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Abstract: Plastic mulching is an important technology in agricultural production both in China and
the rest of the world. In spite of its benefit of increasing crop yields, the booming expansion of
the plastic mulching area has been changing the landscape patterns and affecting the environment.
Accurate and effective mapping of Plastic-Mulched Farmland (PMF) can provide useful information
for leveraging its advantages and disadvantages. However, mapping the PMF with remote sensing is
still challenging owing to its varying spectral characteristics with the crop growth and geographic
spatial division. In this paper, we investigated the potential of Radarsat-2 data for mapping
PMF. We obtained the backscattering intensity of different polarizations and multiple polarimetric
decomposition descriptors. These remotely-sensed information was used as input features for
Random Forest (RF) and Support Vector Machine (SVM) classifiers. The results indicated that
the features from Radarsat-2 data have great potential for mapping PMF. The overall accuracies
of PMF mapping with Radarsat-2 data were close to 75%. Although the classification accuracy
with the back-scattering intensity information alone was relatively lower owing to the inherent
speckle noise in SAR data, it has been improved significantly by introducing the polarimetric
decomposition descriptors. The accuracy was nearly 75%. In addition, the features derived from
the Entropy/Anisotropy/Alpha (H/A/Alpha) polarimetric decomposition, such as Alpha, entropy,
and so on, made a greater contribution to PMF mapping than the Freeman decomposition, Krogager
decomposition and the Yamaguchi4 decomposition. The performances of different classifiers were
also compared. In this study, the RF classifier performed better than the SVM classifier. However, it is
expected that the classification accuracy of PMF with SAR remote sensing data can be improved by
combining SAR remote sensing data with optical remote sensing data.

Keywords: plastic-mulched farmland; mapping; Radarsat-2 data; backscattering intensity;
polarimetric decomposition; machine learning algorithm

1. Introduction

The practice of plastic mulching has changed agricultural production radically all over the
world [1]. Plastic mulching is a practice of tightly covering plastic film over the soil surface to promote
crop growth and increase crop yield. Plastic mulching can protect crops from unfavorable growing
conditions (droughts, coldness, heat, weeds and/or pests) and increase the crop yields. On the
other hand, large-scale projects using this technique are expected to put further pressure on the
environment, such as “white pollution”, soil degradation [2,3] and the alternation of the material

Remote Sens. 2017, 9, 1264; doi:10.3390/rs9121264 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://dx.doi.org/10.3390/rs9121264
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 1264 2 of 22

and energy exchange [4]. The environmental problems caused by Plastic-Mulched Farmland (PMF)
expansion have been exacerbated in recent years [2,5], creating a pressing demand to optimize the
use of plastic mulching. Thus, accurate mapping of PMF (obtaining the information about spatial
pattern and amount of PMF according its specific signature via remote sensing technology) at a local
or regional scale is needed for decision-makers and researchers. It is well-known that remote sensing
is a technique to obtain the up-to-date information effectively over a large region and across long
time span [6]. During the recent decades, mapping land cover types with remote sensing data has
drawn increasing attention and obtained many valuable results. The extraction of the specific land
cover type, such as a water body [7,8], impervious surface [9], snow and ice [10,11], vegetation cover
classification [12], has raised interests greatly.

In recent years, increasing attention has been paid to map the plasticulture landscape with
remote sensing. But most of the researches were on mapping plastic greenhouses rather than PMF.
The topic is relevant to passive remote sensing data with which plasticulture has been mapped by
two main approaches: pixel-based and object-based classifiers. For example, Agüera et al. proposed
a pixel-based approach for mapping plastic greenhouses using texture features from QuickBird
images [13,14]. Carvajal et al. mapped plastic greenhouse using QuickBird and IKONOS images [15].
Arcidiacono et al. presented an improved pixel-based approach for mapping crop-shelter coverage
by using high-resolution satellite images [16,17]. Koc-San evaluated the performance of different
pixel-based classifiers for differentiating glass and plastic greenhouses using WorldView-2 images [18].
Recently, studies have developed an object-based approach for mapping plastic greenhouses using high
spatial resolution images [19–21]. All these studies mostly used high spatial resolution remote sensing
images. Although the high spatial resolution images provided data for mapping plastic greenhouses
efficiently in a fixed region, their application will be limited by a large spatial extent, large data storage
and costly data procurement. More recently, studies developed an object-based approach for mapping
plastic greenhouses using medium spatial resolution images [22–24]. In addition, Levin et al. studied
the spectral properties of various plastic polyethylene sheets using a field spectrometer and detected
three major absorption features around 1218 nm, 1732 nm and 2313 nm [25].

