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Abstract: This paper investigated the potential of multispectral airborne laser scanning (ALS) data
for individual tree detection and tree species classification. The aim was to develop a single-sensor
solution for forest mapping that is capable of providing species-specific information, required
for forest management and planning purposes. Experiments were conducted using 1903 ground
measured trees from 22 sample plots and multispectral ALS data, acquired with an Optech Titan
scanner over a boreal forest, mainly consisting of Scots pine (Pinus Sylvestris), Norway spruce
(Picea Abies), and birch (Betula sp.), in southern Finland. ALS-features used as predictors for tree
species were extracted from segmented tree objects and used in random forest classification. Different
combinations of features, including point cloud features, and intensity features of single and multiple
channels, were tested. Among the field-measured trees, 61.3% were correctly detected. The best
overall accuracy (OA) of tree species classification achieved for correctly-detected trees was 85.9%
(Kappa = 0.75), using a point cloud and single-channel intensity features combination, which was
not significantly different from the ones that were obtained either using all features (OA = 85.6%,
Kappa = 0.75), or single-channel intensity features alone (OA = 85.4%, Kappa = 0.75). Point cloud
features alone achieved the lowest accuracy, with an OA of 76.0%. Field-measured trees were also
divided into four categories. An examination of the classification accuracy for four categories of
trees showed that isolated and dominant trees can be detected with a detection rate of 91.9%, and
classified with a high overall accuracy of 90.5%. The corresponding detection rate and accuracy were
81.5% and 89.8% for a group of trees, 26.4% and 79.1% for trees next to a larger tree, and 7.2% and
53.9% for trees situated under a larger tree, respectively. The results suggest that Channel 2 (1064 nm)
contains more information for separating pine, spruce, and birch, followed by channel 1 (1550 nm)
and channel 3 (532 nm) with an overall accuracy of 81.9%, 78.3%, and 69.1%, respectively. Our results
indicate that the use of multispectral ALS data has great potential to lead to a single-sensor solution
for forest mapping.

Keywords: multispectral laser scanning; ALS; individual tree detection; tree species classification;
random forest

1. Introduction

Knowledge of tree species plays an important role in forest management and planning.
The optimum output, requested by forest companies from the forest mapping process, is the
species-specific size distribution of the trees. The traditional method, based on field inventory
work for tree species identification, is labor intensive, time consuming, and limited by spatial extent.
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Therefore, remote sensing techniques were introduced, such as the interpretation of large-scale aerial
color or infra-red images [1,2]. Although remotely-sensed data have been widely used for forest
applications, traditional optical remote sensing techniques suffer from a lack of the ability to capture
three-dimensional forest structures, particularly in unevenly-aged, mixed species forests with multiple
canopy layers [3]. Recent developments in active remote sensing, particularly laser scanning techniques,
have shown potential in forest mapping and other applications because of the capability to capture
three-dimensional (3D) information of forests [4–11].

Airborne laser scanning (ALS) is a useful tool for retrieving biophysical variables and for updating
forest inventory maps. The successful use of ALS data has been demonstrated for a variety of
applications. For example, ALS has been used to estimate tree height [6,7], identify tree species [8–10],
and estimate tree volume, biomass [11–13], and growth [14,15]. Tree species information at an
individual tree level is particularly useful in growth and yield estimates, and has been primarily
studied for forest applications, such as updating forest inventories. Tree species classification using
ALS has not been intensively studied, when compared with studies on the successful use of ALS for
other forest attribute mapping, because of the lack of spectral information. Brandtberg [9] classified
three leaf-off individual deciduous tree species (oaks, red maple, and yellow poplar) in West Virginia,
USA, using high density laser data, and reported 64% total accuracy. Holmgren and Persson [8]
classified Norway spruce and Scots pine in Remningstorp, Sweden, using ALS-derived point and
intensity features, and achieved an accuracy of 95%. Ørka et al. [16] classified three species (spruce,
birch and aspen) at the Ostmarka natural forest in southern Norway. Suratno et al. [17] classified
ponderosa pine, Douglas-fir, western larch, and lodgepole pine, in a western North American montane
forest using low density ALS data, and achieved a classification accuracy of 95% at the dominant
species level, and 68% for individual trees.

Intensity was also demonstrated to be useful information for tree species identification.
Ørka et al. [18] reported an accuracy of 73% when classifying conifers and deciduous trees, solely
based on intensity information. Korpela et al. [19] classified Scots pine, Norway spruce, and birch,
by using intensity variables at Hyytiälä in southern Finland, and showed that intensity features can
contribute to a classification accuracy of 88% among the three species. With full-waveform (FWF)
lasers, the total received power corresponding to the backscattering cross-section can be calculated,
which provides information on the objects, from the intensity waveform.

