,
there are considerable differences in height and spatial extent between trees and aquatic plants.
Reese et al. [12,13] studied the use of spectral data, elevation data (elevation above sea level, slope,
and a wetness index), and 3D data from image matching (10 m × 10 m grid cells), as well as laser
scanning (average point density of 1.4 m−2) for low growing mountain vegetation classes including
shrubs and grasses under 2 m in height. The overall classification accuracy increased with the inclusion
of 3D data from both image matching and laser scanning compared to using spectral and elevation
data alone. Gillan et al. [14] estimated the height of low-growing rangeland vegetation from aerial
stereo images with 3-cm pixels and found a good correlation between field measurements and the
vegetation height estimated from the images, even though the latter tended to be underestimated.
Rampi et al. [15] combined LiDAR data (digital elevation model, DSM, compound topographic index,
and intensity) and aerial imagery to map wetlands versus other land cover types in three ecoregions
with an object-based image analysis approach and achieved high classification accuracies (>90%).

Height data derived from UAS-images, in most cases with Structure-from-Motion software,
has been used, for example, for landslide detection [16] and segmentation of buildings [17].
Lechner et al. [18] mapped the vegetation extent of upland swamps surrounded by eucalyptus
woodland in Australia. The UAS was equipped with two cameras to record the visible and infrared
spectrum with a resolution of 4 cm. A UAS-DSM derived from the infrared images was used for an
initial classification which was then refined using spectral information from true-colour UAS-images,
among other parameters. Kuria et al. [19] analysed seasonal vegetation changes in a Tanzanian
wetland, based on 0.8 m spatial resolution true-colour image data acquired with a UAS, a DSM
derived from UAS-images, and commercial radar data. Thirteen land cover classes were identified,
including several classes with emergent aquatic vegetation. The land cover classes were then combined
to five generalized classes which showed an overall accuracy of ~90% for two analysed seasons [19].
Tamminga et al. [20] used a true-colour UAS-orthoimage with 2.5-cm pixels to map geomorphic and
aquatic habitat features for river management. In addition to the mapping, a digital elevation model
derived from the UAS-images was used for hydrodynamic modelling of water depth and velocity.
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Boon et al. [21] delineated wetlands and assessed wetland vegetation health in South Africa based
on a true-colour 1.8-cm spatial resolution UAS-orthoimage in combination with height data from
3D point clouds (3.8-cm resolution in the wetland area and 29-cm resolution in the surrounding
area). They found that the inclusion of height data significantly enhanced wetland delineation and
classification. These studies demonstrate that height data can contribute critical information in the
classification process and have the potential to increase classification accuracy as compared to the use
of spectral data from UAS-images alone.

In this study we test the hypothesis that the inclusion of height data derived from overlapping
UAS-images in the form of a UAS-DSM in addition to spectral and textural features from a
UAS-orthoimage increases the classification accuracy of non-submerged aquatic vegetation at two
levels of thematic detail: (a) Growth forms and (b) dominant taxa in comparison to a classification
which only used spectral and textural features from the UAS-orthoimage [2]. In particular we expect
that the confusion between taxa that appear spectrally similar in the UAS-orthoimage, but belong to
different growth forms, will be reduced.