However, the spatial pattern of PMF is wider than that of plastic greenhouses in China, and the
spectral response of PMF is changing more quickly than that of plastic greenhouses. Mapping PMF
with remote sensing began in the last few years. Lu et al. presented a decision-tree classifier for
mapping PMF in Xinjiang, China, with Landsat-5 images and obtained ideal results [5]. However,
plastic mulching in China was applied during the sowing stage, and the spectral reflectance of the
PMF is influenced by the developing crops. Therefore, the detectable period of PMF is very short
(one week to two weeks). Additionally, the long revisiting of the Landsat satellite limits its usage for
PMF mapping, as it is difficult to capture the changing characteristic of PMF with crop phenology.
For this, they, afterwards, performed an index-based threshold method for PMF mapping using a time
series MODIS-NDVI (Moderate-resolution Imaging Spectrometer-Normalized Difference Vegetation
Index) [26] and also obtained an acceptable result. These two methods are limited by several factors:
(1) the regional differences of PMF will limit the performance when applied to other regions; (2) when
using low resolution imagery, some smaller PMF are lost, and mixed pixel phenomenon may become
more serious, because of the small patch and fragmented agricultural land use patterns in China.
Therefore, a comprehensive consideration of these issues is required for improving the robustness of
the PMF mapping approach. For this, Hasituya et al. mapped the PMF by using multiple features,
including spectral features, textural features, index features, thermal features and temporal features
generated from the Landsat-8 imagery [27,28]. The results pointed out that the multi-temporal features
perform better than the single temporal features; and the spectral features and index features are
better than the textural features and thermal features. However, the textural features generated
from the high resolution data of GF-1 (GaoFen-1, the first satellite in the Chinese High-resolution
Earth Observation System (CHEOS)) perform better than its spectral features for PMF mapping [29].
In addition, Lanorte et al. estimated and mapped agricultural plastic waste by using satellite images
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and obtained ideal results [30]. By reviewing the published literature, we found that these studies
regarding mapping of PMF with remote sensing are limited, and all used optical remote sensing data.
Additionally, the usage of microwave remote sensing data, especially Synthetic Aperture Radar (SAR)
data, is rather absent.

The approaches used in specific object mapping/detecting are generally divided into: (1) supervised
and unsupervised classifiers; (2) sub-pixel based, per-pixel based and object-based classifiers according
to the basic operating unit; (3) single-classifier and ensemble classifier algorithms based on the number
of classifiers; and (4) index-based automatic extraction methods. The methods for mapping plastic
greenhouses include conventional supervised classification, object-based methods, machine learning
classifiers, index-based threshold methods, and so on. However, the methods for mapping PMF mainly
include the Index-based Threshold methods, Decision Tree classifiers, Support Vector Machine (SVM)
classifiers, Random Forest (RF) classifiers, and so on. The relevant studies reported that the machine
learning algorithm is superior to the other supervised classifiers.

Compared with optical and thermal infrared remote sensing, SAR remote sensing has several
advantages regarding the capability of all-weather and all-time observations, the ability to penetrate
cloud cover and record the information about the structure, surface roughness, shape and dielectrics of
the object [31]. SAR data contain scattering information that can reveal the scattering mechanism of the
objects. Therefore, SAR remote sensing plays a very important role in target recognition, classification
and parameter inversion. With the rapid development over half a century, the SAR system has now
formed a multi-band, multi-mode, multi-polarization and multi-resolution imaging technology system.
The application domains of SAR remote sensing are also expanding from terrain mapping, land cover
classification [32,33], crop type identifying [34–36], crop phenology monitoring [37], inversion of
soil moisture [38] and estimation of biomass and crop yield to snow cover monitoring, flooding
mapping [39], coastline monitoring [40,41] and sea surface environmental monitoring [42,43].

Polarimetric decomposition of SAR data is a technique for separating the complex scattering
mechanism of an object. Polarimetric decomposition can simplify the complex scattering mechanism
as several kinds of simple scattering mechanisms, which are related to the physical structure of
targets, and can thus be used to classify land cover types [33]. Thereby, we can analyze the
scattering characteristics of the object and identify this object based on a simple scattering mechanism.
Polarimetric decomposition can be classified into coherent decomposition based on a scattering
matrix and non-coherent decomposition based on a covariance matrix or coherent matrix. Coherent
decomposition includes Krogager decomposition, Huynen decomposition, Cameron decomposition,
and so on. The non-coherent decomposition includes Freeman decomposition (three-component
or two-component), Yamaguchi4 decomposition and Entropy/Anisotropy/Alpha (H/A/Alpha)
decomposition [44]. By these polarimetric decomposition methods, we can quantitatively express single
scattering, double bounce scattering and random scattering intensity in the SAR scattering mechanism.