Previous studies have demonstrated that FWF data and the derived metrics can be used to improve
the performance of tree species classification. For example, Yao et al. [20] demonstrated the usefulness
of waveform features for the classification of deciduous and coniferous trees. Heinzel and Koch [21]
analyzed a set of waveform features and identified the most predictive features for classifying up to six
tree species. Cao et al. [22] demonstrated that full-waveform data and derived metrics have significant
potential for tree species classification in the subtropical forests, and results demonstrated that all tree
species were classified with relatively high accuracy (68.6% for six classes, 75.8% for four main species,
and 86.2% for conifers and broadleaved trees).

Previous studies have also revealed that combining multispectral information with 3D ALS
data can lead to improvement in the accuracy of tree extraction and tree species classification, as
we can take advantage of both datasets. For example, Naidoo et al. [23] concluded that the use of
ALS and hyperspectral data yielded the highest classification accuracy and prediction success for
the eight savanna tree species, with an overall classification accuracy of 87.68%. Zhou et al. [24]
demonstrated that the ALS intensity data can contribute to the classification of shaded areas in an
urban environment where high resolution digital aerial imagery alone did not produce good results.
The fusion of high resolution (satellite or aerial) remote sensing and ALS data can achieve mutual
benefits for compensating the lack of 3D structure from imagery and multi-spectral information from
ALS data. With respect to the success of these case studies, multi-sensor data fusion seems to be a
feasible solution, especially for the mapping of land cover over large areas.
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However, there are challenging factors that limit the effective operational use of the fused
datasets [25,26]. For example, geometric and radiometric registration between two datasets is
demanding, because of the fact that data are normally acquired at different times, using different
sensors. It is also costly to make measurements with two sensors, particularly in the boreal forest zone
where the measurements can seldom be carried out during a single flight, because ALS measurements
can be taken two to four times longer than aerial/hyperspectral measurements during a day, since ALS
does not depend on sun light illumination. Furthermore, in contrast to passive imagery, laser scanning
always views the targets at the zero degree phase angle in a narrow off-nadir viewing geometry and
the transmitted energy is also controllable, thus the interpretation of the laser intensity is less complex
than in the case of passive airborne images [27]. The recently developed multispectral laser scanning
technique is therefore becoming an attractive option for forest mapping, because it can provide not only
a dense point cloud, but also spectral information which can simplify data processing and facilitate
the interpretation of data. There are a couple of studies that have demonstrated the potential of
multispectral ALS for classifying tree species [28,29]. In Lindberg et al [28], multispectral data were
acquired with separate instruments and from different flights—an analogue to Titan multispectral
data. The study described the characterization of tree species from ALS data, using three wavelengths:
1064 nm, 1550 nm, and 532 nm, and a point density over 20 point/m2. However, classification accuracy
was not reported. In St-Onge and Budei [29], values for the mean and standard deviation of the
intensity in three channels of Titan multispectral ALS, were used in the classification of broadleave vs.
needleleaf trees (level 1), and eight genera (level 2) in a suburb of the city of Toronto, Canada. Random
forest classification produced a classification error of 4.59% in the case of the level 1 classification
(broadleave vs. needleleaf trees), and of 24.29% in the case of the level 2 classification. The point
density of the data used was 10.6 first returns/m2 per channel. Currently, the cost of data acquisition
of multispectral ALS is relatively higher than that of aerial images and ALS data, if they are acquired
from the same flight. However, it is expected that this cost will decrease in the future, as the technology
advances. Therefore, it is worth investigating the potential of multispectral laser scanning for forest
inventories, particularly for tree species classification. The objectives of this study are to evaluate the
feasibility of multispectral ALS data for tree species classification with intensive field measurements,
and to investigate the information content of features derived from both point cloud and intensity.
The study was conducted in a boreal forest using 1903 trees in 22 plots.

2. Study Area and Materials

2.1. Test Site

The 5 km × 5 km study area, located in Evo, southern Finland (61.19◦N, 25.11◦E), belongs to
the southern Boreal Forest Zone. It contains approximately 2000 ha of managed boreal forest, having
an average stand size of slightly less than 1 ha. The area comprises a broad mixture of forest stands,
varying from natural to intensively managed forests. The elevation of the area varies from 125 m to
185 m above sea level. Scots pine (Pinus sylvestris) and Norway spruce (Picea abies) are the dominant
tree species in the study area, and contribute 40% and 35% of the total volume, respectively, whereas
the share of deciduous trees (mainly birches, Betula sp.) constitutes only 24% of the total volume.

2.2. Field Measurements

Field measurements were undertaken in the summer of 2014 and consisted of individual tree
measurements for 91 plots in Evo. Sample plots, with dimensions of 32 m × 32 m, were selected, based
on the prestratification of ALS data to distribute plots over various stand height and density classes.
Sample plot locations were determined using the geographic coordinates of the plot center and its four
corners. Plot center positions were measured using a total station (Trimble 5602), which was oriented
to the local coordinate system using ground control points measured with VRS-GNSS (Trimble R8) in
open areas, close to the plot. Terrestrial laser scanning was also used to assist tree mapping in the field.
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After field measurements had been made, the tree map was further verified by comparing it with ALS
data. If there was a discrepancy between the two data, the plot was manually corrected to match the
ALS data, ensuring a positional accuracy of 0.5 m. Detailed information on the establishment of the
sample plots can be found in Yu et al. [30].

