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Abstract: Remotely-sensed estimates of forest biomass are usually based on various measurements
of canopy height, area, volume or texture, as derived from LiDAR, radar or fine spatial resolution
imagery. These measurements are then calibrated to estimates of stand biomass that are primarily
based on tree stem diameters. Although humid tropical forest seasonality can have low amplitudes
compared with temperate regions, seasonal variations in growth-related factors like temperature,
humidity, rainfall, wind speed and day length affect both tropical forest deciduousness and tree
height-diameter relationships. Consequently, seasonal patterns in spectral measures of canopy
greenness derived from satellite imagery should be related to tree height-diameter relationships and
hence to estimates of forest biomass or biomass growth that are based on stand height or canopy
area. In this study, we tested whether satellite image-based measures of tropical forest phenology,
as estimated by indices of seasonal patterns in canopy greenness constructed from Landsat satellite
images, can explain the variability in forest deciduousness, forest biomass and net biomass growth
after already accounting for stand height or canopy area. Models of forest biomass that added
phenology variables to structural variables similar to those that can be estimated by LiDAR or very
high-spatial resolution imagery, like canopy height and crown area, explained up to 12% more
variation in biomass. Adding phenology to structural variables explained up to 25% more variation
in Net Biomass Growth (NBG). In all of the models, phenology contributed more as interaction terms
than as single-effect terms. In addition, models run on only fully-forested plots performed better
than models that included partially-forested plots. For forest NBG, the models produced better
results when only those plots with a positive growth, from Inventory Cycle 1 to Inventory Cycle 2,
were analyzed, as compared to models that included all plots.

Keywords: Landsat; phenology; forest deciduousness; forest biomass; forest biomass growth; forest
carbon stocks

Remote Sens. 2017, 9, 123; doi:10.3390/rs9020123 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 123 2 of 18

1. Introduction

Forest carbon offset programs, like the United Nations program for Reducing Emissions from
Deforestation and forest Degradation (REDD), which is aimed at tropical forests, have the potential to
mitigate human-caused increases in atmospheric greenhouse gases while helping to conserve the high
biodiversity of tropical forests by providing financial incentives to reduce atmospheric greenhouse gas
emissions from forests. The REDD program requires inventory and monitoring of tropical forest carbon
stocks and their dynamics [1], the aboveground live components of which are generally estimated from
tree biomass and changes in tree biomass. In the context of REDD, our research targets the aboveground
live biomass carbon component of Equation 2.3 of the IPCC’s 2006 Guidelines for National Greenhouse
Gas Inventories [2]:

∆CLU = ∆CAB + ∆CBB + ∆CDW + ∆CLI + ∆CSO + ∆CHWP

where ∆CLU is the carbon stock changes for a land-use stratum, and the subscripts denote the following
carbon pools over the same time period:

AB: aboveground biomass
BB: belowground biomass
DW: deadwood
LI: litter
SO: soils
HWP: harvested wood products.

Forest aboveground live biomass is most commonly estimated by summing tree biomass,
estimated from tree stem diameter, as measured in forest inventory plots, with allometric equations [3],
though tree height or wood density may also be included in calculations. Remote sensing estimates
of forest biomass are usually derived from LiDAR or very fine spatial resolution imagery (e.g., with
pixel sizes of 1 m or less) and are based on calibrating measures of remotely-sensed canopy height,
area, volume or texture, to field-based estimates of forest biomass (e.g., Couteron et al.; Ota et al.;
Messinger et al., Deo et al. [4–7]). Rainfall affects not only tropical forest phenology [8,9], but also tree
height-diameter relationships [3,10]. Consequently, seasonal patterns in spectral measures of canopy
greenness derived from satellite imagery, which we refer to here as phenology, should be related to tree
height-diameter relationships and, hence, to estimates of forest biomass or biomass growth. As a result,
phenology data have the potential to improve forest biomass estimates based on canopy characteristics,
such as those that might be quantified with LiDAR or very fine spatial resolution imagery.

