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Abstract: Unmanned aerial vehicles (UAVs) provide a flexible and low-cost solution for the
acquisition of high-resolution data. The potential of high-resolution UAV imagery to create and
update cadastral maps is being increasingly investigated. Existing procedures generally involve
substantial fieldwork and many manual processes. Arguably, multiple parts of UAV-based cadastral
mapping workflows could be automated. Specifically, as many cadastral boundaries coincide with
visible boundaries, they could be extracted automatically using image analysis methods. This study
investigates the transferability of gPb contour detection, a state-of-the-art computer vision method,
to remotely sensed UAV images and UAV-based cadastral mapping. Results show that the approach
is transferable to UAV data and automated cadastral mapping: object contours are comprehensively
detected at completeness and correctness rates of up to 80%. The detection quality is optimal when the
entire scene is covered with one orthoimage, due to the global optimization of gPb contour detection.
However, a balance between high completeness and correctness is hard to achieve, so a combination
with area-based segmentation and further object knowledge is proposed. The localization quality
exhibits the usual dependency on ground resolution. The approach has the potential to accelerate the
process of general boundary delineation during the creation and updating of cadastral maps.

Keywords: UAV photogrammetry; remote sensing; computer vision; image segmentation; contour
generation; object detection; boundary localization; cadastral boundaries; land administration

1. Introduction

Unmanned aerial vehicles (UAVs) have gained increasing popularity in remote sensing as they
provide a rapid, low-cost and flexible acquisition system for high-resolution data including digital
surface models (DSMs), orthoimages and point clouds [1–3]. Recently, cadastral mapping has emerged
as a field of application for UAVs [4–8]. Cadastral maps show the extent, value and ownership of
land, are combinable with a corresponding register [9] and are considered crucial for a continuous and
sustainable recording of land rights [10]. In contemporary settings, UAV data is employed both to create
and to update cadastral maps, mostly through manual delineation of visible cadastral boundaries.
An overview of case studies investigating the potential of UAVs for cadastral mapping and their
approaches for boundary delineation is provided in [11]. However, none of the case studies described
provide an automated approach for cadastral boundary delineation. In particular, visible boundaries,
manifested through physical objects, could potentially be extracted automatically [12]. A large number
of cadastral boundaries are assumed to be visible, as they coincide with natural or manmade object
contours [13,14]. Contours refer to outlines of visible objects and will be used synonymously below.
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Such visible boundaries might be extractable with computer vision methods that detect object contours
in images. Those contours could be used as basis for a delineation of cadastral boundaries that
incorporate further knowledge and require further legal adjudication.

1.1. Contour Detection

Contour detection, especially in computer vision, refers to finding boundaries between objects or
segments. Early approaches, such as Canny edge detection [15], extract edges by calculating gradients
of local brightness, which are thereafter combined to form contours. The approach typically detects
irrelevant edges in textured regions. Later approaches include additional cues such as texture [16] and
color [17] to identify contours. Maire et al. extended these approaches to consider multiple cues on both
the local and global image scales through spectral partitioning [18]. Image information on a global scale
allows for identification of contours not initially recognized by generating closed object outlines and
eliminating irrelevant contours in textured regions. In [19,20], the closing of object outlines is provided
by a hierarchical segmentation that partitions an image into meaningful objects. Detecting contours
and assigning probabilities as presented in [18–20] is referred to as gPb (globalized probability of boundary).
The concept is summarized in Figure 1. The justification for using the method is based on [11], in which
a workflow and feature extraction methods suitable for cadastral mapping are provided. gPb contour
detection combines the proposed workflow steps of image segmentation, line extraction and contour
generation. A combination of other methods, as proposed in [11], might also be applicable. Due to the
novelty of this research field, it cannot be definitively stated which approach has the most potential to
bridge the described research gap. This study does not compare the usability of different approaches.
Instead, it investigates the potential and limitations of gPb contour detection as an initial step in
a workflow that needs to be extended for a final approximation of visible cadastral boundaries.
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Figure 1. Combined gPb contour detection and hierarchical image segmentation for the delineation
of closed object contours from RGB images described in [19]. The example image is taken from the
‘Berkeley Segmentation Dataset and Benchmark’ [21] and is processed with the publicly available
source code for gPb contour detection [22].