2. Materials and Methods

2.1. Study Area, Image Acquisition, Test Sites, and Aquatic Plant Taxa

Lake Ostträsket (64◦55′N, 21◦02′E) is a boreal lake in northern Sweden with a surface area of
1.8 km2 [2]. The littoral zone of the lake was surveyed with a miniature fixed-wing aircraft of the type
flying wing, the Personal Aerial Mapping System (PAMS) by SmartPlanes AB (Skellefteå, Sweden),
in August 2011 [2]. The PAMS was equipped with an off-the-shelf Canon Ixus 70® digital compact
camera (Canon Inc., Tokyo, Japan) with a seven megapixel sensor and an RGB colour filter (380–750 nm).
The camera was fitted into the body of the aircraft and collected nadir image data. The flying height of
150 m resulted in a ground sampling distance of 5.6 cm. The along- and across-track image overlap
was set to 70%. A true orthoimage was produced by an external image provider with Inpho® software
(INPHO GmbH, Stuttgart, Germany) based on a high resolution surface model with a grid size of 30 cm
derived from a dense point cloud (100–400 points per m2) and was georeferenced using ground control
points identified in aerial photographs from the Swedish National Land Survey (spatial resolution
0.5 m). The internal planar precision of the orthoimage (i.e., the relative errors within individual photo
blocks) was 4–5 cm and the internal height precision was 8–9 cm. The pixel size of the produced
orthoimage was 5 cm. More details on PAMS, the camera, weather conditions, and orthoimage
production can be found in Husson et al. [2]. From the resulting true-colour UAS-orthoimage with
5-cm pixels, five test sites (100 m × 100 m each) were selected [2]: four sites represented the natural
variability of the lake with varying vegetation complexity (proportion of mixed vegetation stands,
vegetation cover and density, and taxa composition). Vegetation complexity increased from Site I to
Site IV. At Site I there were mainly single-taxa stands surrounded by open water. Site IV was almost
entirely covered by mixed vegetation. At the fifth test site, the UAS-orthoimage had poor image quality
caused by a combination of wave action, blur, specular reflection of clouds, and sunglint. This test site
showed medium vegetation complexity and was included to test the classification robustness given
poor image quality. Non-submerged aquatic plant taxa present at Lake Ostträsket include helophytes
(i.e., emergent taxa: Equisetum fluviatile, Schoenoplectus lacustris, and Phragmites australis) as well as
nymphaeids (i.e., floating-leaved taxa: Potamogeton natans, Sparganium spp., and Nymphaea/Nuphar
spp.; [2], Figure S1). Sparse and dense stands of E. fluviatile looked very different and were therefore
divided into two classes: sparse stands of E. fluviatile having 10%–50% area coverage (from now on
called “sparse E. fluviatile”) and dense stands of E. fluviatile having >50% area coverage (from now on
called “dense E. fluviatile”; [2]). Not all taxa were present at all test sites (Table 1). More details on
Ostträsket, the five test sites, and the vegetation can be found in Husson et al. [2].
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Table 1. Taxa present at each test site given in order of decreasing area in which the respective taxon
was dominant (i.e., it was the taxon with the highest % cover).

Site Taxa

I
Schoenoplectus lacustris, Nymphaea/Nuphar spp., Equisetum fluviatile (dense), E. fluviatile
(sparse), Potamogeton natans, Sparganium spp.

II
S. lacustris, Nymphaea/Nuphar spp., P. natans, Sparganium spp., E. fluviatile (sparse),
E. fluviatile (dense)

III Nymphaea/Nuphar spp., E. fluviatile (sparse), E. fluviatile (dense), P. natans, Sparganium spp.

IV
Phragmites australis, S. lacustris, P. natans, Nymphaea/Nuphar spp., E. fluviatile (dense),
E. fluviatile (sparse)

V S. lacustris, P. natans, P. australis, Nymphaea/Nuphar spp.

2.2. Height Data

Point cloud data from which vegetation height was determined for the five test sites was
derived from the original overlapping single UAS-images using the Structure-from-Motion software
PhotoScan® (Professional edition, v. 1.2.4, Agisoft LLC, St. Petersburg, Russia), because the original
UAS-DSM from the orthoimage production by the external image provider was not available for this
study. For each test site, the images of the respective flight block and the camera positions recorded
during image acquisition were loaded into PhotoScan®. The user-specified accuracy of the camera
coordinates was set to 10 m. Blurred images were excluded from the dataset and the images were
aligned (accuracy: high; pair preselection: reference; key point limit: 40,000; tie point limit: 4000).
Points with low image count (≤2), high reprojection error (≥0.45), and low projection accuracy (≥40)
were deleted. Camera alignment optimisation was then run in PhotoScan® and the surface was
reconstructed (building of mesh (face count: low) and texture). Ground control points with coordinates
measured in the field were not available for our study. To minimize the displacement of the DSM
compared to the orthoimage which was georeferenced from the beginning, 12–25 reference points
per test site were selected in the orthoimage and manually placed as markers for georeferencing
in PhotoScan®. The reference points were evenly distributed throughout the whole test site with
additional reference points at the corners and in the centre of the image. The user-specified accuracy of
the reference points was set to 0.005 m in PhotoScan. We manually added reference points until the total
XY error (average mean square error) of the reference points reached a minimum, indicating that the
displacement between the DSM and the orthoimage was at a minimum. The displacement (i.e., the total
XY error) at the five test sites was ≤5.6 cm. We did not have any field-based height measurements
for these points. Therefore, we selected reference points at the water surface, mainly floating leaves,
and assigned a value of zero as the height. Since we used the water surface as the zero height level we
also subtracted 15 m from the z-values of the recorded camera positions because Lake Ostträsket is
located at 15 m above sea level. When the markers were placed, a dense point cloud was produced
(quality setting: high; depth filtering: mild) that was used to build a DSM (Figure 1). Due to the
movement of waves and since the UAS-images were not taken simultaneously, image matching was
difficult for open water surfaces and some sparse vegetation stands at Site V in regions with poor
image quality. We therefore disabled interpolation for the DSM production. Initial tests showed that
DSMs produced with interpolation displayed unreasonably high and/or low height values in areas
with open water. By disabling interpolation, the areas with unreasonable height values could be
reduced. The produced DSMs for the five test sites had a ground sampling distance of ~9 cm and a
point density of ≥106 points per m2. The UAS-DSMs were exported as GeoTiff-files with a pixel size
of 5 cm in order to match the pixel size of the UAS-orthoimage.
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Figure 1. Examples of produced digital surface models for test site I (a) and test site IV (b).

