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Abstract: Timely and accurate extraction of urban land area using the Suomi National Polar-orbiting
Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light data is important for
urban studies. However, a comprehensive assessment of the existing methods for extracting urban
land using VIIRS nighttime light data remains inadequate. Therefore, we first reviewed the relevant
methods and selected three popular methods for extracting urban land area using nighttime light
data. These methods included local-optimized thresholding (LOT), vegetation-adjusted nighttime
light urban index (VANUI), integrated nighttime lights, normalized difference vegetation index, and
land surface temperature support vector machine classification (INNL-SVM). Then, we assessed the
performance of these methods for extracting urban land area based on the VIIRS nighttime light data
in seven evaluation areas with various natural and socioeconomic conditions in China. We found
that INNL-SVM had the best performance with an average kappa of 0.80, which was 6.67% higher
than the LOT and 2.56% higher than the VANUI. The superior performance of INNL-SVM was
mainly attributed to the integration of information on nighttime light, vegetation cover, and land
surface temperature. This integration effectively reduced the commission and omission errors arising
from the overflow effect and low light brightness of the VIIRS nighttime light data. Additionally,
INNL-SVM can extract urban land area more easily. Thus, we suggest that INNL-SVM has great
potential for effectively extracting urban land with VIIRS nighttime light data at large scales.

Keywords: VIIRS nighttime light data; urban land extraction; normalized difference vegetation index;
land surface temperature; support vector machine; local-optimized thresholding

1. Introduction

The world has been experiencing dramatic urban land area growth, primarily due to rapid
economic development and population growth [1–3]. From 2000 to 2010, the global built-up area was
estimated to have increased from 0.60 to 0.87 million km2, with an average annual growth of 3.73% [4].
At this growth rate, the global built-up area will increase to 3.11 million km2 by 2050, which is close to
the total terrestrial area of India [4]. Urban expansion causes numerous ecological and environmental
effects worldwide [5–8]. For example, urban expansion in China has resulted in a natural habitat loss
of 8647 km2 from 1992 to 2012 [5], and urban expansion in the pan-tropics contributes to a loss in
vegetation biomass of 1.38 PgC or approximately 5% of emissions from tropical deforestation and
land-use change [9]. Moreover, urban expansion aggravates water shortage, air pollution, and the
urban heat island effect, bringing stresses to regional sustainability around the world [1]. To address
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these issues in urban studies, it is important to extract urban land area using timely and effective
approaches [2,3,10].

Recently, the Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer
Suite (VIIRS) nighttime light data have begun to be a novel data source for the timely and accurate
extraction of urban land area [11,12]. In 2013, the Earth Observation Group in the National Oceanic
and Atmospheric Administration’s National Geophysical Data Center (NOAA/NGDC) of the United
States published the global VIIRS nighttime light test data for 2012. In 2014, it released version 1, and
in 2016 nighttime light data became available on a monthly basis between March 2014 and September
2016. The VIIRS nighttime light data are suitable for extracting urban land area due to the effective
low nighttime light-detecting capability, with high radiometric resolution, large-scale coverage, and
short revisiting period [13–16]. Specifically, VIIRS can detect nighttime lights within the radiation
range from 3 nW·cm−2·sr−1 to 0.02 W·cm−2·sr−1, with a span from 75◦N latitude to 65◦S, a 3000 km
swath, and a 12-h revisiting period [17]. Moreover, compared with Defense Meteorological Satellite
Program—Operational Linescan System (DMSP-OLS) nighttime light data published earlier, VIIRS
nighttime light data are of much higher quality [17,18]. The spatial resolution improved from 1
to 742 m. The digital number (DN) values also changed from relative light intensity values with a
6-bit quantization limit to calibrated radiance values with a 14-bit quantization, which effectively
resolved the saturation problem [17]. Recently, some researchers have used VIIRS data to extract urban
land area at regional, national, and global scales. For example, Shi et al. [11] obtained urban land
information on 12 major Chinese cities in 2012. Xu et al. [8] extracted urban land area in China in 2015.
Sharma et al. [19] extracted worldwide urban land areas in 2014.