Detailed phenology products can be obtained from near-surface remote sensing [11–13], but such
intensive monitoring of vegetation phenology is probably not practical for REDD. Because of persistent
cloud cover in tropical areas, satellites with high temporal resolution, having revisit times of one to
two days, such as the Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced Very High
Resolution Radiometer (AVHRR) or the Greenhouse Gases Observing Satellite (GOSAT), are more
likely than satellites with less frequent coverage to collect enough cloud-free images to track annual
changes in forest greenness. Vegetation phenology studies based on such short revisit time imagery
use indices like the Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index
(EVI), Chlorophyll/Carotenoid Index (CCI) or Sun-Induced Chlorophyll Fluorescence (SIF) [14–19].
Although these products have a high temporal frequency, they have a coarse spatial resolution ranging
from 250 m to several kilometers. This range of spatial scales is too coarse to characterize the spatial
variability in forest attributes across complex forest landscapes, where biophysical attributes and
forest types can change over much shorter distances. Moreover, such phenology products do not
precisely reflect the phenology of most field plots, because their pixel size is larger than most field plots,
which are as small as 0.067 ha for the U.S. Forestry Inventory and Analysis Program. Furthermore,
large pixels are much more likely to reflect the phenology of both forest and non-forest land cover.
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Phenology indices from satellite imagery with finer spatial resolution, such as Landsat imagery,
are a potential alternative to frequent, but coarsely-scaled imagery or near-surface methods for gauging
forest phenology. We already know that that multi-season Landsat satellite imagery is useful for
distinguishing among tropical forest types with different degrees of deciduousness, both visually and
in automated classifications [20,21]. Phenology data at Landsat resolution should, therefore, provide
a product that minimizes the uncertainty related to mixtures in land cover and forest types and is
closer to the size of forest field plots. The main challenge with Landsat is that its 16-day revisit time
reduces the availability of cloud-free images, calling into question whether phenology data derived
from Landsat would have too much cloud contamination to be useful. Furthermore, investigating this
question is difficult as it requires, at a minimum, a large investment in cloud and shadow masking.
Probably, for this reason, no previous studies have investigated whether Landsat-derived phenology
in a persistently cloudy tropical landscape can improve remote sensing estimates of biomass or
biomass growth.

In this study, we test whether indices related to greenness seasonality, as estimated from repaired
Landsat imagery (i.e., missing data due to clouds, shadow and Scan Line Corrector (SCL) off stripping,
have been repaired) will help explain variability not only in the relative importance of deciduous
species, but also in aboveground live biomass and biomass growth, even after accounting for stand
height and canopy area. If phenology can explain additional variability in forest biomass or growth,
then the potential exists for forest phenology measures to reduce uncertainty in remotely-sensed
estimates of biomass or growth from LiDAR or fine spatial resolution imagery. To test this hypothesis,
we used a set of new algorithms [22,23] that detect and mask clouds and shadow, repair images
and reconstruct seasonal Landsat time series data and detect tropical forest phenology metrics at the
spatial resolution of Landsat data, which is 30 m. We then evaluated the extent to which phenology
information contributed to explaining the variation in forest biomass and net biomass growth after
accounting for forest stand height or canopy area along a gradient from tropical dry to moist and wet
forests in Puerto Rico and the U.S. Virgin Islands (PRVI). We also evaluated whether the phenology
indices are related to the relative importance of deciduous species. PRVI is an ideal setting to test
this hypothesis since its forests range from dry to wet, and rainfall and temperature seasonality affect
forest species composition, including the relative importance of deciduous species [24].

2. Materials and Methods

2.1. Study Area

Puerto Rico and the United States Virgin Islands are biologically-diverse tropical islands in the
Caribbean Sea. We found this to be a good site to test our hypotheses because of the vegetation
biophysical diversity that results from substantial gradients in soil types, temperature and rainfall,
at an observational scale of the Forest Inventory and Analysis (FIA) plots that corresponds well with
Landsat pixels. The mean annual precipitation ranges from <700 mm in the southwest to >4500 mm in
the northeast [25]. The sites are rich in forest type and tree species diversity due to the diverse climatic
zones, previous land use types and soils that have formed on alluvial, sedimentary, volcanic, limestone
or serpentine substrates [26]. The most extensive climatic zone has broadleaf evergreen forest that
on karst substrate forms a mosaic of evergreen forest and forest that is semi-deciduous during the
dry season [26]. Other forest types include dry semi-deciduous forest and cloud forest (at the highest
elevations above the cloud condensation level).