2.3. Object-Based Image Analysis and Accuracy Assessment

Object-based image analysis in combination with Random Forest classification was applied to the
five test sites using the software eCognition Developer® (v. 9.1, Trimble Germany GmbH, Munich,
Germany). In the current study, we performed the Random Forest classification on the growth-form
and the dominant-taxon level based on spectral and textural features from the UAS-orthoimage as
described in Husson et al. [2] with the only difference being that the UAS-DSM was loaded as an
additional image layer in eCognition® and a new feature for classification was added: “Mean DSM”
(i.e., the mean height value for each segment). The growth-form level included three classes: Water,
nymphaeid, and helophyte. For the classification at the dominant-taxon level, the water area was
masked out [2]. We defined the dominant taxon as the taxon that covered the largest area in the
respective vegetation stand. Seven classes were included according to the dominant taxa given in
Table 2. To ensure full comparability between the current study and Husson et al. [2], the segments from
Husson et al. [2] obtained by “Multiresolution Segmentation” based on the UAS-orthoimage alone,
were used. For each test site, 40 training sample-segments per class were randomly selected from the
sites’ “Reference Maps” which were manually produced with visual interpretation. More details on the
production of the Reference Maps are provided in Husson et al. [2], including the classification scheme
for visual interpretation with image examples for all taxa in the Supplementary Materials. At Site I,
we selected only 30 training samples per dominant taxa class because there were two classes with a low
total number of segments (59 and 60 segments; [2]). The training sample-segments used in both studies
were identical. Also, for accuracy assessment we used exactly the same validation sample-segments
as in Husson et al. ([2]; i.e., 350 randomly selected sample-segments per site). In cases where a class
was represented by only a few segments, we randomly selected more samples so that there were at
least ten segments for that class [2]. To evaluate the classification, a segment-based error matrix was
produced. We calculated overall, Producer’s, and User’s accuracy, Cohen’s Kappa coefficient [22],
as well as overall quantity disagreement and overall allocation disagreement [23]. Producer’s accuracy
is the probability that a polygon belonging to a given category on the ground has also been labelled
that category in the map while User’s accuracy is the probability that a polygon classified into a given
category actually represents that category on the ground. The Kappa statistic takes into account the
fact that even assigning labels at random results in a certain degree of accuracy. The Kappa coefficient
has however been criticised as being misleading and redundant in remote sensing applications [23,24];
for this reason we have also included quantity and allocation disagreement as an alternative to
Kappa [23]. Overall quantity disagreement is defined as the difference between two data sets due to an
imperfect match in proportions of the mapped categories. Overall allocation disagreement is defined
as the difference between two data sets due to an imperfect match between the spatial allocations of
the mapped categories. Since the validation sample-segments varied in size, we also produced an
area-based error matrix (related to the number of pixels inside the selected validation segments) and
calculated the overall, Producer’s, and User’s accuracies to evaluate the map’s usability by assessing
the correctly classified area as proposed by Radoux et al. [25].
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Table 2. Overall classification accuracy (%, segment-, and area-based), Cohen’s Kappa coefficient, overall quantity disagreement (%), and overall allocation
disagreement (%) for the classification based on height data combined with spectral and textural features for test sites I–V presented by the level of thematic detail
(growth forms and dominant taxa). For comparison, the results from our previous study [2] based on spectral and textural features alone were reproduced in this table.
Bold numbers indicate a statistically significant difference with the inclusion of height data (N = 5, α < 0.05).