In a first step of gPb contour detection, oriented gradient operators for brightness, color and
texture cues are calculated by measuring their differences on two halves of a differently scaled disc.
Results are stored in an affinity matrix that represents similarities between pixels. Small similarities,
i.e., a strongly oriented gradient, indicate a boundary between two distinct regions. Subsequently,
all cues are merged based on a logistic regression classifier to predict the orientation and the posterior
probability of a boundary, i.e., edge strength, at each image pixel. The image information on a global
scale is obtained through spectral clustering. The local and global image scales convey different
information: the former extracts all edges, while the latter extracts only the most salient edges. Both are
combined through learning techniques as a weighted sum of local and spectral signals. This allows the
assignment of a probability to each contour, resulting in the gPb contour detector. The following step,
i.e., image segmentation, consists of (i) an Oriented Watershed Transform (OWT) that forms initial
regions from contours; and (ii) the construction of an Ultrametric Contour Map (UCM) that defines
a hierarchical segmentation [23]. The OWT is a variant of the watershed algorithm and constructs a set
of initial regions from the oriented contour signal provided by a contour detector. UCM represents
a hierarchy of these regions obtained by weighting each boundary and their agglomerative clustering.
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The image segmentation, consisting of the two steps of OWT and UCM, can be applied to the output of
any contour detector. However, it has been proven to work optimally on the output of the gPb contour
detector [20]. The overall results are (i) a contour map, in which each pixel is assigned a probability
for being a boundary pixel; and (ii) a binary boundary map, in which each pixel is labeled as either
‘boundary’ or ‘no boundary’ and from which closed segments can be derived. The number of contours
transferred from the contour map to closed segments in the boundary map is defined by a threshold,
which is referred to as scale k in [19,20] and in the following. The processing pipeline of gPb-owt-ucm
is referred to as gPb contour detection in this study.

gPb contour detection provides accurate results compared to other approaches on image
segmentation (e.g., mean shift, multiscale normalized cuts and region merging) and edge detection (e.g.,
Prewitt, Sobel, Roberts operator and Canny detector) [19] and is often referred to as a state-of-the-art
method for contour detection [24–26]. These comparisons are based on computer vision images,
while its performance on remote sensing data has not been evaluated as extensively against comparable
approaches. The main advantage of the method is its combination of edge detection and hierarchical
image segmentation, while integrating image information on texture, color and brightness on a both
a local and global scale. As the cue combination is learned, based on a large number of natural images
from the ‘Berkeley Segmentation Dataset and Benchmark’ [21], the approach seeks to be transferable to
images of different contexts. Nevertheless, gPb contour detection has hardly been applied to remotely
sensed data [27,28] and, to the best of the authors’ knowledge, never to UAV data. The transferability of
methods from computer vision to remote sensing is challenging, as both are often developed for image
data with different characteristics: a benchmark dataset used in computer vision, such as the ‘Berkeley
Segmentation Dataset and Benchmark’, contains natural images of maximal 1000 pixels in width and
height, whereas a benchmark dataset used in remote sensing, such as the ‘ISPRS Benchmark’ [29],
contains images from multiple sensors with higher numbers of pixels and larger ground sample
distances (GSD).

1.2. Objective and Organization of the Study

This study investigates which processing is required for a state-of-the-art contour detection
method from computer vision—namely gPb contour detection—to be applied to remotely sensed
data with a high resolution—namely UAV data. Once the technical transferability is defined,
the applicability of the method within the application field of cadastral mapping is investigated.
This study aims to outline the potential of gPb contour detection for an automated delineation of visible
objects that indicate cadastral boundaries.

Overall, the study addresses the research gaps of transferring a method developed within
computer vision to an application in remote sensing, where images have different characteristics.
Further, it encounters the lack of automation within cadastral boundary delineation by investigating
the applicability of gPb contour detection.

The paper is structured as follows: after having described the context of this research (Section 1),
the UAV datasets as well as the methodological approach are described (Section 2). Then, the results
are described (Section 3) and discussed (Section 4). Concluding remarks include generic statements
about the transferability and applicability of gPb contour detection for UAV-based delineation of visible
cadastral boundaries (Section 5).

2. Materials and Methods

2.1. UAV Data

Three UAV orthoimages of different extents showing rural areas in Germany, France and Indonesia
were selected for this study. Rural areas were chosen because the number of visible boundaries is
usually higher in rural areas compared to high-density urban areas. For Amtsvenn and Lunyuk,
data was captured with indirect georeferencing, i.e., Ground Control Points (GCPs) were distributed
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within the field and measured with a Global Navigation Satellite System (GNSS). For Toulouse,
data was captured with direct georeferencing, i.e., through an on-board Post-Processing Kinematic
(PPK) unit. All orthoimages were generated with Pix4DMapper. Table 1 shows specifications of the
data capture, while Figure 2 shows orthoimages of the study areas.

Table 1. Specifications of UAV datasets per study area.