From the sample plots, all trees with a diameter at beast height (DBH) exceeding 5 cm, were
tallied with steel calipers from two directions perpendicular to each other, and a mean was taken as the
value for the DBH. Tree height was measured using an electronic hypsometer. Height measurement
accuracy is expected to be approximately 0.5 m. Tree species was also recorded. Among 91 sample
plots, 22 plots were fully covered by the airborne laser scanning data and used in this study (Figure 1).
The descriptive statistics of 22 sample plots, and the sample trees by species, are summarized in
Tables 1 and 2, respectively.
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Figure 1. Study area, airborne laser scanning coverage, and sample plots.

Table 1. The descriptive statistics of Lorey’s height (Hg), basal area weighted mean diameter (Dg),
basal area (G), stem volume (VOL), aboveground biomass (AGB), and trees per hectare (TPH) in the
22 sample plots.

Minimum Maximum Mean Standard Deviation

Hg (m) 10.02 31.09 21.09 4.41
Dg (cm) 13.92 46.42 25.78 7.50
G (m2/ha) 6.60 43.17 26.79 7.83
VOL (m3/ha) 34.46 518.39 270.14 110.04
AGB (Mg/ha) 19.06 230.63 134.49 48.33
TPH (trees/ha) 342 3057 940 554

Table 2. The descriptive statistics of sample trees by tree species.

Minimum Maximum Mean Standard Deviation Number of Trees

Pine Tree height (m) 2.30 28.20 17.29 4.76 839
DBH (cm) 5.00 39.80 19.37 6.92

Spruce Tree height (m) 2.20 35.30 14.32 8.94 630
DBH (cm) 5.00 57.90 16.27 11.75

Birch Tree height (m) 2.00 30.20 16.89 4.80 434
DBH (cm) 5.10 55.80 14.61 6.42
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2.3. Airborne Laser Scanning Data

Airborne laser scanning data were acquired on the 21st of August 2015, using an Optech Titan
multispectral system, operating at a pulse rate of 300 kHz per channel. Optech Titan is the first
commercial airborne laser scanner which operates with three channels. The spectral channels are
two infrared ones, of 1550 nm (channel 1) and 1064 nm (channel 2), and a green channel of 532 nm
(channel 3). The three channels are oriented in different directions, so that the 1064 nm channel is
pointing nadir, the 1550 nm channel is positioned 3.5 degrees forward, and the 532 nm channel is
positioned 7 degrees forward. As a result, laser pulses are not registered from exactly the same location
in each channel. The data in this study were collected from an altitude of 400 m above sea level,
resulting in an average pulse density of approximately 3 × 21 pulses per m2, and the footprint sizes
in diameter were 14 cm in channel 1 and 2, and 28 cm in channel 3 (beam divergence of 0.35 mrad in
channel 1 and 2, and 0.7 mrad in channel 3). The system was configured to record up to five echoes per
pulse, and intensities were also recorded for each return and channel.

3. Methods

3.1. Preprocessing of Multispectral ALS data

Recorded intensity is the amount of energy reflected back (i.e., backscattered) to the laser sensor,
which is a function of several variables, such as target surface characteristics (reflectance, wetness and
roughness), environmental effects (atmospheric transmittance, moisture), and acquisition parameters
and instruments [31,32]. It is therefore necessary to calibrate intensity values for compensating the
impact of these factors and achieving better classification accuracy. In this study, a simplified model
was used for the return intensity calibration, in order to correct for range according to the Equation (1)
with an exponential factor of 2.5 [27] for forest area, since the environmental factors can be considered
stable, and the same acquisition parameters and instruments were maintained during the survey.

Ic = I ∗
(

R
Rs

)2.5
(1)

where Ic is the normalized intensity, I is the raw intensity, R is the sensor to target range, and Rs is the
reference range or average flying height (in this study Rs = 400 m). The physical explanation for the
exponential factor of 2.5 is that the laser beam is affected by the mixture of targets illuminated by the
laser beam, such as leaves, dense needle groups (exponential factor close to 2), and the branches and
needles (exponential factor close to 3). Correction was separately completed for each channel.

Strip matching between flight lines and between channels was performed by the data provider.
Afterwards, the ALS point clouds were processed to separate ground returns from vegetation
returns, using the progressive triangulated irregular network (TIN) densification method proposed
by Axelsson [33]. Point cloud of channel 2 was used in this process, in order to reduce the amount
of data provided that ground returns were dense enough to represent the variation of the terrain.
The ALS data from the three channels were then normalised by removing ground elevation from the
laser height measurements based on the digital terrain model created from classified ground points.
The normalized point cloud was further processed for individual tree detection.