Level of Thematic Detail Growth Forms Dominant Taxa

Site I II III IV V I II III IV V

Overall accuracy (segment-based)

Height, spectral, and textural features 84.6 87.1 78.9 77.7 78.0 79.1 81.1 66.4 81.9 85.4
Spectral and textural features 80.3 83.4 74.3 56.3 63.4 68.6 64.7 63.0 52.2 65.4
Difference 4.3 3.7 4.6 21.4 14.6 10.5 16.4 3.4 29.7 20.0

Overall accuracy (area-based)

Height, spectral, and textural features 94.7 92.9 82.3 76.6 74.3 82.7 85.3 63.2 82.1 86.2
Spectral and textural features 93.6 91.6 77.8 56.4 64.8 72.7 70.3 61.0 51.8 74.6
Difference 1.0 1.2 4.5 20.2 9.5 9.9 15.0 2.3 30.2 11.7

Cohen’s Kappa coefficient

Height, spectral, and textural features 0.75 0.76 0.58 0.54 0.64 0.68 0.67 0.38 0.74 0.81
Spectral and textural features 0.69 0.69 0.51 0.25 0.40 0.54 0.46 0.34 0.39 0.54
Difference 0.07 0.07 0.07 0.29 0.24 0.14 0.21 0.04 0.35 0.27

Overall quantity disagreement

Height, spectral, and textural features 6.9 6.9 11.1 18.6 11.4 10.7 10.8 20.7 13.5 6.0
Spectral and textural features 8.0 7.4 14.6 36.3 10.9 14.6 23.1 22.7 30.8 2.9
Difference −1.1 −0.6 −3.4 −17.7 0.6 −3.9 −12.2 −2.0 −17.3 3.1

Overall allocation disagreement

Height, spectral, and textural features 8.6 6.0 10.0 3.7 10.6 10.2 8.1 12.9 4.7 8.6
Spectral and textural features 11.7 9.1 11.1 7.3 25.7 16.8 12.2 14.3 17.0 31.7
Difference −3.1 −3.1 −1.1 −3.7 −15.1 −6.6 −4.2 −1.4 −12.4 −23.1
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2.4. Statistical Analysis

We used non-metric, one-sided Wilcoxon matched pairs signed-rank tests [26] at both levels
of thematic detail to test for a potential increase in classification accuracy due to incorporation of
height data. In other words, we compared the results from our previous study which were based
on spectral and textural features from the UAS-orthoimage only [2], to our new results which were
based on spectral and textural features from the UAS-orthoimage and height data from the UAS-DSM.
For overall accuracy (both segment- and area-based), Kappa, overall quantity disagreement, and overall
allocation disagreement, the sample size N was five and we used a significance level of α < 0.05. We also
compared the Producer’s and User’s accuracies (both segment-, and area-based) with and without
height data at each level of thematic detail for all classes and sites combined. Here the sample size
was larger (N = 15 for growth forms and N = 27 for dominant taxa) and we used three significance
levels, namely * for α < 0.025, ** for α < 0.005, and *** for α < 0.0005. For the statistical analysis we used
Statistica® software (v. 13, Dell Inc., Tulsa, OK, USA).

3. Results

The use of height data combined with spectral and textural features resulted in better classification
results at all test sites, as compared to using spectral and textural features alone. The increase in overall
accuracy (segment- and area-based) was statistically significant at both levels of thematic detail (T5 = 0,
p = 0.043 for all four tests).

At the growth-form level, the use of height combined with spectral and textural features gave
an overall accuracy of 78%–87% (segment-based). For the five test sites, this represented an average
increase of 10% (range 4%–21%, Table 2). The increase in accuracy was largest at Sites IV and V (Table 2).
The correctly classified area after the inclusion of height data was 74%–95% (Table 2, area-based overall
accuracy). For the five test sites, this represented an average increase of 7% (range 1%–20%, Table 2).