Location Latitude/Longitude UAV Model Camera/Focal
Length [mm]

Overlap
Forward/Sideward

[%]

GSD
[cm] Extent [m] Pixels

Amtsvenn,
Germany 52.17335/6.92865 GerMAP G180 Ricoh

GR/18.3 80/65 4.86 1000 × 1000 20,538 × 20,538

Toulouse,
France 43.21596/0.99870 DT18 PPK DT-3Bands

RGB/5.5 80/70 3.61 500 × 500 13,816 × 13,816

Lunyuk,
Indonesia −8.97061/117.21819 DJI Phantom 3 Sony EXMOR

FC300S/3.68 90/60 3.00 250 × 250 8344 × 8344

2.2. Reference Data

The study is based on the assumption that large portions of cadastral boundaries are visible [14].
Therefore, the method is intended to extract contours of physical objects that demarcate cadastral
boundaries. A general list of such objects is rarely available in the literature and strongly depends
on the area of investigation [11]. From a list of objects provided in [11], the following objects were
assumed to indicate cadastral boundaries for the investigated study areas: roads, fences, hedges,
stone walls, roof outlines, agricultural field outlines as well as outlines of tree groups. The contours of
these objects were manually digitized for all three orthoimages (Figure 2). The reference data does not
aim to delineate cadastral boundaries, since a subset of these, i.e., visible boundaries, are considered
in this study. Cadastral boundaries are assumed to be more regular than the outlines of visible
objects delineated as reference data. A workflow for cadastral boundary delineation would need to
contain a step in which extracted contours are generalized to be more likely to be cadastral boundaries.
This study is not designed to provide such a complete workflow; it seeks to delineate object contours
as a first workflow step. Further workflow steps as proposed in [11] would need to be added, in order
to derive data that is comparable with cadastral data.
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Figure 2. Manually delineated object contours used as reference data to determine the detection
quality overlaid on UAV orthoimages of (a) Amtsvenn, Germany; (b) Toulouse, France and
(c) Lunyuk, Indonesia.

2.3. Image Processing Workflow

The method investigated, gPb contour detection, is open-source and available as a precompiled
Matlab package [22]. This implementation was found to be inapplicable because of long computing
time and insufficient memory when processing images of more than 1000 pixels in width and
height. Therefore, an image processing workflow that reduces the original image size to 1000 × 1000
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pixels was designed (Figure 3). The workflow consists of four steps, which are explained in the
following. Apart from the Matlab implementation for gPb contour detection, all workflow steps were
implemented in Python as QGIS processing scripts making use of QGIS [30], GRASS [31], SAGA [32]
and GDAL [33] functionalities.

(1) Image Preprocessing: The UAV orthoimage was first resampled to lower resolutions ranging
from 5 to 100 cm GSD. All resampling was based on nearest neighbor resampling, as it is
computationally least expensive. Initial tests with further resampling methods (bilinear, cubic,
lanczos, average, mode) did not show significant differences in the gPb contour detection output.
The resampling to different GSDs enabled investigation of the influence of GSD in detecting
object contours. The resampled images of 1000 to 5000 pixels in width and height were then
tiled to tiles of 1000 × 1000 pixels. The smaller the GSD, the more tiles were created (Table 2).
The range of GSDs varied per study area, due to the varying extents per study area and the
constant number of tiles amounting to 1, 9, 16 and 25 (Table 2): for Amtsvenn, the orthoimage
covers an extent of 1000 × 1000 m, which results in a GSD of 50 cm, if the image is tiled to 4 tiles.
The same number of tiles results in a GSD of 12.5 m for Lunyuk, since that orthoimage covers
an extent of 250 × 250 m.

(2) Boundary Delineation: Then, gPb contour detection was applied to each tile of different GSDs.
This resulted in contour maps containing probabilities for contours per pixel. By applying
hierarchical image segmentation at scale k within the range [0; 1], contours of a certain probability
were closed and transferred to a binary raster map containing pixels for the classes ‘boundary’
and ‘no boundary’. The resulting boundary map was created for all levels of k. This processing
pipeline refers to gPb-owt-ucm, which is described in Section 1.1.

(3) Image Postprocessing: All tiles belonging to the same set were merged to one contour map and
one binary boundary map, which was then vectorized. This creates polygons for all connected
regions of pixels in a raster sharing a common pixel value, which produces dense polygon
geometries, with edges following exactly pixel boundaries.