3.2. Individual Tree Detection

Individual trees were detected using a minimum curvature-based algorithm [34], which started
with the creation of canopy height model (CHM). The method has two major steps: firstly, the tree
tops were found by a local maximum filtering algorithm. Secondly, tree crowns were delineated
using a watershed algorithm. CHM was created by taking the maximum value of normalized laser
points within a grid cell of size 0.5 m. In the first step, CHM was smoothed by Gaussian filtering
and stretched by minimum curvature, and then local maxima were detected from processed CHM.
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These local maxima were considered as tree tops and used as seeds in the following step, where crown
was delineated by a marker-controlled watershed algorithm, with a background mask of a 2 m height
threshold, i.e., if the CHM value was less than 2 m, the pixel was classified as “background”. During the
segmentation processes, the tree crown shape and location of individual trees were determined, based
on the segment outline and the location of maximum hit within the segment. In this study, points of
first returns from all three channels were used to create CHM.

Detected trees were then linked with the trees measured in the field by an automatic matching
algorithm based on the Hausdorff distance [14]. In the matching procedure, the distance in 3D
space between the detected tree and the field-measured tree was used as a matching criterion. If a
field-measured tree and a detected tree were the closest to each other, and the distance between
them was less than a threshold, the tree was considered as correctly detected. Given the possible
difference in tree location measurements from ALS data (at tree top), and in the field (at tree root) and
tree height underestimation by laser scanning, a 5 m threshold distance was used to reject a match.
The field-measured trees without any link to a tree segment were considered as non-detectable trees,
resulting in an omission error, and a tree segment without a link to a reference tree resulted in a
commission error.

3.3. Features Derivation from Multispectral ALS Data

In order to classify and characterize the object properly, we can use geometry (from point
clouds) and spectral information. For each extracted tree segment, several features were derived
from multispectral ALS data and used in tree species classification. They can be grouped into three
categories: point cloud features, single-channel intensity (SCI) features and multi-channel intensity
(MCI) features. For point cloud features, points falling within each individual tree segment were
extracted from all returns, and the normalized heights of these points were used for deriving the tree
features. The features were calculated based on points over a height threshold of 2 m above ground
from all channels, including maximum height (Hmax), mean height (Hmean), standard deviation of
height (Hstd), range of the height (Hrange) represented by the difference between the lowest and
highest points, penetration rate as the ratio of points below 2 m to the total number of points, crown
area (CA) and volume (CV) estimated by a 2D and 3D convex hull of the points, and crown diameter
(CD). In addition, height percentiles (HP10 to HP90) from 10% to 90%, with an increment of 10%, were
calculated. Furthermore, density-related features were calculated by dividing the height into 10 equal
intervals, and calculating the ratio of points within each interval to the total number of points (D1 to
D10). As SCI features, we calculated the minimum, maximum, mean, standard deviation, skewness,
kurtosis of the intensity, and percentiles of intensity at 5%, and from 10% to 90%, with a 10% increment
for each channel. MCI features included the intensity ratio between each channel and the sum of all
channels, and the subtraction of channel 2 and 3, divided by the sum of channel 2 and 3. In total,
145 tree features were generated and used in the analysis. More detailed definitions and explanations
are given in Table 3.

Table 3. Tree features derived from normalized point data and spectral information. (superscript i = 1,
2, and 3 for channel 1, 2, and 3)

Feature Definition

Point cloud features

Hmax Maximum of the normalized heights of all points
Hmean Arithmetic mean of normalized height of all points above 2 m threshold
Hstd Standard deviation of normalized height of all points above 2 m threshold
Hrange Range of normalized height of all points above 2 m threshold
P Penetration as a ratio between number of returns below 2 m and total returns
CA Crown area as the area of convex hull in 2D
CV Crown volume as the convex hull in 3D
CD Crown diameter calculated from crown area considering crown as a circle.
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Table 3. Cont.

Feature Definition

HP10 to HP90
10% to 90% percentiles of normalized height of all points above 2 m threshold
with a 10% increment

D1 to D10

Di = Ni/Ntotal, where i = 1 to 10, Ni is the number of points within ith layer
when tree height was divided into 10 intervals starting from 2 m, Ntotal is the
number of all points.

Single-channel Intensity features

Ii
min Minimum of intensity

Ii
max Maximum of intensity

Ii
m Mean of intensity

Ii
std Standard deviation of intensity

Ii
sk Skewness of intensity

Ii
range Range of intensity

Ii
kut Kurtosis of intensity

Ii
5,10 to 90 Percentiles of intensity at 5% and from 10% to 90% with 10% increment.

Multi-channel intensity features

Ri
F = Ii

F/(I1
F + I2

F + I3
F) Ratios of intensity features, F refers to different single-channel intensity features.