At the dominant-taxon level, the use of height data combined with spectral and textural features
gave an overall accuracy of 66%–85% (segment-based). For the five test sites, this represented an
average increase of 16% (range 3%–30%, Table 2). The correctly classified area after the inclusion of
height data was 63%–86% (Table 2, area-based overall accuracy) which represented an average increase
of 14% for the five test sites (range 2%–30%, Table 2). The largest increase (30%) in overall accuracy
(segment- and area-based) was observed at Site IV (Table 2, Figure 2e,f), which was the site with
the most complex vegetation and that showed the lowest overall classification accuracy in the study
without height data [2]. In comparison to the other test sites, the increase at Site III was small (3% in
the segment-based and 2% in the area-based assessment; Table 2). The orthoimages and produced
vegetation maps for dominant taxa at Sites I, II, IV, and V are included in Figure 2.

Kappa increased for all test sites when the height data were added (Table 2). At both levels of
thematic detail the increase of Kappa was statistically significant (T5 = 0, p = 0.043 for both tests).
Overall quantity disagreement increased slightly at Site V (Table 2), but decreased at all other sites
(Table 2), however, the difference was not statistically significant (growth-form level: T5 = 1.5, p = 0.110;
dominant-taxon level: T5 = 2.0, p = 0.140). Overall allocation disagreement decreased significantly
at all test sites and levels of thematic detail (Table 2; T5 = 0, p = 0.043 for both levels of thematic
detail). At both levels of thematic detail, the overall quantity disagreement was larger than the overall
allocation disagreement at the majority of sites. Complete error matrices for both levels of thematic
detail at all test sites and differences between error matrices from the classifications with and without
height data are included in the Supplementary Material (Table S1).

Producer’s and User’s accuracies at the growth-form level increased by including height data
for the majority of classes and sites (Table 3), and the overall increases of segment- and area-based
Producer’s and User’s accuracies were statistically significant (T and p values given in Table 3).
The largest increases were observed for the classes of nymphaeid and helophyte at Sites IV and V
(Table 3). For water, Producer’s and User’s accuracies were only marginally affected by the inclusion
of height data (Table 3).
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Figure 2. True-colour orthoimage and dominant-taxon classification based on height data combined
with spectral and textural features of test sites I (a and b), II (c and d), IV (e and f), and V (g and h).

Producer’s and User’s accuracies at the dominant-taxon level varied between classes and sites
(Table 4). For the majority of classes and sites, Producer’s and User’s accuracies increased when height
data were included (Table 4), and the overall increases of segment- and area-based Producer’s and
User’s accuracies were statistically significant (T and p values given in Table 5). The class of P. australis
(emergent, present at Sites IV and V) showed the largest increase of Producer’s accuracy (Table 4).
At Site IV, the reduced confusion of all taxa with P. australis resulted in increased User’s accuracies
(≥12%) for all classes except for dense E. fluviatile which increased by only 1% (Tables 4 and S1).
Also at Site IV, the confusion between floating-leaved P. natans and emergent S. lacustris was reduced
(Table S1). At Site V, mainly the confusion between floating-leaved Nymphaea/Nuphar spp. and
emergent P. australis was reduced (Table S1). At Sites I and II, the confusion of emergent S. lacustris
with all other taxa was reduced (Table S1). In the study based on spectral and textural features alone,
the two E. fluviatile classes, P. natans and Sparganium spp., in all cases had a lower User’s accuracy
than Producer’s accuracy, indicating a large number of false inclusions [2]. The inclusion of height
data reduced most differences between the User’s and Producer’s accuracies, but User’s accuracies
were still lower than Producer’s accuracies in all cases except for sparse E. fluviatile at Site III (Table 4).
For the two classes that were most reliably classified without height data, Nymphaea/Nuphar spp. and
S. lacustris, the inclusion of height data further increased both Producer’s and User’s accuracies at all
sites (generally between 0.3% and 44%; Table 4).
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Table 3. Producer’s and User’s accuracy (%, segment-, and area-based), number of validation segments, and total area of validation segments (m2) for the classification
of growth-forms based on height data combined with spectral and textural features presented by test site and class: water (W), nymphaeid (N), and helophyte
(H). For comparison, the results from our previous study [2] based on spectral and textural features alone were reproduced in this table. Bold numbers indicate a
statistically significant increase when height data were included and stars indicate the level of significance (* for α < 0.025, ** for α < 0.005, and *** for α < 0.0005).
Valid N is the total number of differences with either a positive or negative sign.