2.2. Methods

The methodological framework for this work is shown in Figure 1. We used field data collected
by the Forest Inventory and Analysis (FIA) Program (Section 2.2.1) and remote sensing data from the
Landsat ETM+ sensor. The FIA Program is conducted by the U.S. Department of Agriculture Forest
Service and utilizes a nationally-standardized sampling design for monitoring the forest of the U.S.,
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including PRVI. Systematically installed field plots across the lands of PRVI are revisited every five
years in what is referred to as one cycle of Caribbean FIA data. Each permanent field plot represents
a cluster of four 7.3-m radius subplots (total sampled area = 0.067 ha), where a standard set of variables
are collected to describe land use, stand structure, tree species composition and regeneration on all
forested sites during each cycle. Trees with a minimum diameter at breast height (dbh) of 12.7 cm are
surveyed for each subplot. Each subplot includes a micro-plot with a 2.1-m radius where trees with
a dbh from 2.54–12.7 cm are surveyed. For more information regarding the FIA Program and plot
design, see Bechtold and Patterson [27].
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Landsat ETM+ images were used as they are the only source of Landsat data for this area over
the 2006–2008 study period. PRVI lies in one of the tropical areas that have a mean cloud fraction in
Landsat ETM+ acquisition exceeding 60% [28]. Such cloud contamination reduces image usability for
land surface studies; thus, we needed to reconstruct cloud-free Landsat images. The reconstruction
involves two steps: automatic detection of clouds and shadows, and interpolation of missing data
caused by clouds, shadows and the lines or missing data caused by the failure of the Landsat 7 ETM+
Scan Line Corrector. In both steps, our study applied cutting-edge algorithms to achieve high accuracy.
The reconstructed images were then used for detecting phenology (Section 2.2.2).

2.2.1. Field Data Collection and Processing

We used field data collected during two FIA cycles: inventory years 2001–2004 (t1) and inventory
years 2006–2010 (t2). Height, deciduousness proportions and aboveground biomass data were
available for both cycles, but crown area was available for t1 data only. In this paper, “all plots”
refers to those FIA plots with one to four forested subplots, while “100% forest plots” means those
plots in which all four subplots were forested. Aboveground biomass is estimated by the FIA
Program in PRVI by using locally-developed allometric equations for forest life zones sensu [3,29–33].
Species-specific aboveground biomass equations are exceptionally available and used for species such
as Prestoea montana and Bucida buceras [3,30,33]. Tables showing the equations used by FIA to predict
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aboveground biomass in PRVI are available in Brandeis et al. [34] and Brandeis and Oswalt [35].
Net biomass growth was calculated as follows:

NBG = ∑s
i=1(SABt2 − SABt1)/(t2 − t1 ) + ∑I

i=1(IABtm − IABt1)/(t2 − tm)+

∑M
i=1(MABtm − MABt1)/(t2 − tm)− ∑M

i=1 MABt1/(t2 − t1)
(1)

where all biomass values are given in Mg·ha−1 of live biomass, dry weight and:

t1 = Julian day of the first survey in fractional y
t2 = Julian day of the second survey in fractional y
tm = Julian day of the midpoint between the first and second surveys in fractional y
t2 − t1 = Interval between the first and second survey dates in fractional y
NBG = Net Biomass Growth at the plot level, in Mg·ha−1·y−1, from t1 to t2

SABtx = Biomass of survivor tree i estimated for tx, as indicated
IABtx = Biomass of ingrowth tree i estimated for tx, as indicated
MABtx = Biomass of mortality tree i estimated for tx, as indicated
S = The number of trees that survived from t1 to t2

I = The number of trees in micro-plots that reached a dbh of 12.7 cm in t2

M = The number of trees that died in the interval from t1 to t2

Total aboveground tree biomass and net biomass growth for each plot were estimated using the
total plot area, including both forest and non-forest plot area. This approach relies on the idea that
in the 3 × 3 window from which we extracted Landsat-derived variables, non-forest areas would
reduce both the image variables and the forest variables similarly and in proportion with non-forest
area. For field measured independent variables, we chose to use only those that have been proven
to be readily derivable from remote sensing data, such as LiDAR, radar or high-spatial resolution
multispectral images. We estimated crown areas from crown diameters (which are measured in two
perpendicular directions), assuming that crowns had an elliptical shape. Three main plot height
variables were calculated: the maximum tree height (Hmax), the mean height of all live dominant and
co-dominant trees (Hdomcod) and crown area weighted height (Hcawgt). We weighted height by crown
area rather than by stem basal area (as is done when estimating Lorey’s height) assuming that measures
of crown area or volume might be derived from LiDAR or high-spatial resolution remote sensing,
but not stem diameters, which are typically used to calibrate the remote sensing data to biomass as
estimated with field-measured stem diameter. One study that estimated stand-level stem diameter
at breast height with LiDAR-derived variables [36] found that they only explained about half of its
variation. We dropped three forest plots with strong negative net biomass growth due to very high
mortality, or because for one large tree, height at t2 was much shorter than height at t1, even though
no damage was recorded.