NF = (I2
F − I3

F)/(I2
F + I3

F) Index of intensity features

3.4. Feature Selection and Tree Species Classification

Introduced by Breiman [35], random forests (RF) is a technique which consists of an ensemble of
decision trees, using a majority vote for the final prediction. RF has shown successful performances
in many applications, such as in the classification of urban scenes [36] and forest attribute
prediction [34,37]. In this study, tree species were estimated based on prediction models by RF using
tree features as predictors and tree species as a response for correctly detected trees. Although RF is
able to deal with high dimensional data [38], the results of classification can be significantly improved
if only the most important features are used [39]. Considering the number of observations and the
correlation between the features in this study, it was necessary to reduce the feature dimension to avoid
overfitting. The RF built-in measure of feature importance was used to search for a subset of predictors
that optimally model responses, subject to constraints which minimize the correlation among the
features. In this study, 15 of the most important features were selected for each experimental setting
by measuring how influential the predictor was at predicting the response. The parameter settings
for RF in each classification were as follows: 200 decision trees were built, with four predictors being
randomly selected for the best splitting at the nodes, when decision trees were built.

3.5. Evaluation of Accuracy

The accuracy of tree species classification was evaluated by comparing the classified tree species
with the reference tree species recorded in the field for correctly detected trees. The result of the
comparison can be represented by an error matrix. Four widely-used measures, i.e., producer’s
accuracy, user’s accuracy, overall accuracy (OA), and Kappa coefficient, were computed for evaluating
the performance of the classification. To avoid overfitting of the classification model, independent
validation was conducted by equally dividing available data into two sets: one for training the
classification model, and the other for testing the performance.

We evaluated different combinations of extracted features for their predictive power as follows:
(i) point cloud features as predictors, (ii) SCI features as predictors, (iii) MCI features as predictors,
(iv) point cloud and SCI features as predictors, and (v) all features as predictors. The McNemar test was
used to determine whether there are statistically significant differences between pairs of classifications,
with the different predictor settings mentioned above (e.g., point cloud features vs. SCI features, SCI
vs. MCI features vs. all features, and so on).
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We also classified four categories of trees, to analyze how crown positioning affected classification
accuracy. Thus, the field-measured trees were divided into four categories, based on the distance and
height difference of neighbor trees as follows:

• Isolated or dominant trees that are well separated from other trees (distance to neighbor trees is
greater than 3 m or tree height is greater than neighbor tree by 2 m) (referred to as C1).

• Group of trees: trees are growing closely to each other (distance less than 3 m) and have a similar
height (height difference is less than 2 m) (referred to as C2).

• Tree next to a larger tree: the distance of a tree to a neighbor tree is greater than 1.5 m and the
height is smaller than the height of neighbor tree by at least 2 m (referred to as C3).

• Tree under a larger tree: the distance of a tree to a neighbor tree is less than 1.5 m and the height
is smaller than the height of neighbor tree by at least 2 m (referred to as C4).

The number of trees in each category was 580 in C1, 552 in C2, 590 in C3, and 181 in C4.

4. Results

4.1. Accuracy of Individual Tree Detection

The accuracy of individual tree detection was evaluated by comparing tree segments with
field reference data. Overall, out of 1903 trees, 61.3% of trees were correctly detected. Most of
the undetectable specimens were understory trees and trees that were near to a larger tree. At plot
level, the detection rate varied between 50% and 98%. In the dense plots, the tree detection rate was
lower than that in the sparse plots. The detection rate was also affected when the plot was located
near the boundary of the data coverage, where the point distribution was not optimum, i.e., the
points in one direction were denser than in a perpendicular direction. When considering the different
categories of trees, the detection rate was 91.9% for C1, and 81.5%, 26.4%, and 7.2%, for C2, C3, and C4,
respectively. A higher detection rate was expected for trees in C1, because the crown boundary was
well defined. For trees in C2, there was a tendency to merge trees into one segment if they were close
to each other, whereas in C3, trees were more likely to merge with neighbor trees, leading to a low
detection rate. In C4, trees were often not detectable because individual tree detection was based on a
CHM where taller trees overtopped the tree underneath. An example of individual tree detection is
shown in Figure 2.
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4.2. Classification with Different Combinations of Features

The confusion matrix of classification and the result of accuracy evaluation are presented in
Tables 4–8 for the species classification based on the different combination of features, i.e., point cloud
features alone (Table 4), SCI features (Table 5), MCI features (Table 6), point cloud and SCI features
(Table 7), and all features combined (Table 8). The highest level of accuracy (85.9%) was obtained
with a combination of point cloud and SCI features. Point cloud features alone produced the lowest
overall accuracy of 76.0%, while single-channel intensity features produced an overall accuracy of
85.4%. A McNemar test indicated no significant difference between classifications based on SCI and all
features, at a 5% significant level (p = 0.69). Additionally, there was no difference between classifications
based on SCI features, and the combination of point cloud and SCI features (p = 0.58). This suggested
that point cloud features did not provide more information for classification. McNemar tests showed
that the difference between classifications based on other pairs of features, were all significant at a
5% significant level (Table 9). Classification accuracy also varied between species. The best accuracies
were obtained for pine trees with a 97.5% producer’s accuracy using point cloud and SCI features, and
for spruce trees with a 78.2% producer’s accuracy using SCI features, followed by birch trees with a
71.8% producer’s accuracy using all features. SCI features produced slightly better results than MCI
features (p = 0.03). The results suggested that MCI features do not provide more information than
SCI features.