(4) Accuracy Assessment: The assessment was pixel-based and investigated the confusion matrix in
terms of pixels labeled as true positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) [34,35]. The accuracy assessment can equally be applied to a vector format by
comparing the percentage of overlapping polygon areas per category. The accuracy assessment is
designed to determine the accuracy in terms of (i) the detection quality, i.e., errors of commission
and omission, and (ii) the localization quality, i.e., the accuracy of boundaries in a geometric sense:

(i) For the detection quality, each line was buffered with a radius distance of 2 m and
converted to a raster format. The same buffering and rasterization was applied to the
reference data. From the confusion matrix, the following errors were calculated: the error
of commission within the range of [0; 100], showing the percentage of pixels erroneously
labeled as ‘boundary’ and the error of omission within the range of [0; 100], showing the
percentage of pixels erroneously labeled as ‘no boundary’. A generous buffer of 2 m was
chosen in order to account for uncertainties in conjunction with manual digitization and
resampling effects.

(ii) Since multiple objects, such as trees and bushes, do not provide exactly localizable
contours, the localization accuracy requires a different set of reference data. Therefore,
a subset of the reference data was evaluated containing exactly locatable object contours
only, i.e., road and roof outlines. This subset was rasterized to a raster of 5 cm GSD
and each boundary pixel was buffered with distances from 0 to 2 m at increments of
20 cm. The binary boundary map was resampled to a GSD of 5 cm to be comparable to
the reference raster. During the resampling, only one center pixel of 5 × 5 cm was kept
per pixel of a larger GSD to avoid having a higher number of pixels after resampling
a boundary map of a larger GSD. The resampled binary boundary map was then compared
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to the reference raster. Based on the confusion matrix, the number of TPs per buffer zone
was calculated to investigate the distance between TPs and the reference data and thus
the influence of GSD on the localization quality.
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Figure 3. Image processing workflow for delineation of visual object contours from UAV orthoimages
and its assessment based on the comparison to reference data.

3. Results

Resampling and tiling the UAV orthoimages to tiles of 1000 × 1000 pixels results in a higher
number of tiles for images of a smaller GSD (Table 2). Applying gPb contour detection on each tile of
1000 × 1000 pixels belonging to the same set of tiles with an identical GSD results in a contour map
and a binary boundary map (Figure 4). The lower the level of k, the fewer contours are transferred
from the contour map to the binary boundary map (Figure 5). The processing time for each tile ranged
from 10 to 13 min and was 11 min on average, with gPb contour detection running single-threaded.
The accuracy assessment is shown in terms of detection quality (Figure 6) and localization quality
(Figure 7). To separate the influence of GSD and tiling on the detection quality, each untiled image of
the largest GSD per study area was tiled to 25 tiles and assessed (Table 3).

Table 2. Number of pixels and ground sample distance (GSD) per tile after image preprocessing.

Pixels Tiles GSD (cm) Amtsvenn GSD (cm) Toulouse GSD (cm) Lunyuk

5000 × 5000 25 20 10 5
4000 × 4000 16 25 12.5 6.25
3000 × 3000 9 33 16.5 8.3
2000 × 2000 4 50 25 12.5
1000 × 1000 1 100 50 25

Table 3. Comparison of detection quality for images of largest ground sample distance (GSD) per study
area for the untiled image and the same image merged from 25 tiles. Lower errors are marked in bold.

Amtsvenn Toulouse Lunyuk

Pixels; GSD[cm] 1000 × 1000; 100 1000 × 1000; 50 1000 × 1000; 25

Tiles 1 25 1 25 1 25

Error of commission [%] 55.15 70.01 23.43 53.88 17.21 31.10
Error of omission [%] 13.44 68.75 27.44 90.12 52.30 96.24
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4. Discussion

4.1. Detection Quality

The error of commission, i.e., excessive detection, increases with parallel decreasing of GSD and
increasing of tiles and is mostly lowest for the untiled input image regardless of scale k (Figure 6).
Both the errors of commission and omission are higher when applying gPb contour detection on
the tiled image compared to the untiled image of the same GSD (Table 3). Therefore, the detection
quality depends on the number of tiles, i.e., the area of the captured scene, rather than the GSD
for the three study areas: gPb contour detection considers the global extent of one image or one
single tile, respectively. When taking a small tile of the UAV orthoimage into account, the global
optimization is not efficient. This results in a higher number of contours detected in textured regions
(oversegmentation). Therefore, more boundaries are detected in Figure 4c,f,i, which consist of 25 tiles
compared to Figure 4b,e,h, which consist of one single tile. Overall, the global optimization works
optimally if the entire scene is covered in one orthoimage.