However, challenges still exist for using VIIRS nighttime light data to extract urban land area.
First, VIIRS nighttime light data are affected by the overflow effect as non-coherent light radiates in
all directions from its source (i.e., the dispersion of light into surrounding areas) [20], resulting in the
overestimation of urban land area [5,8]. Second, the VIIRS overpass time is after midnight, i.e., near
1:30 a.m., when most urban areas exhibit some decline in nighttime light brightness, which can lead to
an underestimation of urban land area [17]. Thus, further studies are needed for accurate urban land
area extraction using VIIRS nighttime light data [5,8,11,19].

Currently, 11 methods within three categories, i.e., thresholding, index, and supervised
classification, have been used to extract urban land area using the VIIRS nighttime light data (Table 1).
Among them, there are three widely used methods, including local-optimized thresholding (LOT),
the vegetation-adjusted nighttime light urban index (VANUI), and the integrated nighttime lights,
normalized difference vegetation index (NDVI) and land surface temperature (LST) support vector
machine (SVM) classification (INNL-SVM) (Table 1). Generally, LOT determines an optimal threshold
according to ancillary data (e.g., socioeconomic data, medium- to high-resolution remote sensing data,
etc.) and extracts areas with nighttime light brightness greater than the optimal threshold as urban
areas [21]. Using this approach, Xie and Weng [22] obtained urban land information for 2000, 2005,
and 2010 in China. The VANUI is an index developed by combining nighttime light data with NDVI
data and is used to extract urban land area based on an optimal threshold determined by ancillary
data. Using the VANUI, Li et al. [23] extracted urban land area in the southeastern United States
from 1992 to 2013. INNL-SVM is a supervised classification approach that integrates nighttime light
data, NDVI data, and LST data. It utilizes the SVM classifier to extract urban land area based on
training samples [5,24]. Using INNL-SVM, Xu et al. [8] extracted urban land area in China from 1992 to
2015. These three methods largely differ in theory, data source, applied region, and accuracy (Table 1).
However, an application assessment of these three methods for the VIIRS nighttime light data is
insufficient, limiting broad utilization of the VIIRS nighttime light data for urban land extraction.
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Table 1. An overview of the methods for extracting urban land area using nighttime light data.

Categories Methods Study Area Year Kappa Index Overall Accuracy Nighttime Light Data Reference

Thresholding

Empirical thresholding (ET)) United States 1994–1995 ** ** DMSP-OLS [25,26]

City-lights polygon perimeter-based
thresholding (CPT) United States 1994–1995 ** ** DMSP-OLS [27]

Brightness gradient-based
thresholding (BGT)) 274 Chinese cities 1992, 2002, 2012 ** ** DMSP-OLS [28]

Local-optimized thresholding (LOT)

Southeastern United States 1992, 1993, 2000 ** ** DMSP-OLS [29]
San Francisco, Beijing and Lhasa 1994–1995 *** 68.0%–99.2% DMSP-OLS [21]
China 1992, 1996, 1998 *** 79.5%–82.9% DMSP-OLS [30]
China 1992–2008 0.60 86.3% DMSP-OLS [31]
Global 2000 0.55 87.0% DMSP-OLS [32]
China 2000, 2005, 2010 0.53–0.56 95.2%–94.1% DMSP-OLS [22]
12 Chinese cities 2012 *** 89.6%–96.3% VIIRS [11]

Index
Enhanced built-up index (EUBI) The whole world 2014 ** ** VIIRS [19]

Vegetation-adjusted nighttime light
urban index (VANUI) Southeastern United States 1992–2013 *** 85.0% DMSP-OLS [23,33]

Supervised
classification

Classification and regression tree (CART) 99 Chinese cities 2010 0.53 94.4% DMSP-OLS [34]

K-nearest-neighbors (KNN) 99 Chinese cities 2010 0.58 96.2% DMSP-OLS [34]