Site I Site II Site III Site IV Site V Wilcoxon Signed-Rank Test

W N H W N H W N H W N H W N H Valid N T p

Producer’s accuracy (segment-based)

Height, spectral, and textural features 83 88 84 89 68 95 65 83 75 90 90 74 93 88 65 12 0 0.002 **
Spectral and textural features 81 82 79 89 59 92 63 78 69 90 82 49 93 68 53

User’s accuracy (segment-based)

Height, spectral, and textural features 98 65 88 86 94 86 83 93 43 25 58 98 38 88 87 14 11 0.009 *
Spectral and textural features 97 58 84 89 84 82 85 92 35 25 33 92 39 74 63

No. of validation segments 106 68 176 57 87 206 52 246 52 10 71 274 28 163 159

Producer’s accuracy (area-based)

Height, spectral, and textural features 97 87 89 96 63 96 90 74 80 92 89 73 96 86 62 12 0 0.002 **
Spectral and textural features 97 83 87 96 54 96 89 70 68 92 77 49 96 69 56

User’s accuracy (area-based)

Height, spectral, and textural features 99 64 91 96 94 90 90 93 58 35 57 98 32 93 88 15 8 0.003 **
Spectral and textural features 99 59 89 97 89 88 87 92 49 35 30 92 34 80 73

Total area of validation segments 458 37 177 162 39 176 145 121 66 18 42 201 30 120 168
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Table 4. Producer’s and User’s accuracy (%, segment-, and area-based), number of validation
segments, and total area of validation segments (m2) for the classification of dominant taxa
based on height data combined with spectral and textural features for Sites I–V presented by
vegetation class. For comparison, the results from our previous study [2] based on spectral and
textural features alone were reproduced in this table. Vegetation classes have been abbreviated as
follows: Equisetum fluviatile (E.f.), Nymphaea/Nuphar spp. (N./N. spp.), Phragmites australis (P.a.),
Potamogeton natans (P.n.), Schoenoplectus lacustris (S.l.), and Sparganium spp. (S. spp.). Bold and italic
numbers indicate an increase of ≥5% when height data were included.

Vegetation Class

Sparse E.f. Dense E.f. N./N. spp. P.a. P.n. S.l. S. spp.

Site I

Producer’s accuracy (segment-based)

Height, spectral, and textural features 60 56 83 80 83 50
Spectral and textural features 60 48 79 80 68 40

User’s accuracy (segment-based)

Height, spectral, and textural features 45 44 93 53 97 16
Spectral and textural features 41 33 78 47 92 11

No. of validation segments 15 27 95 10 206 10

Producer’s accuracy (area-based)

Height, spectral, and textural features 76 43 86 91 87 48
Spectral and textural features 76 41 83 91 74 31

User’s accuracy (area-based)

Height, spectral, and textural features 38 49 91 72 98 13
Spectral and textural features 33 33 71 66 95 8

Total area of validation segments 12 24 50 10 214 5

Site II

Producer’s accuracy (segment-based)

Height, spectral, and textural features 50 80 71 20 90 70
Spectral and textural features 50 70 70 20 65 70

User’s accuracy (segment-based)

Height, spectral, and textural features 21 47 93 11 97 35
Spectral and textural features 12 29 84 6 92 27

No. of validation segments 10 10 90 10 230 10

Producer’s accuracy (area-based)

Height, spectral, and textural features 63 61 73 13 91 72
Spectral and textural features 63 59 71 13 72 72

User’s accuracy (area-based)

Height, spectral, and textural features 26 44 89 5 99 33
Spectral and textural features 15 18 81 3 96 23

Total area of validation segments 7 4 40 4 205 5
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Table 4. Cont.

Vegetation Class

Sparse E.f. Dense E.f. N./N. spp. P.a. P.n. S.l. S. spp.