Table 4. Confusion matrix and accuracy evaluation of classification with 15 selected point cloud features
and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 294 10 22 90.18
Spruce 24 84 11 70.59
Birch 54 17 60 45.80

User (%) 79.03 75.68 64.52 OA = 76.04%, Kappa = 0.57

Table 5. Confusion matrix and accuracy evaluation of classification with 15 selected single-channel
intensity features and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 306 8 12 93.87
Spruce 15 93 11 78.15
Birch 24 14 93 70.99

User (%) 88.70 80.87 80.17 OA = 85.42%, Kappa = 0.75

Table 6. Confusion matrix and accuracy evaluation of classification with 15 selected multi-channel
intensity features and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 299 9 17 92.00
Spruce 19 85 16 70.83
Birch 23 22 86 65.65

User (%) 87.68 73.28 72.27 OA = 81.60%, Kappa = 0.68
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Table 7. Confusion matrix and accuracy evaluation of classification with 15 selected point cloud and
single-channel intensity feature combination and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 317 3 5 97.54
Spruce 18 85 17 70.83
Birch 29 9 93 70.99

User (%) 87.09 87.63 80.87 OA = 85.94%, Kappa = 0.75

Table 8. Confusion matrix and accuracy evaluation of classification with 15 selected features among all
features and test data.

Predicted
Producer (%)

Pine Spruce Birch

Reference Pine 306 8 11 94.15
Spruce 13 93 14 77.50
Birch 28 9 94 71.76

User (%) 88.18 84.55 78.99 OA = 85.59%, Kappa = 0.75

Table 9. McNemar tests on pairs of the classifications using different combination of features.
The number in the table is p value. The number with a superscript * indicated that the difference
between classifications is significant at a 5% significant level.

Feature Point Cloud SCI MCI Point Cloud + SCI

SCI 1.4 × 10−7 *
MCI 2.4 × 10−4 * 0.03 *
Point cloud + SCI 1.3 × 10−11 * 0.58 0.01 *
All 7.2 × 10−8 * 0.69 0.02 * 0.66

4.3. Classifications for Four Defined Categories of Trees

We also examined classification accuracy for four categories of trees based on the 15 best features
among point cloud and SCI features, because the use of all features does not improve the accuracy.
A 10-fold cross-validation strategy was applied in this case because the number of trees in C3 and C4
was low. The obtained accuracies varied widely. For isolated and dominant trees, an overall accuracy
of 90.47% was achieved (Table 10). The corresponding accuracy was 89.80% for trees in C2 (Table 11),
79.09% for trees in C3 (Table 12), and 53.85% for trees in C4 (Table 13). As can be seen, very high
accuracy was achieved for isolated and dominant trees, and for groups of trees. The accuracy was about
36 percentage points lower for suppressed trees. For dominant trees, both pine and spruce achieved a
high accuracy of over 90%, because of their well identified conical shape. For birch, moderate accuracy
was obtained. Overall, pines are classified with higher accuracy and less misclassifications, while
birches tend to be misclassified as pine for all four categories of trees, resulting in a low user’s accuracy
for pine. Spruces are more likely to be mixed with both pine and birch.
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Table 10. Confusion matrix of classification with point cloud and single-channel intensity features for
isolated and dominant trees (C1).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 299 0 6 98.03
Spruce 10 128 4 90.14
Birch 20 11 57 64.77

User (%) 90.88 92.09 85.07 OA = 90.47%, Kappa = 0.83

Table 11. Confusion matrix of classification with point cloud and intensity features for group of trees (C2).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 268 6 2 98.41
Spruce 4 34 10 67.57
Birch 19 5 103 77.59

User (%) 92.10 75.56 89.57 OA = 89.80%, Kappa = 0.80

Table 12. Confusion matrix of classification with point cloud and intensity features for trees next to a
larger tree (C3).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 63 1 2 95.45
Spruce 6 30 8 68.18
Birch 10 5 28 65.12

User (%) 79.75 83.33 73.68 OA = 79.09%, Kappa = 0.67

Table 13. Confusion matrix of classification with point cloud and intensity features for trees under a
larger tree (C4).