Random forests (RF) 99 Chinese cities 2010 0.60 96.4% DMSP-OLS [34]

Integrated nighttime lights and NDVI
SVM classification (INN-SVM) *

25 Chinese cities 2000 0.62 90.5% DMSP-OLS [35]
China 2008 0.69 90.0% DMSP-OLS [36]
99 Chinese cities 2010 0.57 96.7% DMSP-OLS [36]

Integrated nighttime lights, NDVI and
LST SVM classification (INNL-SVM) *

China 1992–2012 0.66 95.2% DMSP-OLS and VIIRS [5]
55 Chinese cities 2006 0.33–0.80 73.4%–98.4% DMSP-OLS [24]
China 1992–2015 0.60 92.62% DMSP-OLS and VIIRS [8]

* NDVI: normalized difference vegetation index; SVM: support vector machine; LST: land surface temperature; ** The accuracy assessment was not performed; *** The Kappa index was
not used in the accuracy assessment.
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The objective of this study was to assess the LOT, VANUI, and INNL-SVM methods for extracting
urban land area using the VIIRS nighttime light data. To achieve this goal, we first selected seven
evaluation areas with various natural and socioeconomic conditions in China, which is experiencing
rapid urbanization. Then, we extracted year 2015 urban land area for these evaluation areas using the
LOT, VANUI, and INNL-SVM methods. Finally, we assessed the accuracy of these methods, and a
discussion of their merits and disadvantages is provided.

2. Study Area and Data

2.1. Study Area

We selected seven evaluation areas with diverse natural and socioeconomic conditions based on
the major biomes in China to represent regional discrepancies (Figure 1, Table 2). Each evaluation
area is approximately 2.5 thousand km2 (100 × 100 pixels) and includes one core city with an urban
population exceeding 1 million (Table 2). Among these areas, the Kunming area in a tropical and
sub-tropical moist broadleaf forests biome has the highest mean annual temperature of 14–16 ◦C and
the largest mean annual precipitation of 800–1000 mm. In 2014, the core city had an urban population of
3.55 million and a gross domestic product (GDP) per capita of 71.75 thousand RMB yuan. The Jiamusi
area, which is located in a flooded grasslands and savannas biome, has the lowest mean annual
temperature of 2–4 ◦C. In 2014, the core city had an urban population of 1.36 million and a GDP
per capita of 43.37 thousand RMB yuan. The Urumqi area, which is in a desert and xeric shrubland
biome, has the lowest mean annual precipitation of 100–200 mm. In 2014, the core city had an urban
population of 2.58 million and a GDP per capita of 94.84 thousand RMB yuan.
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Table 2. Description of the selected evaluation areas.

Evaluation
Area * Biome Mean Annual

Temperature (◦C)
Mean Annual

Precipitation (mm) City Urban Population in 2014
(Thousand Persons) **

GDP Per Capita in 2014
(Thousand·RMB·Yuan) **

Kunming Tropical and sub-tropical moist
broadleaf forests

14–16 800–1000 Kunming 3549.20 71.75
Anning 262.80 71.34
Yiliang 174.50 32.52
Jinning 116.10 35.40

Congming 115.30 31.14
Fumin 51.90 36.26

Chengjiang 19.40 37.16

Zhengzhou Temperate broadleaf
and mixed forests

13–15 600–800 Zhengzhou 4078.30 60.11
Xinzheng 436.20 81.81

Xinmi 410.90 75.08
Zhongmou 381.30 77.90
Xingyang 306.30 92.69

Wuzhi 222.70 41.23
Yuanyang 193.10 16.54

Yinchuan Temperate coniferous forests
8–10 200–300 Yinchuan 1247.68 61.95

Helan 112.66 44.00
Yongning 97.98 49.89

Hohhot Temperate grassland, savanna,
and shrubland

4–6 300–400 Hohhot 1790.68 134.07
Tumotezuo 46.98 57.10

Jiamusi Flooded grassland and savanna 2–4 400–600 Jiamusi 1355.50 43.37

Lanzhou Montane grassland and shrubland 8–10 300–400 Lanzhou 1852.90 80.73
Yuzhong 48.85 21.97