2.2.2. Phenology Detection

We reconstructed a time series dataset with Landsat 7 ETM+ images covering PRVI. We only
selected images with cloud coverage lower than 50% because the useful information in images with
higher cloud coverage is very limited. An annual phenology product ideally requires one year’s
worth of time series images, which is impossible to get in a cloudy tropical area. To address this,
our approach uses images from as few consecutive years as possible, ordered by Julian day of the
year (DOY) and treats them as a one-year time series [23]. Our approach tests the idea that, even
though forest phenology changes from year to year, there are enough similarities among years to form
a pattern that is indicative of forest characteristics related to biomass and biomass growth. We used
images from 2006–2008, corresponding to the time period when most of the latest field data were
collected. Four Landsat scenes (Path 4, Rows 47–48 and Path 5, Rows 47–48) are required to cover
PRVI (excluding Mona Island). After filtering for cloud cover, a minimum of 17 and maximum of
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28 Landsat images were available from each scene to reconstruct the time series (Table 1). In this
study, we applied a newly-developed algorithm to screen clouds and cloud shadows in all Landsat
images automatically [22]. This new algorithm makes better use of the temporal information in the
time series and can obtain higher accuracy than other algorithms [37–41]. After the detection of clouds
and shadows, we used an advanced spatiotemporal interpolation method, named the nearest similar
pixel interpolator (NSPI), to estimate the values of cloud and shadow pixels [42] and un-scanned pixels
within SLC-off gaps [43].

Table 1. Image dates used to generate time series data and phenology products.

Year
Landsat Scene: Path/Row Number Combination and Image Date (Julian Day of Year)

4/47 4/48 5/47 5/48

2006 39; 55; 71; 167; 183;
263; 311

23; 55; 71; 119; 135;
167; 183; 263;311

09; 78; 94; 110; 126;
286; 350

14; 46; 78; 94; 110; 126;
142; 286; 318; 350

2007 10; 26; 42; 74; 106;
122; 218; 266

10; 26; 42; 74; 170;
186; 202 49; 209; 225 17; 49; 145; 209; 225;

273; 305; 337; 353

2008 45; 61; 77; 109; 125;
141; 221; 237; 269

45; 61; 71; 109; 125;
141; 221

100; 132; 276; 292;
308; 340; 356

36; 68; 100; 132; 292;
308; 324; 340; 356

Chen et al. [44] developed the weighted cross-correlogram spectral matching-phenology (CCSM-P)
method that detects phenology from vegetation index time series of multiple years. Zhu et al. [23]
modified CCSM-P so that it can also detect phenology for a single year time series. From the
reconstructed images, we computed a time series of the Normalized Difference Vegetation Index
(NDVI). We believe NDVI is a simple index suitable for a first product like ours; thus, the necessity to
use alternative and even more complicated indices depends on the output of the work presented here.
A time series smoothing algorithm [45] based on the Savitzky–Golay filter [46] was used to further
remove noise in the NDVI time series from which we identified 5 main variables: minimum NDVI
(ndvi_min), maximum NDVI (ndvi_max), NDVI range (ndvi_range), mean NDVI (ndvi_mean) and NDVI
standard deviation (ndvi_std). The modified CCSM-P algorithm [23] was adopted for the smoothed
NDVI time series data to detect 5 important phenology variables: the DOY with the highest NDVI
value (peak), DOY with the lowest NDVI (lowest), the DOY when growth starts (greenup), the DOY when
growth starts to slow down (browndown) and the length of time between browndown and greenup
time, dry season length (dsl). Using the FIA plot center coordinates, each plot was assigned phenology
variables by averaging the values of its surrounding 3 × 3 pixel window, thus approximating the main
plot’s dimensions.

2.3. Statistical Analysis

To test the potential contribution of phenology data in explaining forest biomass, we used data
from t2 to develop a simple linear model (Equation (2)) relating biomass to canopy height and used
the model’s residuals to determine the annual phenology pattern of high biomass (upper quartile)
versus low biomass (lower quartile) plots. We then developed another linear model (Equation (3))
relating biomass to canopy height and forest deciduousness (proportional area covered by deciduous
tree species, including deciduous, semi-deciduous or facultatively deciduous trees).