Predicted
Producer (%)

Pine Spruce Birch

Reference
Pine 4 0 0 100
Spruce 1 2 2 40.0
Birch 2 1 1 25.0

User (%) 57.14 66.67 33.33 OA = 53.85%, Kappa = 0.32

4.4. Feature Importance

We also investigated which input features and channels are most relevant for tree species
classification based on the measure provided by the RF algorithm for assessing feature importance.
If a feature is influential in the prediction, then permuting its values should affect the model error. If a
feature is not influential, then permuting its values should have little or no effect on the model error.
Table 14 lists the top five features in the classifications based on different combinations of the features.
In the classification based on point cloud features, the most important features were penetration and
higher level percentiles. Two density-related features at higher and middle layers were also scored as
important as higher percentiles. For the case of classification based on the SCI features, the wavelength
of 1064nm (Channel 2) seems to contain more information for separating pine, spruce, and birch,
followed by wavelengths of 1550nm (channel 1), and 532nm (channel 3). The classification based
on the features of the three separate channels also confirmed analysis with an overall accuracy of
81.9%, 78.3%, and 69.1%, for channel 2, 1, and 3, respectively. The difference between the pairs of
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classification is significant at a 5% significant level based on McNemar tests. Minimum values and
the 90% percentile of intensity are two of the most powerful predictors for all channels in such cases.
In MCI-based classification, ratios at higher percentiles for the three channels were among the most
important features. Overall, when all features were considered, the minimum intensity of channel 2
and 3, the ratio at 90% percentile for channel 2 and 3, and one point cloud features (P), are among the
top five most importance features.

Table 14. The features have the most predictive power in different classification scenarios. A detailed
explanation of the features can be found in Table 3. The number in parentheses is the score for the
feature. The higher the score, the more important the feature.

Cases Top 5 features

Point cloud features P (3.8), D9 (1.6), Hmax (1.5), D5 (1.4), HP90 (1.3)
SCI features I2

min (1.9), I2
p90 (1.6), I1

sk (1.4), I1
p90 (1.5), I3

p90 (1.5)
MCI features R3

p90 (1.7), R2
p90 (1.4), R2

range (1.4), R1
p80 (1.3), Np90 (1.3)

Point cloud and SCI features I2
min (2.0), Hmax (1.5), I2

p90 (1.5), I3
p90 (1.8), P (1.6)

All features I2
min (1.8), R3

p90 (1.7), P (1.5), I3
min (1.4), R2

p90 (1.2)

5. Discussion

In this study, we explored the potential of multispectral ALS data in tree species classification of
a boreal forest. Results showed that multispectral ALS data can be used to separate three main tree
species, i.e., pine, spruce, and birch, with a high overall accuracy of 85.9% in the best case scenario,
which was based on the combined use of point cloud and SCI features. Overall, the results indicated
that the intensity of the three channels contains more information for tree species classification than
point cloud data. When using the intensity of the three channels, both the producer’s and user’s
accuracies for single tree species were improved, as well as the overall accuracy compared with the
results obtained from point cloud data. However, different types of features are more influential on
certain tree species. For example, intensity features are more powerful in separating birch from pine
and spruce (produce’s accuracy improved from 45.8% to 71%, and user’s accuracy from 64.5% to 80.2%,
when compared with those using point cloud features). With the inclusion of point cloud features,
the classification accuracy of intensity features was improved by only 0.5 percentage point, while the
corresponding value was 10 percentage points when adding intensity features to point cloud features.

The individual tree-detection rate was not very high in this study. Two factors influenced this.
Firstly, individual tree detection was based on CHM, so most of the understory trees were not detectable
and 3D information of the dense point cloud was not fully utilized. Secondly, distribution of the
point cloud was not optimal, as it was denser in scanning direction than flight direction. The uneven
distribution of points affected the results of individual tree detection, as the detection rate tended to
decrease when the plot was located near the boundary of data coverage where uneven distribution
was more severe. In order to improve individual tree detection, we recommend developing methods
which can fully utilize the 3D information provided by point cloud. Multispectral information could
also be useful for improving the accuracy of individual tree detection. When point cloud and spectral
information are used in tree detection, a simultaneous classification is possible, such that the knowledge
relevant to each can aid in the analysis of the other. Ultimately, this could lead to the improvement of
accuracy of individual tree detection and classification, as well as computational advantages.

A large variance in feature values can be found, due to the irregular geometry of the canopy
surface and varying degrees of penetration. There were more points penetrated, thus reaching the
ground, in channels 1 and 3, than in channel 2. One potential factor that contributed to this was the
forward viewing geometry for channels 1 and 3. There were also more returns in channels 2 and 3,
than in channel 1. For the same point cloud features, the values in channel 3 were higher than those
in channels 1 and 2, while channels 1 and 2 produced similar values. This trend was observed for all
three species and could be one reason why the point cloud features did not significantly improve the
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classification, when used with SCI features. SCI features also overlapped between species. However,
the degree of overlap varied among the features and channels. In general, higher percentiles of the
intensity distribution and minimum intensity value were more separated than the lower percentiles.
For example, the maximum intensity was smaller for pine than spruce in both channel 1 and channel 2,
while similar values were observed for pine and spruce in channel 3. There were more overlapping
values and variations at lower percentiles of intensity distribution, among tree species in all channels.