Urumqi Desert and xeric shrubland
4–6 100–200 Urumqi 2578.00 94.84

Changji 372.90 74.48

* The name of the largest city was used as the name of each evaluation area; ** The urban population and GDP were obtained from the statistical yearbooks for corresponding provinces [37].
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2.2. Data

The VIIRS nighttime light data for 2015 were obtained from the NOAA/NCEI (formerly NGDC)
website [38]. These data include monthly average radiance composite images from January to August
2015 produced using nighttime data from the VIIRS Day/Night Band (DNB) acquired from the visible
infrared radiometer onboard the Suomi NPP satellite. Prior to averaging, the DNB data are filtered to
exclude data impacted by stray light, lightning, lunar illumination, and cloud–cover [39]. The spatial
resolution is 15 arc-seconds (742 m), with a spectral range from 0.5 to 0.9 µm [17]. The DN unit is
nW·cm−2·sr−1, and the geographic coordinate system is WGS-1984. To make full use of the information
derived from eight monthly composites for 2015, we followed the monthly composition approach to
produce a mean annual value composite of the VIIRS nighttime light data and resampled it to a spatial
resolution of 500 m [17]. The VIIRS nighttime light data have a high quality with temporal consistency
(Figure 2a) and without saturation effect (Figure 2b).
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Moderate-resolution Imaging Spectroradiometer (MODIS) 16-day composite images of the
NDVI in 2015 were obtained from the National Aeronautics and Space Administration (NASA) [40].
These data included NDVI images from January to August of 2015, and each image was a composite
of the maximum NDVI values observed over 16 days at a resolution of 500 m. These data were
radiometrically calibrated, precisely georeferenced, and corrected for atmospheric effects before
distribution. Furthermore, based on the work of Lu et al. [41], we produced an annual maximum value
composite (MVC) image of the NDVI for 2015. Although an annual MVC image of the NDVI conceals
land-cover changes that occur during the year, it can efficiently reduce cloud contamination while
capturing changes in spatial vegetation characteristics [42].

MODIS eight-day composite images of nighttime LST (MOD11A2) in 2015 were also obtained
from NASA [40]. These images were available from January to August of 2015 at a resolution of
1 km. The nighttime LST data were retrieved based on the generalized split window algorithm with
thermal infrared data obtained from the MODIS sensors. The nighttime LST data were preprocessed
with geometric correction and cloud removal and then composited based on average nighttime LST
values over an eight-day period [43]. Studies have shown that nighttime LST data are better suited for
distinguishing between urban and non-urban land areas compared with daytime surface temperature
data [44]. Therefore, nighttime LST data were used. According to Mildrexler, Zhao, and Running [45],
we produced an annual nighttime LST image for 2015 using the MVC method.



Remote Sens. 2017, 9, 175 7 of 18

Landsat-8 Operational Land Imager (OLI) images for the evaluation areas in 2015 with a spatial
resolution of 30 m (Table 3) were obtained from the USGS website [46].

Table 3. Landsat-8 OLI data.

Evaluation Area Path/Row Date

Kunming 129/43 5 January 2015
Zhengzhou 124/36 15 September 2015
Yinchuan 129/33 1 September 2015
Hohhot 126/32 30 October 2015
Jiamusi 115/28 15 September 2015

Lanzhou 130/35 10 October 2015
Urumqi 143/29 24 September 2015

Biome boundaries were obtained from the Terrestrial Ecoregions Database provided by the World
Wildlife Fund for Nature (WWF) [47]. Moreover, Chinese administrative boundaries (1:4,000,000 scale)
were obtained as GIS files from the National Geomatics Center of China [48].