Site III

Producer’s accuracy (segment-based)

Height, spectral, and textural features 50 59 70 50 70
Spectral and textural features 48 59 66 50 70

User’s accuracy (segment-based)

Height, spectral, and textural features 54 28 95 13 30
Spectral and textural features 44 24 94 13 32

No. of validation segments 40 22 273 12 10

Producer’s accuracy (area-based)

Height, spectral, and textural features 64 71 61 72 67
Spectral and textural features 62 71 57 72 67

User’s accuracy (area-based)

Height, spectral, and textural features 80 37 95 18 36
Spectral and textural features 75 32 95 20 38

Total area of validation segments 61 22 131 11 7

Site IV

Producer’s accuracy (segment-based)

Height, spectral, and textural features 90 20 66 100 94 59
Spectral and textural features 80 40 61 48 88 43

User’s accuracy (segment-based)

Height, spectral, and textural features 30 10 87 93 79 97
Spectral and textural features 17 9 68 81 38 69

No. of validation segments 10 10 41 170 33 100

Producer’s accuracy (area-based)

Height, spectral, and textural features 98 13 59 100 96 74
Spectral and textural features 92 23 56 43 89 51

User’s accuracy (area-based)

Height, spectral, and textural features 32 12 82 95 82 96
Spectral and textural features 19 11 70 83 34 77

Total area of validation segments 9 12 22 95 22 97

Site V

Producer’s accuracy (segment-based)

Height, spectral, and textural features 95 100 76 74
Spectral and textural features 55 53 78 73

User’s accuracy (segment-based)

Height, spectral, and textural features 83 89 85 84
Spectral and textural features 49 53 79 80

No. of validation segments 78 85 96 91

Producer’s accuracy (area-based)

Height, spectral, and textural features 93 100 77 85
Spectral and textural features 49 62 79 84

User’s accuracy (area-based)

Height, spectral, and textural features 82 83 87 89
Spectral and textural features 53 57 77 87

Total area of validation segments 41 51 89 134
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Table 5. Valid N-, T-, and p-values from one-sided Wilcoxon matched pairs signed-rank tests
for Producer’s and User’s accuracy (segment- and area-based) at the dominant taxon level for all
classes and sites combined. Bold numbers indicate a statistically significant increase when height
data were included and stars indicate the level of significance (* for α < 0.025, ** for α < 0.005,
and *** for α < 0.0005). Valid N is the total number of differences with either a positive or negative sign.

Valid N T p

Producer’s accuracy (segment-based) 19 18 0.00194 **
User’s accuracy (segment-based) 27 5 0.00001 ***
Producer’s accuracy (area-based) 20 20 0.00151 **
User’s accuracy (area-based) 27 8 0.00001 ***

4. Discussion

When height data from a UAS-DSM were included in the classification along with spectral and
textural features from a UAS-orthoimage, the classification accuracy was higher than when spectral
and textural features alone were used. The inclusion of height data successfully reduced the confusion
between taxa that belonged to different growth forms (emergent and floating-leaved). In contrast to
the study based on spectral and textural features alone [2], where emergent P. australis was confused
with all other taxa, it now belonged to the most reliably classified taxa. P. australis was the tallest taxa
in our classification [3]. It has a bright green colour (similar to Nymphaea/Nuphar spp., Sparganium spp.,
and sun exposed S. lacustris) which is easy to detect against a darker background of, for example,
dark green vegetation or water.

In the previous study [2], the classification of S. lacustris was also problematic due to the high
variation in spectral appearance within this taxon. Typically, at the edge of stands of S. lacustris,
stems are bent and more exposed to the sun than those in the interior of the stands. This results in the
former looking more brightly green than the majority of S. lacustris stems. In addition, we observed
areas with low cover within S. lacustris stands, where stems were probably straighter than the majority
of S. lacustris stems; these areas appeared darker. Therefore, in the classification based on spectral and
textural features alone, S. lacustris was often confused with other taxa which decreased the User’s
accuracy, especially of taxa that covered smaller total areas than the relatively common S. lacustris.
With the inclusion of height data, the classification of S. lacustris was more reliable.

Compared to the other two emergent taxa, E. fluviatile was the least affected by the inclusion of
height data. E. fluviatile had the lowest vegetation height among the emergent taxa in this study [3].
The two E. fluviatile classes were mainly confused with each other and S. lacustris (also emergent) but,
especially at Site III it was also confused with Nymphaea/Nuphar spp. (floating-leaved). The inclusion
of height data could not substantially reduce the confusion between these classes even though they
belong to different growth forms. E. fluviatile has a straight, needle-like shape, and the fine leaves are
also needle-like and were almost invisible on the UAS-images. At Site III, E. fluviatile rarely formed
stands that were dense enough to completely obscure the water surface and formed to a large extent
mixed vegetation stands with Nymphaea/Nuphar spp. This probably led to a larger variation in mean
height values for E. fluviatile-covered segments at this site. In our previous study, we found that Site III
had the highest proportion of misclassifications where a non-dominant taxon was wrongly classified
as the dominant taxon. E. fluviatile was the only emergent taxa present at Site III, which explains the
relatively small increase in classification accuracy at this test site.