MCI features have been used to reduce the radiometric effects on multispectral images and
improvements in classification have been reported. In this study, the use of similar ratios and indices
did not improve the classification. The reason for this could be that the laser scanner is an active
instrument, and recorded intensity mainly depends on the instrument design, measurement range,
and reflectance of the targets. If the same instrument has been used for data acquisition and the range
effect has been corrected, the major factor affecting recorded intensity is the targets illuminated by the
laser. Therefore, the intensity itself is good enough to characterize the objects.

The results in this study are in agreement with previous results, in which tree species were
classified using ALS combined with multi/hyper-spectral data, although the studies cannot be
compared directly because of the differences in the data used, and the number and type of species
identified. For example, Dalponte et al [40] reported a kappa accuracy of 0.89 when classifying three
boreal tree species (pine, spruce and broad-leaves), using hyperspectral and ALS data with the manual
detection of trees. The higher kappa coefficient obtained in their study could be a result of better
delineation of individual trees by manual detection, and a higher spectral resolution. Jones et al [41]
achieved an overall accuracy of 73% for classifying 11 species in coastal south-western Canada, using
hyperspectral and ALS data. The lower accuracy could be explained by the higher number of species
recognised in the study. This indicates that multispectral ALS data contains similar information to
the fusion of multispectral images and ALS data. Compared with the previous study, which used a
multispectral ALS of similar density for tree species classification, St-onge and Budei [29] reported a
classification error of 4.59% in the case of the level 1 classification (broadleave vs. needleleaf trees),
and of 24.29% in the case of level 2 classification (eight genera), using intensity features (mean and
standard deviation of intensity in three channels). The different number of species could be the reason
for the difference in accuracy.

The use of a single source of data apparently has advantages over the use of fused data, with
respect to data processing. For example, geometric and radiometric calibrations between different data
sources produce big challenges, and require much effort to compensate the changes in illumination
conditions and vegetation [26]. Furthermore, previous studies have shown that background signal
reduced classification accuracies when using multispectral/hyperspectral images [42–44]. In contrast,
multispectral ALS data can easily separate the reflections of vegetation from the reflections of the
ground, thus background influences on the results, like soil, could be minimised. Therefore, the
accuracy of the classification could be improved with the use of multispectral ALS data. However,
this issue needs to be explored further in order to investigate the extent to which the accuracy can be
improved with multispectral ALS data.

The intensity values of different returns are affected by the vertical structures of trees. In theory,
the intensity of only returns can be radiometrically calibrated with high reliability. The first of many
returns is distorted by the signal penetrating to the second and other layers. However, there is still
valuable information of all return intensities confirmed by this study. In the future, it should be studied
whether it is possible to calibrate the intensities of multiple returns in a better way, by taking into
account the attenuated part of the signal and the part that causes other returns.

The major drawback with applied Titan data was the inhomogeneous distribution of the point
cloud. In the across track, the point spacing was significantly smaller than that in the along track.
Either lower aircraft speed or higher scan frequency should be achieved to provide more homogenous
point spacing. Another drawback is that the points from the three channels are not registered from
the same location, which means that it is not multispectral data in the conventional sense. As a result,
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pixel/point wise classification cannot be performed; instead, object-based analysis has to be carried
out, like in this study. The accuracy of the classification may also deteriorate, because the backscatter
from different channels could come from different parts of the objects. The impact of such system
design on classifications needs further investigation. Regardless of these drawbacks, multispectral
ALS data are still a valuable data source for tree species classification, as shown in this study.

Currently, it is more expensive to acquire multispectral ALS data than aerial images and
single-channel ALS. However, it is anticipated that the price will drop as technology develops, and
the market is growing. Furthermore, ALS data can be acquired during both the day and night, which
partly compensates for the cost of the data acquisition. Therefore, multispectral ALS data could be a
cost-effective solution for species-specific mapping of forests in the future, and it has the potential to
increase the automation of the whole processing chain.

6. Conclusions

In this study, we assessed the potential utility of single-sensor multispectral ALS data for tree
species classification in mixed coniferous forests in a boreal zone. The results suggest that additional
information, provided by multispectral laser scanning, may be a valuable source of information for
tree species classification of pine, spruce, and birch, which are the main tree species found in boreal
forest zones. The best overall classification accuracy achieved was 85.9% using point cloud and SCI
features, which was not significantly different from the ones in which all features, or solely SCI features
were used. Point cloud features alone achieved an accuracy of 76.0%. Channel 2 performed the best
when separating pine, spruce, and birch, followed by channel 1 and channel 3, with overall accuracies
of 81.9%, 78.3%, and 69.1%, respectively.

This preliminary study has demonstrated the potential of multispectral airborne laser scanning for
possible future solutions for automatic single-sensor forest mapping. It is expected that multispectral
airborne laser scanning can provide highly valuable data for forest mapping. However, there are many
aspects of multispectral ALS that need to be investigated further, for example: how will multispectral
ALS data perform in other forest zones where the number of species composition is higher? Is it
possible to derive more useful features to improve the classification? From a practical point of view,
future studies could explore the possibility to improve the accuracy of forest inventory mapping using
species information obtained from this study.
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