3. Method

3.1. Extraction of Urban Land Area based on Different Methods

3.1.1. Local-Optimized Thresholding (LOT)

Following the methods suggested by Henderson et al. [21], Cao et al. [35], and Liu et al. [31], we
first extracted urban land area in 2015 for each evaluation area using the Landsat-8 OLI data through
visual interpretation. Then, we determined the optimal thresholds for each evaluation area using the
urban land area extracted from the Landsat-8 OLI data as reference data. Specifically, referencing
Bhatti and Tripathi’s 2014 analysis [49], we used bands 4, 5, and 7 of the Landsat-8 OLI data to produce
false color images of each city, and utilized the high-spatial resolution imageries in Google Earth to
identify the standards for interpretation (i.e., color, shape, and texture). Based on these standards, we
extracted urban land with Landsat-8 OLI data. After that, optimal thresholds were selected based
on the time that the urban land area extracted using the VIIRS nighttime light data best matched the
reference data with regard to the spatial extent. The selection of optimal thresholds can be summarized
using the following equation:

Maximize Kappaj = f (Tj)

Subject to Tj ∈ [VIIRSmin
j , VIIRSmax

j ]
, (1)

where Tj is the threshold for nighttime light in the jth evaluation area, Kappaj is the kappa coefficient
calculated using the urban land area extracted based on the Tj threshold from the VIIRS nighttime
light and reference data, and VIIRSmin

j and VIIRSmax
j are nighttime light minimum and maximum

values for the jth evaluation area in the VIIRS nighttime light data, respectively. Finally, we extracted
areas with values greater than optimal thresholds in the VIIRS nighttime light data and regarded them
as urban land for each evaluation area in 2015.

3.1.2. Vegetation-Adjusted Nighttime Light Urban Index (VANUI)

Following Zhang et al. [33] and Li et al. [23], we calculated the VANUI based on both the VIIRS
nighttime light data and NDVI data. The equation for calculating the VANUI is as follows:

VANUI(i,j) = (1− NDVI(i,j))×VIIRSnor
(i,j), (2)
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where VANUI(i,j) is the VANUI value for the ith pixel in the jth evaluation area, NDVI(i,j) is the NDVI
value for the ith pixel, and VIIRSnor

(i,j) is the normalized DN value of nighttime light for the ith pixel.
VIIRSnor

(i,j) is calculated using the following equation:

VIIRSnor
(i,j) =

VIIRS(i,j) −VIIRSmin
j

VIIRSmax
j −VIIRSmin

j
, (3)

where VIIRS(i,j) is the original DN value of nighttime light for the ith pixel in the jth evaluation
area and VIIRSmin

j and VIIRSmax
j are minimum and maximum values of nighttime light for the jth

evaluation area in the VIIRS nighttime light data, respectively.
We followed the approach reported by Li et al. [23] to extract urban land area based on the VANUI.

Specifically, optimal VANUI thresholds were determined using urban land area extracted from the
Landsat-8 OLI data as reference data. The selection of optimal thresholds can be expressed using the
following equation:

Maximize Kappaj = f (Tj)

Subject to Tj ∈ [VANUImin
j , VANUImax

j ]
, (4)

where Tj is the VANUI threshold in the jth evaluation area, Kappaj is the kappa coefficient calculated
using urban land area extracted based on the Tj threshold from the VANUI and reference data, and
VANUImin

j and VANUImax
j are minimum and maximum values of the VANUI for the jth evaluation

area, respectively. Pixels with VANUI values exceeding the optimal thresholds were extracted as urban
pixels for each evaluation area in 2015.