The error of omission, i.e., missed boundaries, varies less than the error of commission per binary
boundary map. It can be concluded that a higher number of tiles that cover smaller parts of the entire
scene, does not lead to an increase in the error of omission (Figure 6). The lowest number of errors of
omission are obtained for k = 0.1, since fewer boundaries are missed in the over-segmented binary
boundary map (Figure 5).
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The overall detection accuracy is close to 100%, since many pixels are classified correctly as ‘no
boundary’. It is therefore not visualized in Figure 6. A low level of k leads to an oversegmentation
of the image, while a higher level of k leads to an undersegmentation or even no boundaries being
contained in the binary boundary map (Figure 5), which influences the errors of commission and
omission accordingly. However, even for the lowest level of k, contours indicated in the contour map
(Figure 4g) might not be transferred to the binary boundary map (Figure 4h). This indicates that
when aiming for a high completeness of detected contours, i.e., a low error of omission, which is
considered optimal in [36] before integrating user interaction, the contour map should be considered
for further processing.

The results for Amtsvenn show the highest number of errors of commission, due to many textured
regions in which boundaries are erroneously detected. The error of commission is lowest for Lunyuk,
since the image contains barely any textured regions or small objects. The high errors of omission for
the Toulouse and Lunyuk data reveal that boundaries are less definite and visible in these images.

4.2. Localization Quality

The number of TPs within 20 cm distance of the reference data relative to the total number
of TPs per GSD decreases for larger GSDs, for all study areas (Figure 7). The total number of TPs
was comparable, as only one center pixel was kept in the gPb contour detection raster of 5 cm GSD
that was compared to the reference data of the same GSD. For GSDs of 20–33 cm (Amtsvenn) and
10–25 cm (Toulouse and Lunyuk), the amount of TP localized within 20 cm distance from the reference
data ranges between 50% and 60%. This percentage decreases for all study areas when the GSD is
increased to 100 cm. The results indicate that contours are more accurately localized for UAV images
of a higher resolution.

4.3. Discussion of the Evaluation Approach

The study results (Section 4.1, Section 4.2) strongly depend on the applied buffer distance.
For detection quality, a buffer distance of 2 m was chosen. This does not represent the following
two visually observed cases: (i) some boundaries run along the shadow of an object and are
therefore shifted compared to the reference data that runs along the actual object contour; (ii) some
boundaries are covered by other objects, e.g., trees covering streets. Merging contours of smaller
objects with the applied buffer distance does not represent such cases. Such issues could be resolved
with an object detection that includes semantics, i.e., knowledge about the objects to be extracted.
UAV-based approaches have the potential to extract such object knowledge through incorporation
of high-resolution imagery, pointclouds and DSMs. According to Mayer, the use of such additional
information makes object extraction more robust and reliable [36]. The approach to detection quality is
employed similarly in other studies [34,35,37,38]. The authors argue that despite its strong dependency
on the buffer size and its focus on positional accuracy while neglecting factors such as topological
accuracy, the buffer approach provides a simple and comprehensive accuracy measure. Further, it can
be used on both a vector and a raster representation and is easy to implement [38]. For a comparison
to cadastral data, a smaller buffer size, according to local accuracy requirements, should be considered.

Apart from the accuracy assessment method, the manually drawn reference data strongly
influences the results. Manually drawn reference data is argued to be valid for measuring the degree to
which an automated system, as proposed in this study, outperforms a human operator [36]. However,
each human might draw different reference data. Averaging a large amount of manually drawn
reference data, as proposed in [17], might reduce errors produced by an individual. Manually drawn
reference data was chosen instead of real cadastral data, as the approach does not aim to delineate final
cadastral boundaries, but the outlines of physical objects demarcating visible cadastral boundaries.
To which extent these visible boundaries coincide with cadastral data, appears to be highly
case-depended and needs to be investigated in future work. Our approach is designed for cases
in which cadastral data is largely visible.
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4.4. Transferability and Applicability of gPb for Boundary Delineation

gPb contour detection appears to be transferable to UAV orthoimages, when reducing the images’
resolution. The approach shows potential for the automation of cadastral boundary delineation in
cases where cadastral maps are scarcely available and concepts such as fit-for-purpose and responsible
land administration are in place [39,40]. Such concepts accept general boundaries, for which the
positional correctness is of lower importance [14]. In cases where a map needs to be created or updated,
and general boundaries are accepted, editing automatically generated visible boundaries of high
completeness, correctness and topological accuracy on a UAV orthoimage might be less cost- and
time-intensive than manually digitizing all boundaries. This would need to be verified by comparing
both cadastral mapping workflows as a whole. Hence, future work is required to determine to which
degree the object contours coincide with cadastral boundaries and which level of accuracy is required to
outperform a manual cadastral mapping workflow. For road extraction, which is closely related to the
object detection of this study, Mayer et al. propose a correctness of around 85% and a completeness of
around 70% for an approach to be of real practical importance, which relates to an error of commission
of 15% and an error of omission of 30% [41]. Such values can hardly be achieved when applying
solely gPb contour detection for cadastral boundary delineation. The contours of gPb contour detection
should be considered as an initial workflow step in a complete processing chain, as proposed in [11].
One idea would be to use the gPb contour detection for a general localization of potential visible
boundaries and to integrate further approaches taking into account the full resolution provided by
UAVs to decide on the final probability and localization for a visible boundary. Those boundaries
would then need to be connected and regularized to form a closed network of potential cadastral
boundaries, before integrating human interaction. Once such a complete workflow is developed,
a comparison to direct techniques and indirect techniques using aerial or satellite images of lower
resolutions is feasible. However, even if UAV-based cadastral mapping fulfills the expected criteria,
the approach is unlikely to substitute convention approaches, as UAVs are currently not suitable to
map large areas and are limited in use due to regulations [5].