AGB = a × Ht + b (2)

AGB = c × Ht + d × Dec + e (3)

where AGB is aboveground biomass in mega-grams per hectare, Ht is crown area weighted height
in meters, Dec is the proportion of plot basal area covered by deciduous trees and a, b, c, d and e are
constants. We used crown area weighted height because it produced the best model (highest variation
in biomass explained) among the three height variables mentioned in Section 2.2.1.
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From the two models, we compared the annual pattern of phenology from the residuals of the
second model against the pattern from the first model (Figure 2). This figure shows that lower biomass
(lower residuals) plots have a larger annual range/variability in NDVI, but the trends become very
similar after we use the deciduousness proportions, thereby demonstrating that phenology data
might explain some of the variation in forest physiognomy. The statistical contribution of phenology
data in modeling forest deciduousness was then tested by developing a multiple linear regression
model (Equation (4)) that estimated forest deciduousness proportion from both DOY and NDVI
phenology variables.

Forest Deciduousness = 4.332 × ndvi_std − 1.207 × ndvi_max − 0.003 × greenup + 1.799 (4)
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For forest biomass and net biomass growth, we initially tested the relationship between
aboveground biomass and canopy height or crown area for a single inventory period (tn) using
simple ordinary least squares regression. We then implemented forward stepwise multiple linear
regression analysis to determine how much additional variation is explained by adding phenology
variables. To also determine the effect of forest type proportions, we first did the analysis on all FIA
plots and then only on the 100% forest plots and compared the two results. Since we had biomass data
for the t1 to t2 (∆t) growth period and with the argument that we can get specialized remote sensing
data to estimate canopy height or crown area at tn and phenology data to estimate growth patterns,
we tested the ability of height at tn and delta height (∆Ht) plus phenology variables to estimate NBG.
We could have also done the same for crown area, but we did not have this variable for t2 data. For the
multiple linear regression processes, each final model was run using only those variables that were
significant at the α = 0.05 level, and we recorded the amount of variation explained as denoted by the
adjusted R2 value.

We also performed a quality check on the gap/cloud/shadow repairing process. For each plot,
we checked how many of the 9 pixels in the 3 × 3 window had original image values and how
many had filled (repaired) values for each of the dates. We then calculated each date’s “quality” as
the number of pixels with original values divided by 9, thus to get the overall quality for each plot,
we averaged all of the dates’ quality values for that respective plot. For any model, the residuals did
not show any trend with the overall quality, suggesting that our results are not heavily influenced by
the final image quality. Thus, we concluded that we repaired the SLC-off and cloud/shadow gaps
well and, hence, addressed the problem of cloud cover that often limits the use of medium temporal
resolution imagery in studying the phenology of tropical forests [1,47].
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3. Results

3.1. Phenology

As Figure 3 and Table 2 show, the annual range of NDVI is very low (mean of 0.15). On average,
the forests have the lowest greenness (mean NDVI of 0.64) in April–May and peak greenness (mean
NDVI of 0.80) in November–December. Browning starts around February–March, while greening up
starts around June–July, giving a dry season length of 4–5 months. Note that the dry season length is
relative to the PRVI conditions, thus not necessarily dry, but rather, a period when greenness is below
the average. The spatial pattern of phenology is shown in Figures 4 and 5.
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Table 2. Mean phenology variables for PRVI.

NDVI

Minimum Maximum Mean Range Standard Deviation

0.64 0.80 0.72 0.15 0.05

Julian Day of Year

Peak Lowest Greenup Browndown Dry Season Length

339 126 203 65 137 days
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3.2. Forest Deciduousness

Directly relating forest deciduousness to phenology variables showed weak, but significant
(p < 0.001) correlations (Figure 6). When all plots were considered, greenup date, minimum NDVI
and the interaction of greenup date and minimum NDVI explained 26% of the variation in forest
deciduousness. When only 100% of the forest plots were used in the model, the amount of variation
explained was 36%, and the significant variables were greenup date, lowest date, standard deviation
of NDVI and the interaction of browndown date and standard deviation of NDVI.
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of phenology.

3.3. Forest Biomass

Table 3 summarizes the contribution of phenology in explaining the variation in biomass.
Phenology added a reasonable amount of variation explained by the models, more as interaction terms
than as single effect terms. The height variables tested performed similarly in most situations. Crown
area-based models performed slightly better than height-based models, but models with both crown
area and height performed much better than models that used one of the variables alone. Both NDVI
and DOY variables were useful, and the combination depended on the type of model and the group of
forest plots. Overall, models for 100% forest plots had better results than models for all plots combined,
probably due to the lower variability in the former. Table 3 shows the details of the models for each
group of plots, and Figure 7 shows the best models for each of the groups.
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Table 3. Results for forest biomass models in the various plot groups. Adj. R2 is the coefficient of determination adjusted for the number of predictors, carea means
crown area, and Ht refers to the respective model’s height variable. Phenology variables are as defined in Section 2.2.2.