3.1.3. Integrated Nighttime Lights, Normalized Difference Vegetation Index, and Land Surface
Temperature Support Vector Machine Classification (INNL-SVM)

Following He et al. [5] and Xu et al. [8], we performed INNL-SVM to extract urban land area
based on three steps, including training sample selection, SVM classification, and post-classification.
First, we selected urban and non-urban land training samples for each evaluation area using urban
land characteristics based on the VIIRS nighttime light data, NDVI data, and LST data. According to
Yang et al. [36] and He et al. [5], we recognized pixels with nighttime light exceeding 1 nW·cm−2·sr−1

as potential urban land and calculated average and standard deviation values of potential urban land
nighttime light data, NDVI data, and LST data. Because urban land has stronger nighttime light, lower
NDVI values, and higher LST values, the following equation was used to obtain urban and non-urban
land training samples based on average and standard deviation values:

DN(i,j) =

{
1 VIIRS(i,j) > TVIIRS

j &NDVI(i,j) < TNDVI
j &LST(i,j) > TLST

j
0 VIIRS(i,j) < TVIIRS

j &NDVI(i,j) > TNDVI
j &LST(i,j) < TLST

j
, (5)

where DN(i,j) is the class value of 1 (urban) or 0 (non-urban) at the ith pixel in the jth region in the
training sample image. VIIRS(i,j), NDVI(i,j), and LST(i,j) are nighttime light, NDVI, and LST values
at the ith pixel in the jth region, respectively. TVIIRS

j , TNDVI
j , and TLST

j denote threshold VIIRS, NDVI,
and LST values in the jth region, respectively, which were calculated using the following formulas:

TVIIRS
j = XVIIRS

j XVIIRS
j + SVIIRS

j /2 (6)

TNDVI
j = XNDVI

j XNDVI
j − SNDVI

j /2 (7)

TLST
j = XLST

j + SLST
j /2 (8)
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where XVIIRS
j , XNDVI

j , and XLST
j represent the average values of the potential urban land nighttime

light, NDVI, and LST data in the jth region, respectively. SVIIRS
j , SNDVI

j , and SLST
j denote the standard

deviation of the potential urban land nighttime light, NDVI, and LST data in the jth region, respectively.
Second, we extracted urban land area using the general SVM classifier based on the training

samples. This method classifies potential urban land into urban and non–urban land using a
hyperplane with maximal margin, which was derived by solving the following constrained quadratic
programming problem:

Maximize W(α) =
n
∑

i=1
αi − 1

2

n
∑

i=1

n
∑

j=1
αiαjyiyjK

(
xi, xj

)
Subject to

{
n
∑

i=1
αiyi = 0 and 0 ≤ αi ≤ T fori = 1, 2, . . . , n

} , (9)

where xi ∈ Rd represents the training sample vectors, and yi ∈ {−1,+1} represents the corresponding
class label. K(xi, xj) represents the kernel function, for which the radial basis function was selected
with the only free parameter σ set to 1.0 in the following formula:

K(xi, xj) = e(−|xi−xj |2/2σ2). (10)

After classification was complete, we further performed post-classification, in which we
recognized pixels with nighttime light values less than the regional average as non-urban pixels.
The post-classification process can be summarized by the following formula:

DN(i,j) =

{
0 VIIRS(i,j) < XVIIRS

j

DN(i,j) otherwise
, (11)

where DN(i,j) is the class value of 1 (urban) or 0 (non-urban) at the ith pixel in the jth region in the
2015 urban land image. After performing the three steps, we obtained the urban land extent in each
evaluation area.

3.2. Accuracy Assessment of Urban Land

According to Liu et al. [31] and He et al. [5], we used the urban land area extracted from Landsat-8
OLI images to assess the accuracy of urban land area extracted using the LOT, VANUI, and INNL-SVM
methods, respectively. The kappa coefficient was used as the primary indicator, whereas overall
accuracy (OA), commission error (CE), omission error (OE), quantity of disagreement (QD), and
allocation of disagreement (AD) were used as auxiliary indicators. Specifically, the kappa coefficient
was calculated using the following formula [50]:

Kappam
j =

TAj ·
(

Nm
j + Om

j

)
−
[
(Nm

j + Lm
j ) · (Nm

j + Vm
j ) + (Om

j + Lm
j ) · (Om

j + Vm
j )
]