The addition of height data also helped to reduce the confusion among emergent taxa, for example,
between P. australis and S. lacustris (Sites IV and V), between P. australis and E. fluviatile (Site IV),
and between S. lacustris and E. fluviatile (Sites I, II, and IV). This indicates that the UAS-DSM successfully
resolved even smaller differences in vegetation height than between emergent and floating-leaved taxa.

The reduced confusion among growth forms and taxa resulted in very good classification
accuracies (at least ~80%) at most test sites, both at the growth-form and the dominant-taxon level,
including the site with the largest vegetation complexity. At Site V, the test site with low image
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quality, the overall classification accuracy increased, indicating that the inclusion of height data further
increased the robustness of the classification process. These results show good potential for operative
mapping and monitoring of aquatic vegetation at a high level of thematic detail and in an automated
way, which is important to time-efficiently cover larger areas.

Conventional orthoimage production is often based on less dense point clouds from which objects
with heights above ground level such as vegetation or buildings are removed. Our suggested method
requires the production of true orthoimages with unfiltered dense point clouds (ca. >100 points per m2).
This implies increased operator time and computational costs compared to conventional orthoimages.
Thanks to recent developments in digital photogrammetry and computer vision, an increasing number
of user-friendly software programmes for UAS-image processing are available. The calculation of 3D
point clouds from overlapping UAS-images is usually integrated in the workflow of these programmes
and is typically part of the production of a true UAS-orthoimage with high spatial accuracy. The height
information from image-based dense point clouds generated with Structure-from-Motion software
based on algorithms such as Semi-Global Matching [27] can be comparable to that from airborne
LiDAR [28] and even low-cost systems such as a UAS equipped with a consumer grade camera
allow for surface reconstructions of high quality when the image overlap is high [29]. Once a dense
point cloud is constructed, the production of a UAS-DSM is only a minor effort. Regarding the high
increase in accuracy achieved in our study, UAS-DSMs have a large potential to efficiently improve the
classification results when combined with spectral data.

For our study, UAS-DSMs for the test sites were produced after the original UAS-orthoimage
production and independent from the orthoimage. This was done because the original UAS-orthoimage
was produced by an external image processing company and the point cloud was not initially made
available for our study. The independent production of the UAS-orthoimage and UAS-DSMs resulted
in a spatial displacement between the two, which is a potential source of error in our classification.
The spatial displacement varied from site to site but had an average of 4.5 cm, and a maximum of
5.6 cm, which is about the size of one pixel (5 cm). For future studies, we recommend producing the
UAS-DSM together with the UAS-orthoimage to avoid differences in data co-registration.

Ground control points with height measurements were missing in our study. This was solved by
using the water surface as the zero level. In our study, the internal relative differences in vegetation
height were most important since our focus was on the classification of different growth-forms with
relatively large differences in vegetation height. The maximum vegetation heights in the UAS-DSMs
of the five test sites are plausible. However, when the UAS-DSM is to be used for the extraction of
absolute height values, for example, for biomass estimation, height measurements of reference points
in the field are recommended for calibration.

5. Conclusions

At five test sites with varying vegetation complexity and image quality at a lake in northern
Sweden, the inclusion of height data in addition to spectral and textural features from a true-colour
UAS-orthoimage with 5-cm pixels significantly increased the classification accuracy of non-submerged
aquatic vegetation as compared to using spectral and textural features alone. The inclusion of
height data reduced the confusion between taxa that appeared similar in the image but belonged to
different growth forms (emergent and floating-leaved), as well as among emergent taxa. The overall
classification accuracy increased to at least ~80% at all five test sites for growth forms and at four out
of five test sites for dominant taxa. The combination of true-colour UAS-orthoimages with height data
derived from dense 3D point clouds from image matching has a large potential to efficiently increase the
accuracy of automated classification. This approach improves the possibilities for operative mapping
and monitoring of non-submerged aquatic vegetation at a high level of thematic detail covering larger
areas such as entire lakes.
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of thematic detail and differences between error matrices from the classifications with and without height data.
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