Furthermore, there might be cases in which only a small portion of cadastral boundaries is
visible or object contours do not coincide with cadastral boundaries. Then, the proposed data-driven
approach will need to be combined with a knowledge-driven approach. To reliably delineate a closed
and geometrically and topologically correct network of boundaries, further object knowledge should
be incorporated, e.g., through semi-supervised machine learning approaches and thus derived
complementary data. The contour map containing the probability for each contour detected and for
which the level of k does not need to be defined, could be employed as a first workflow step. The salient
contours detected in this step could be balanced by incorporating an area-based segmentation,
resulting in more homogeneous areas. Adding further steps to the workflow could generate an output
directly comparable to cadastral boundaries. In future, the authors aim to develop a workflow that
remains as automatic, generic and adaptive to different scenarios as possible, similarly formulated
in [42] as a need for contemporary boundary detection schemes.

5. Conclusions

This study examines the recent endeavor of making the process of cadastral mapping more
reproducible, transparent, automated, scalable and cost-effective. This is investigated by proposing
the application of UAV orthoimages combined with automated image analysis, i.e., a state-of-the-art
computer vision method that has never been applied to UAV data. The approach does not require
prior knowledge (learning) and automatically detects object contours from UAV orthoimages that
indicate visible cadastral boundaries. More specifically, this study investigates the transferability
of gPb contour detection to UAV images and its applicability for automated delineation of objects
demarcating visible cadastral boundaries. This is investigated in terms of detection and localization
quality for three different study areas.
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The results show the potential and limitations of gPb contour detection within the described
application field. The approach is most suitable for areas in which object contours are clearly visible
and coincide with cadastral boundaries. However, the approach is of limited usability as a standalone
approach for cadastral mapping: it can be employed for an initial localization of candidate object
boundaries, which need to be verified and located exactly by integrating further workflow steps.
The design and implementation of such a complete workflow that incorporates the high resolution
that UAV data provides is the focus of our future work. To establish the comparability of the detected
object contours with cadastral boundaries, future work will focus on incorporating the approach
proposed here with machine learning methods to integrate further object knowledge. The goal is to
generate a tool for cadastral boundary delineation that is highly automatic, generic and adaptive to
different scenarios.
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UAV Unmanned Aerial Vehicle
UCM Ultrametric Contour Map

References

1. Colomina, I.; Molina, P. Unmanned aerial systems for photogrammetry and remote sensing: A review.
ISPRS J. Photogramm. Remote Sens. 2014, 92, 79–97. [CrossRef]

2. Nex, F.; Remondino, F. UAV for 3D mapping applications: A review. Appl. Geomat. 2014, 6, 1–15. [CrossRef]
3. Pajares, G. Overview and current status of remote sensing applications based on unmanned aerial vehicles

(UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [CrossRef]
4. Manyoky, M.; Theiler, P.; Steudler, D.; Eisenbeiss, H. Unmanned aerial vehicle in cadastral applications.

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 63, 1–6. [CrossRef]
5. Barnes, G.; Volkmann, W. High-resolution mapping with unmanned aerial systems. Surv. Land Inf. Sci. 2015,

74, 5–13.
6. Mumbone, M.; Bennett, R.; Gerke, M.; Volkmann, W. Innovations in boundary mapping: Namibia, customary

lands and UAVs. In Proceedings of the World Bank Conference on Land and Poverty, Washington, DC, USA,
23–27 March 2015; pp. 1–22.

7. Volkmann, W.; Barnes, G. Virtual surveying: Mapping and modeling cadastral boundaries using Unmanned
Aerial Systems (UAS). In Proceedings of the FIG Congress: Engaging the Challenges—Enhancing the
Relevance, Kuala Lumpur, Malaysia, 16–21 June 2014; pp. 1–13.

http://dx.doi.org/10.1016/j.isprsjprs.2014.02.013
http://dx.doi.org/10.1007/s12518-013-0120-x
http://dx.doi.org/10.14358/PERS.81.4.281
http://dx.doi.org/10.5194/isprsarchives-XXXVIII-1-C22-57-2011


Remote Sens. 2017, 9, 171 12 of 13

8. Maurice, M.J.; Koeva, M.N.; Gerke, M.; Nex, F.; Gevaert, C. A photogrammetric approach for map updating
using UAV in Rwanda. In Proceedings of the GeoTech Rwanda—International Conference on Geospatial
Technologies for Sustainable Urban and Rural Development, Kigali, Rwanda, 18–20 November 2015; pp. 1–8.