TA2
j −

[
(Nm

j + Lm
j ) · (Nm

j + Vm
j ) + (Om

j + Lm
j ) · (Om

j + Vm
j )
] , (12)

where Kappam
j is the kappa coefficient for the mth method in the jth evaluation area, TAj is the total

area, Nm
j is the non-urban land area extracted using both the Landsat-8 OLI image and the mth method,

Om
j is the urban land area extracted using both the Landsat-8 OLI image and the mth method, Lm

j is the
urban land area only extracted using the Landsat-8 OLI image, and Vm

j is the urban land area only
extracted using the mth method. The OA, CE, and OE were calculated using the following equations:

OAm
j =

Nm
j + Om

j

TAj
(13)
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CEm
j =

Vm
j

Vm
j + Om

j
(14)

OEm
j =

Lm
j

Lm
j + Om

j
, (15)

where OAm
j , CEm

j and OEm
j are the OA, CE, and OE for the mth method in the jth evaluation area,

respectively. The AD and QD were calculated using the following equations [51]:

ADm
j = 2 ·min(

Lm
j

TAj
,

Vm
j

TAj
) (16)

QDm
j = 1−OAm

j − ADm
j (17)

where ADm
j and QDm

j are the AD and QD for the mth method in the jth evaluation area, respectively.
Specifically, the LOT, VANUI, and INNL-SVM were implemented using the ENVI 4.8/IDL8.0

software [52], and the accuracy assessment was performed using the ArcMap 10.0 software [53].

4. Results

Among the three methods, INNL-SVM had the best performance with an average kappa of 0.80,
an average OA of 97.33%, an average QD of 1.49%, an average AD of 1.18%, an average CE of 26.89%,
and an average OE of 8.44% (Figures 3–5). The LOT method had an average kappa of 0.75, an average
OA of 96.92%, an average QD of 1.05%, an average AD of 2.03%, an average CE of 26.03%, and an
average OE of 19.65% (Figures 3–5). The VANUI method had an average kappa of 0.78, an average
OA of 97.20%, an average QD of 1.16%, and an average AD of 1.64% (Figures 3–5). INNL-SVM had
the highest average kappa (2.56% higher than that of VANUI and 6.67% higher than that of LOT),
the highest average OA (0.13% higher than VANUI and 0.41% higher than LOT), the lowest AD
(0.46% lower than VANUI and 0.85% lower than LOT), and the lowest OE (5.25% lower than VANUI
and 11.21% lower than LOT) (Figures 3–5).

In the Hohhot evaluation area, INNL-SVM showed the highest accuracy with a kappa of 0.86,
an OA of 98.51%, a QD of 0.82%, an AQ of 0.67%, a CE of 24.58%, and an OE of 9.40% (Figures 3–5).
In this area, the INNL-SVM accuracy was much higher than that of both the LOT and VANUI methods
in terms of kappa (7.50% higher than LOT and 3.61% higher than VANUI), OA (0.60% higher than
LOT and 0.26% higher than VANUI), AD (0.81% lower than LOT and 0.47% lower than VANUI), CE
(3.89% lower than LOT and 1.10% lower than VANUI), and OE (7.71% lower than LOT and 4.47%
lower than VANUI) (Figures 3–5).

In the Yinchuan evaluation area, INNL-SVM showed a relatively low accuracy, with a kappa
of 0.72, an OA of 96.11%, a QD of 3.36%, an AD of 0.53%, a CE of 39.43%, and an OE of 4.51%
(Figures 3–5). Nonetheless, the INNL-SVM accuracy was still higher than the accuracy of the LOT
and VANUI methods, with much higher kappa values (7.46% and 4.35% higher, respectively) and OA
(0.03% and 0.17% higher, respectively), as well as much lower AD (2.38% and 1.35% lower, respectively)
and OE (20.39% and 11.57% lower, respectively) (Figures 3–5).
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5. Discussion

5.1. INNL-SVM Provides a Reliable Approach for Rapidly and Accurately Extracting Urban Land Area Using
VIIRS Nighttime Light Data