Model

Significant Variables at α = 0.05 Level Adj. R2 Additional Variation
Explained by Phenology Significant Variables at α = 0.05 Level Adj. R2 Additional Variation

Explained by Phenology

Modeling Biomass at t2 Using Height and Phenology

All Plots, n = 301 100% Forest Plots Only, n = 211

Hdomcod alone Ht2 0.43

11%

Ht2 0.53

12%
Hdomcod + phenology

Ht2; ndvi_mean; lowest; greenup;
Ht*lowest; Ht2*ndvi_mean; Ht2*lowest;
Ht2*greenup

0.54 Ht2; lowest; dsl; Ht*ndvi_std; Ht*lowest;
Ht2*ndvi_std; Ht2 *lowest

0.65

Hmax alone Ht2 0.44
5%

Ht 0.45
6%

Hmax + phenology Ht2; ndvi_min; lowest; greenup;
Ht2*peak

0.49 Ht; lowest; greenup; Ht*lowest 0.51

Modeling Biomass at t1; Using Crown Area and Phenology (No Height)

All Plots, n = 248 100% Forest Plots Only, n = 164

Crown area alone Carea + carea2 0.55
7%

Carea + carea2 0.63
8%

Crown area + phenology carea; carea2; greenup; carea*greenup;
carea2*lowest; carea2*greenup

0.62 carea; peak; carea*ndvi_max; carea*lowest;
carea2*lowest 0.71

Modeling Biomass at t1; Using Height; Crown Area and Phenology

All Plots, n = 248 100% Forest Plots Only, n = 164

Hcawgt + crown area Carea; Ht2; Ht2*carea 0.67

6%

Carea; Ht*carea; Ht 0.68

8%
Hcawgt + crown area + phenology Carea; Ht2*carea; Ht2; carea2*lowest;

lowest; dsl; carea*lowest; Ht2*dsl
0.73

Ht; lowest; carea2*lowest; dsl; carea;
Ht*ndvi_max; Ht*carea; carea*lowest;
Ht*dsl

0.76

Hdomcod + crown area Carea; Ht2*carea2; Ht2 0.68

7%

Ht*carea2; carea; Ht; Ht2 0.69

9%
Hdomcod + crown area + phenology

Carea; Ht*ndvi_std; dsl; Ht2*carea;
Ht*ndvi_std; carea2*lowest; Ht*dsl;
carea2*ndvi_min; lowest; carea2;
carea*lowest; min

0.75
Ht; Ht2*ndvi_max; greenup; Ht*carea2; Ht2;
lowest; carea; Ht*greenup; carea2*lowest;
ndvi_max

0.78

Hmax + Crown area Carea; carea2; Ht*carea2 0.69
6%

carea; carea2; Ht*carea2 0.70
7%

Hmax + crown area + phenology Carea; Ht2*peak; Ht*peak; Ht; greenup;
carea2; Ht2 0.75 carea; Ht2*carea; Ht; dsl; Ht*ndvi_max; Ht2;

lowest; Ht*dsl
0.77
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3.4. Forest Net Biomass Growth

As Table 4 and Figure 8 show, phenology variables were important in the NBG models mostly in
the same manner as they were for forest biomass models. Furthermore, the models for 100% forest
plots were generally better than the models for all plots combined. The models produced better results
when only forests with positive growth were considered, thus suggesting a higher complexity in
mortality drivers in the negative growth plots compared to growth drivers in the positive growth plots.
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Figure 8. Results of the best models for forest net biomass growth (NBG). Top row: the left two columns
are for a model run on all plots, and the right two columns are for a model run on all 100% forest plots.
Bottom row: the left two columns are for a model run on all plots with positive net biomass growth
only, and the right two columns are for a model run on 100% forest plots with positive growth only.
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Table 4. Results for forest net biomass growth models in the various plot groups.