9. Binns, B.O.; Dale, P.F. Cadastral Surveys and Records of Rights in Land Administration. Available online:
http://www.fao.org/docrep/006/v4860e/v4860e03.htm (accessed on 10 November 2016).

10. Williamson, I.; Enemark, S.; Wallace, J.; Rajabifard, A. Land Administration for Sustainable Development;
ESRI Press Academic: Redlands, CA, USA, 2010; p. 472.

11. Crommelinck, S.; Bennett, R.; Gerke, M.; Nex, F.; Yang, M.; Vosselman, G. Review of automatic feature
extraction from high-resolution optical sensor data for UAV-based cadastral mapping. Remote Sens. 2016, 8,
1–28. [CrossRef]

12. Jazayeri, I.; Rajabifard, A.; Kalantari, M. A geometric and semantic evaluation of 3D data sourcing methods
for land and property information. Land Use Policy 2014, 36, 219–230. [CrossRef]

13. Bennett, R.; Kitchingman, A.; Leach, J. On the nature and utility of natural boundaries for land and marine
administration. Land Use policy 2010, 27, 772–779. [CrossRef]

14. Zevenbergen, J.; Bennett, R. The visible boundary: More than just a line between coordinates. In Proceedings
of the GeoTech Rwanda—International Conference on Geospatial Technologies for Sustainable Urban and
Rural Development, Kigali, Rwanda, 18–20 November 2015; pp. 1–4.

15. Canny, J. A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 1986, 6,
679–698. [CrossRef]

16. Malik, J.; Belongie, S.; Leung, T.; Shi, J. Contour and texture analysis for image segmentation. Int. J.
Comput. Vis. 2001, 43, 7–27. [CrossRef]

17. Martin, D.R.; Fowlkes, C.C.; Malik, J. Learning to detect natural image boundaries using local brightness,
color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 2004, 26, 530–549. [CrossRef] [PubMed]

18. Maire, M.; Arbeláez, P.; Fowlkes, C.; Malik, J. Using contours to detect and localize junctions in natural
images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage,
AK, USA, 23–28 June 2008; pp. 1–8.

19. Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation.
Pattern Anal. Mach. Intell. 2011, 33, 898–916. [CrossRef] [PubMed]

20. Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. From contours to regions: An empirical evaluation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Miami Beach,
FL, USA, 20–25 June 2009; pp. 2294–2301.

21. Arbeláez, P.; Fowlkes, C.; Martin, D. Berkeley Segmentation Dataset and Benchmark. Available online:
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/ (accessed on 10 November 2016).

22. Arbeláez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour Detection and Image Segmentation Resources.
Available online: https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
(accessed on 10 November 2016).

23. Arbelaez, P. Boundary extraction in natural images using ultrametric contour maps. In Proceedings of
the Conference on Computer Vision and Pattern Recognition Workshop (CVPRW), New York, NY, USA,
17–22 June 2006. [CrossRef]

24. Jevnisek, R.J.; Avidan, S. Semi global boundary detection. Comput. Vis. Image Understand. 2016, 152, 21–28.
[CrossRef]

25. Zhang, X.; Xiao, P.; Song, X.; She, J. Boundary-constrained multi-scale segmentation method for remote
sensing images. ISPRS J. Photogramm. Remote Sens. 2013, 78, 15–25. [CrossRef]

26. Szeliski, R. Computer Vision: Algorithms and Applications; Springer: London, UK, 2010; p. 812.
27. Dornaika, F.; Moujahid, A.; El Merabet, Y.; Ruichek, Y. Building detection from orthophotos using a machine

learning approach: An empirical study on image segmentation and descriptors. Expert Syst. Appl. 2016, 58,
130–142. [CrossRef]

28. Hou, B.; Kou, H.; Jiao, L. Classification of polarimetric SAR images using multilayer autoencoders and
superpixels. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2016, 9, 3072–3081. [CrossRef]