First, INNL-SVM can rapidly extract urban land information independently without ancillary data
for facilitating sample selection. Among three popular methods, both the LOT and VANUI approaches
require ancillary data to determine optimal thresholds [23,32,33]. However, numerous human and
computational resources are needed to obtain one-time accurate ancillary data for large-scale studies.
Therefore, it is difficult to extract urban land information for multiple years at large spatial scales using
either the LOT or VANUI method [23,32,33]. By contrast, INNL-SVM can automatically determine
thresholds for training sample selection and SVM classification according to regional characteristics of
nighttime light, vegetation coverage, and LST, increasing its efficiency for extracting urban land area at
large scales and over long time series [5,8].

Second, INNL-SVM clearly reduces errors arising from the overflow effect and low brightness of
some urban areas in the VIIRS nighttime light data. Because the overflow effect exists in the VIIRS
nighttime light data [54], extracting urban land with the LOT method based solely on nighttime light
data resulted in obvious overestimation (Area A in Figure 6). In addition, the VIIRS overpass time is
near 1:30 a.m., when some urban areas exhibit a decline in nighttime brightness [17], resulting in urban
land area underestimation for the LOT method (Area B in Figure 6). The VANUI, which combines
nighttime light and NDVI data, benefits from the characteristic that urban land vegetation coverage is
generally lower than non-urban land [35], which reduces urban land CE and OE by mitigating the
overflow effect and impacts of low brightness (Areas A and B in Figure 6). However, the difference
between urban land and barren land vegetation coverage is not obvious. Therefore, barren land near
urban areas results in obvious CE using the VANUI, specifically in arid and semiarid regions such as
the Hohhot evaluation area (Area C in Figure 6). Moreover, in arid and semiarid regions, some urban
areas have relatively higher vegetation coverage than non-urban areas, and these urban areas would
be omitted using the VANUI (Area D in Figure 6). The LST in urban areas is usually higher than the
LST in surrounding non-urban areas because of the combined effects of impervious urban surfaces,
buildings, and atmospheric pollutants [5,55]. In arid/semiarid and pre-urban regions without obvious
differences in vegetation coverage between urban land and non-urban land, INNL-SVM integrating
LST data can be used to better distinguish urban land and non-urban land and thus improve the
accuracy of extracted urban land area (Areas C and D in Figure 6).

Third, existing methods for improving LST data will enable increasing INNL-SVM accuracy in
the near future. Recently, some researchers have successfully used geographically weighted regression
(GWR) and temperature cycle models (TCMs) to improve the spatial resolution of the MODIS LST data
and reduce the effects of meteorological factors (e.g., clouds, wind, and snow) [56,57]. Such approaches
provide reliable means for increasing INNL-SVM accuracy, which is limited by spatial resolution and
the LST data quality (Figure 4 and Areas E and F in Figure 6). Therefore, INNL-SVM has great potential
for effectively extracting urban land areas using the VIIRS nighttime light data over multiple years at a
large scale.
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6. Conclusions

INNL-SVM had the highest accuracy for extracting urban land area using the VIIRS nighttime light
data. The average NNL-SVM kappa for the seven evaluation areas was 0.80, which was 2.56% higher
than VANUI and 6.67% higher than LOT. The superior performance of INNL-SVM is mainly attributed
to the integration of nighttime light, NDVI, and LST data. Through integration, INNL-SVM utilizes
both the social (intensity of human activities) and physical (vegetation cover conditions and surface
temperature) indicators of urban development. This effectively resolves urban land overestimation and
underestimation arising from the overflow effect and low light brightness in the VIIRS nighttime light
data and similar vegetation cover between urban land and non-urban land in arid/semi-arid regions.
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Additionally, INNL-SVM can rapidly extract urban land area by automatically selecting training
samples. Thus, INNL-SVM provides an effective approach for the timely and accurate extraction of
urban land area using VIIRS nighttime light data and has the potential for wide application.
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