Model
Significant Variables at α = 0.05 Level Adj. R2 Additional Variation

Explained by Phenology Significant Variables at α = 0.05 Level Adj. R2 Additional Variation
Explained by Phenology

All Plots, n = 261 All 100% Forest Plots, n = 170

Hdomcod alone Ht2 0.27

16%

Ht2 0.35

21%
Hdomcod + phenology

Ht2*ndvi_std; peak; Ht2*peak; greenup;
ndvi_std; Ht2*ndvi_min; Ht*ndvi_std;
Ht2*ndvi_mean; Ht2; ndvi_min;
Ht2*greenup

0.43 Peak; Ht2*ndvi_std; ndvi_std; Ht2; greenup;
ndvi_mean; Ht*ndvi_mean; Ht*peak

0.56

Hdomcod + ∆Hdomcod Ht2; ∆Ht 0.34

19%

Ht2, ∆Ht 0.43

17%
Hdomcod + ∆Hdomcod + phenology

∆Ht*peak; ∆Ht; Ht2*ndvi_std;
Ht2*ndvi_min; Ht2; ∆Ht*ndvi_mean;
Ht*std; ∆Ht*ndvi_min

0.53 ∆Ht; Ht2; Ht2*ndvi_std; ndvi_std;
∆Ht*peak; Ht*ndvi_std 0.60

Hmax alone Ht, Ht2 0.29
11%

Ht, Ht2 0.37
12%

Hmax + phenology Ht2; Ht2*peak; Ht2*ndvi_std;
Ht2*ndvi_range, peak; ndvi_std; ndvi_range

0.40 Ht2; greenup; Ht2*greenup; ndvi_std;
Ht2*ndvi_std; Ht*ndvi_std; Ht

0.49

Hmax + ∆Hmax Ht2; ∆Ht 0.38

12%

Ht2, ∆Ht 0.42

11%
Hmax + ∆Hmax + phenology

∆Ht; Ht2*ndvi_std; ∆Ht*ndvi_max;
Ht2*peak; Ht*ndvi_range; Ht2; peak;
ndvi_std

0.50 Ht2*ndvi_std; Ht*ndvi_range; ∆Ht; Ht2;
ndvi_std; peak; Ht*peak

0.53

All Plots with Positive Growth Only, n = 244 100% Forest Plots with Positive Growth Only, n = 161

Hdomcod alone Ht2 0.30
17%

Ht2 0.40
22%

Hdomcod + phenology Ht2*ndvi_std; peak; Ht2*peak; Ht*range;
dsl; ndvi_min; Ht2; Ht2*ndvi_min

0.47 Peak; Ht2*ndvi_std; Ht*ndvi_std; dsl; Ht2;
ndvi_std; Ht*peak; Ht2*peak

0.62

Hdomcod + ∆Hdomcod Ht2; ∆Ht 0.37

25%

Ht2, ∆Ht 0.43

19%
Hdomcod + ∆Hdomcod + phenology

∆Ht*peak; Ht2*ndvi_std; ∆Ht*dnvi_mean;
∆Ht*ndvi_min; Ht*ndvi_min;
∆Ht*ndvi_range; ∆Ht; Ht2; ndvi_std;
Ht*ndvi_range

0.62 Ht2*ndvi_std; Ht2; ∆Ht*peak; Ht*ndvi_std;
∆Ht; ndvi_std

0.62

Hmax alone Ht2 0.33
11%

Ht2 0.41
13%

Hmax + phenology Ht2; Ht2*peak; Ht2*ndvi_std;
Ht2*ndvi_range; ndvi_std; peak; ndvi_range

0.44 Ht2*ndvi_std; Ht2*peak; peak;
Ht*ndvi_range; Ht2; ndvi_std

0.54

Hmax + ∆Hmax Ht2, ∆Ht 0.38

14%

Ht2, ∆Ht 0.43

12%
Hmax + ∆Hmax + phenology

Ht2*ndvi_std; ∆Ht; ∆Ht*ndvi_max;
Ht2*peak; Ht*range; Ht2; ndvi_std; peak;
ndvi_range

0.52 Ht2*ndvi_std; Ht*peak; peak;
Ht*ndvi_range; Ht2; ndvi_std

0.55
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4. Discussion

This study has demonstrated how phenology from moderate to fine spatial resolution imagery
helps quantify plot-level forest biomass, growth and deciduousness in highly cloudy forest
environments. We have revealed that despite the heterogeneity and complexity of tropical forest
ecosystems, phenology data significantly improve the estimation of both tn and ∆t biophysical
attributes. The ability of phenology data to quantify the growth pattern of vegetation complements
the ability of structural variables to estimate the change in the structure of vegetation over time and,
thus, is a good indicator of its function, such as carbon sequestration or a reflection of its response to
growth-controlling factors, such as climate change. The complementary contribution of phenology
is reflected by the significance of mostly interactive variables as compared to single effect variables
in the more complex models. The better performance of models when only 100% forested plots were
considered strongly suggests that pixels with mixed land cover, which would be more common in
coarse spatial resolution imagery like MODIS, adding noise to the relationships between phenology
and the forest attributes that we tested.