29. Rottensteiner, F.; Sohn, G.; Gerke, M.; Wegner, J.D.; Breitkopf, U.; Jung, J. Results of the ISPRS benchmark on
urban object detection and 3D building reconstruction. ISPRS J. Photogramm. Remote Sens. 2014, 93, 256–271.
[CrossRef]

http://www.fao.org/docrep/006/v4860e/v4860e03.htm
http://dx.doi.org/10.3390/rs8080689
http://dx.doi.org/10.1016/j.landusepol.2013.08.004
http://dx.doi.org/10.1016/j.landusepol.2009.10.008
http://dx.doi.org/10.1109/TPAMI.1986.4767851
http://dx.doi.org/10.1023/A:1011174803800
http://dx.doi.org/10.1109/TPAMI.2004.1273918
http://www.ncbi.nlm.nih.gov/pubmed/15460277
http://dx.doi.org/10.1109/TPAMI.2010.161
http://www.ncbi.nlm.nih.gov/pubmed/20733228
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
https://www2.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://dx.doi.org/10.1109/CVPRW.2006.48
http://dx.doi.org/10.1016/j.cviu.2016.07.004
http://dx.doi.org/10.1016/j.isprsjprs.2013.01.002
http://dx.doi.org/10.1016/j.eswa.2016.03.024
http://dx.doi.org/10.1109/JSTARS.2016.2553104
http://dx.doi.org/10.1016/j.isprsjprs.2013.10.004


Remote Sens. 2017, 9, 171 13 of 13

30. QGIS Development Team. QGIS Geographic Information System; Open Source Geospatial Foundation: Chicago,
CA, USA, 2009. Available online: www.qgis.osgeo.org (accessed on 21 June 2016).

31. GRASS Developmnet Team. Geographic Resources Analysis Support System (GRASS) Software, Version 7.0.
Available online: www.grass.osgeo.org (accessed on 21 June 2016).

32. Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J.
System for automated geoscientific analyses (SAGA) Version 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007.
[CrossRef]

33. GDAL Development Team. GDAL—Geospatial Data Abstraction Library, version 2.1.2; Open Source Geospatial
Foundation: Chicago, CA, USA, 2016. Available online: www.gdal.org (accessed on 5 January 2017).

34. Wiedemann, C.; Heipke, C.; Mayer, H.; Jamet, O. Empirical evaluation of automatically extracted road axes.
In Empirical Evaluation Techniques in Computer Vision; IEEE Computer Society Press: Los Alamitos, CA, USA,
1998; pp. 172–187.

35. Shi, W.; Cheung, C.K.; Zhu, C. Modelling error propagation in vector-based buffer analysis. Int. J. Geogr.
Inf. Sci. 2003, 17, 251–271. [CrossRef]

36. Mayer, H. Object extraction in photogrammetric computer vision. ISPRS J. Photogramm. Remote Sens. 2008,
63, 213–222.

37. Kumar, M.; Singh, R.; Raju, P.; Krishnamurthy, Y. Road network extraction from high resolution multispectral
satellite imagery based on object oriented techniques. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci.
2014, 2, 107–110. [CrossRef]

38. Goodchild, M.F.; Hunter, G.J. A simple positional accuracy measure for linear features. Int. J. Geogr. Inf. Sci.
1997, 11, 299–306. [CrossRef]

39. Enemark, S.; Bell, K.C.; Lemmen, C.; McLaren, R. Fit-For-Purpose Land Administration; International Federation
of Surveyors: Frederiksberg, Denmark, 2014; p. 42.

40. Zevenbergen, J.; de Vries, W.; Bennett, R.M. Advances in Responsible Land Administration; CRC Press: Padstow,
UK, 2015; p. 279.

41. Mayer, H.; Hinz, S.; Bacher, U.; Baltsavias, E. A test of automatic road extraction approaches. ISPRS Int. Arch.
Photogramm. Remote Sens. Spat. Inform. Sci. 2006, 36, 209–214.

42. Basaeed, E.; Bhaskar, H.; Al-Mualla, M. CNN-based multi-band fused boundary detection for remotely
sensed images. In Proceedings of the International Conference on Imaging for Crime Prevention and
Detection, London, UK, 15–17 July 2015; pp. 1–6.

© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

www.qgis.osgeo.org
www.grass.osgeo.org
http://dx.doi.org/10.5194/gmd-8-1991-2015
www.gdal.org
http://dx.doi.org/10.1080/1365881022000016007
http://dx.doi.org/10.5194/isprsannals-II-8-107-2014
http://dx.doi.org/10.1080/136588197242419
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Contour Detection 
	Objective and Organization of the Study 

	Materials and Methods 
	UAV Data 
	Reference Data 
	Image Processing Workflow 

	Results 
	Discussion 
	Detection Quality 
	Localization Quality 
	Discussion of the Evaluation Approach 
	Transferability and Applicability of gPb for Boundary Delineation 

	Conclusions 