Phenology variables like NDVI range or growing season length are expected to clearly distinguish
the deciduous proportions of forest plots; thus, we suspect that the mixture of old dominant and
new sub-canopy vegetation in PRVI complicated phenology patterns, hence the modest results in our
forest deciduousness models. The two most common and important species, like Guarea guidonia and
Spathodea campanulata, even have a bimodal flowering/leaf fall pattern [34,48–50]. Other species, like
Tabebuia heterophylla, vary in their deciduousness, depending on climate. These complexities probably
contributed to the modest relationship between the phenology indices and proportion of basal area
composed of deciduous species. This complexity could also be the reason why extreme-end phenology
variables like ndvi_min, ndvi_max and peak DOY were mostly significant in the biomass and NBG
models, compared to range-based variables. Depending on the amount of photosynthetically-active
radiation available in the form of diffuse light, the understory may experience different seasonality
in irradiation and, hence, phenology compared to the canopy [51]. Furthermore, the high diversity
of plant species in PRVI, combined with differences in their phenological patterns, may lead to some
unexpected patterns in seasonality at the community and landscape level [52], posing a challenge
in detecting phenology from moderate to coarse spatial resolution remote sensing data. For future
studies, improvements may come from incorporating stand age as an explanatory variable or using
alternative or more vegetation indices in the models. Fan et al. [53], for example, used Landsat 8 time
series of NDVI, EVI, the Atmospherically-Resistant Vegetation Index (ARVI), Normalized Difference
Moisture Index (NDMI) and Tasseled Cap Greenness (TCG) to identify foliation (leaf flushing) and
defoliation (leaf-off) days to help distinguish rubber trees from natural forests and croplands with
up to 96% (kappa = 0.92) accuracy in Tropical South West China. For a first cut analysis, we chose
NDVI as a commonly-used measure of greenness. Now that we obtained promising results, it will
be interesting to test more robust and structurally sensitive indices in future work. A longer time
series dataset may also improve the phenology variables if the associated land cover dynamics are also
carefully controlled for.

It is important to note that net biomass growth models can be much better when more variables
that account for climate variability, nutrients or disturbance/mortality are used. Reich [54] modeled
annual and daily net primary productivity (NPP) from canopy traits (Leaf Area Index (LAI) and
percentage nitrogen (N)) and climate variables and also reported the importance of interaction terms
in improving the amount of variation explained. A model that included LAI, N, summer rainfall,
mean maximum summer temperature and growing season length explained 92% of the variation in
annual NPP, an additional 16% to a model that used LAI and N alone. However, the main challenge of
including these variables, such as percentage nitrogen, is that they are not generally derivable from
multispectral remote sensing data, which is what is normally available for a region. Moreover, our
main objective was to test the potential contributions of Landsat level phenology, given the wide
availability of Landsat.
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Considering the accuracy of the phenology characterization, in terms of the resulting times, for
MODIS-based EVI time series data, Zhang et al. [55] in North American temperate forests concluded
that phenology can be detected with an accuracy of less than three days for a temporal resolution
of less than 16 days and that the error increases with the number of missing dates, especially if
these missing days are around the onset of phenological transition dates. Compared with phenology
characterizations where a denser time series of images is available, this study necessarily uses fewer
images, as few as 17 images for the Path 5, Row 47 scene. Although using fewer images may have
reduced accuracy, the time series reconstruction algorithm that we used is designed to correct this
problem by using a time-based function rather than an observation points-based interpolator [23,45].
However, our study focused more on how much variability in forest biomass, net biomass growth and
deciduousness was explained by phenology rather than the absolute accuracy of the phenology indices.

5. Conclusions

This study demonstrated the possibility of using moderate temporal resolution, but high spatial
resolution time series images to generate phenology variables that are important for estimating forest
aboveground live biomass and net biomass growth across a tropical landscape of high diversity and
complexity. Monitoring phenology in tropical forests has been a great challenge using the traditional
medium to coarse temporal resolution multispectral imagery due to residual cloud and aerosol
contamination. However, as we have demonstrated in this paper, the experience gained in using the
traditional high-frequency, coarse spatial resolution imagery is vital for creating cloud and gap-filled
medium- to high-spatial resolution imagery for monitoring phenology at local scales.
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