Plastic mulching changes the surface roughness and soil moisture. Therefore, the backscattering
and polarimetric decomposition characteristics of the PMF are different from those of other objects
theoretically. To provide more possibilities for PMF mapping with remote sensing, the current study
provided new insights into the use of high resolution C-band SAR data for PMF mapping and evaluated
the use of polarimetric decomposition of SAR data, which can be acquired independent of local weather
and provide an information source complementary to optical remote sensing systems. The proposed
methodology was based on the integration of backscattering intensity, polarimetric decomposition and
machine learning algorithms. The main objectives of this study are (1) to examine the backscattering
characteristic of PMF; (2) to mine the effective features of SAR data for PMF mapping, including the
polarimetric decomposition features; and (3) to compare the performance of two different machine
learning algorithms, namely RF and SVM.
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2. Study Areas and Data

2.1. Study Areas

In this study, two typical PMF areas (Figure 1) with different plastic-mulching modes were
selected as the experimental region.

The first study area is Jizhou, Hebei Province, China. This is one of the main grain producing
areas in the North China Plain [45]. This region is in a temperate monsoon climate zone with a hot
and rainy summer that favors crop development. The main crops in this area include winter wheat,
cotton, corn and vegetables. The cotton fields are the dominant plastic-mulched crops in this area.
White plastic mulching has been utilized in Jizhou generally. Other land cover/use types consist of
woodland, grassland, water body and impervious surface.

The second study area is Guyuan, Ningxia Hui Autonomous Region, China. This region is located
in a temperate semi-arid climate zone. Irrigation is needed to facilitate crop growth and development
in this region. Plastic mulching has been widely used here for water-saving and yield-increasing.
The plastic-mulched crops include corn, winter wheat and vegetables. It was observed that early
spring and autumn are the main periods for mulching. White plastic mulching has been utilized in
Guyuan, as well.
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2.2. Data

Data used in this study include two scenes of Radarsat-2 images, four scenes of GF-1 images and
the field survey data.

2.2.1. Remote Sensing Data and Preprocessing

Radarsat-2, the C-band SAR satellite, encompass powerful and significant advancements in
satellite techniques, one of which is the multi-polarimetric mode [31,46,47]. It can transmit both the
vertical (V) and horizontal (H) polarimetry. The detailed parameters of Radarsat-2 data are presented
in Table 1.

Table 1. Parameters of Radarsat-2 satellite data in Jizhou and Guyuan

Parameters of Radarsat-2 Jizhou Guyuan

Nominal swatch width 25 km 25 km
Wavelength/frequency C-band (5.405 GHz, 5.54 cm) C-band (5.405 GHz, 5.54 cm)

Polarization Full quad-polarization
HH + VV + HV + VH

Full quad-polarization
HH + VV + HV + VH

Resolution of range 4.73 m 9.14 m
Resolution of azimuth 4.74 m 5.18 m

Incidence angle 25.91◦ 30.42◦

Repeated cycle 24 days 24 days
Acquired date 25 April 2015 27 April 2015
Image center 37◦37′N/115◦27′E 36◦03′N/106◦07′E

Upper left corner 37◦43′N/115◦18′E 36◦09′N/105◦58′E
Upper right corner 37◦29′N/115◦21′E 35◦54′N/106◦01′E
Lower left corner 37◦46′N/115◦34′E 36◦11′N/106◦13′E

Lower right corner 37◦32′N/115◦37′E 35◦57′N/106◦17′E

The Radarsat-2 data of the two study areas were preprocessed firstly, including multi-looking,
radiation calibration, filtering, geometric correction, and so on, using the SAR Toolbox software
(NEST) from the European Space Agency (ESA). The original data were converted into backscattering
coefficient data by radiometric calibration. We used the Lee-refined filtering method to remove the
spot noise in the 7 × 7 filtering window. Finally, the geometric correction was carried out, and the
images were resampled to 8-m resolution and output in dB format.

GF-1 images were collected for the reference sample collection. GF-1 satellite has one panchromatic
band with 2-m resolution and four multispectral bands (blue, green, red and near infrared band)
with 8-m resolution. The GF-1 data used in this study contain two scenes of images taken on
5 May 2015 for Jizhou and two scenes of images taken on 8 April 2015 for Guyuan. The radiometric
calibration and atmospheric correction were carried out for GF-1 multispectral data in ENVI software.
The multispectral images and panchromatic were then fused to 2-m spatial resolution imagery using
a Gram–Schmidt pan sharpening algorithm for collecting the pure pixel samples.

2.2.2. Field Survey Data

Field surveys were carried out during 25–30 April 2015 and 23–26 June 2015 in Jizhou and Guyuan,
respectively, to gather the field reference samples of land cover types. Random sampling was used
to avoid missing the samples of rare distributed land cover types and to ensure the uniformity and
representativeness of the collected samples across the study area and land cover types. In the field,
we used GPS for positioning the samples and labeling the name of land cover types. Because some
land cover types was rare distributed, we have not strictly defined the distance between samples.
However, we try to avoid collecting samples that are too close. The land cover types and the collected
samples in this study are summarized in Table 2. After collecting field point samples, we digitized
the polygon samples based on the location of field point samples in the high spatial resolution GF-1
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satellite images. The samples were enlarged to polygon samples with a size of 60 m × 60 m. As shown
in Table 2, a total of 708 samples were collected for Jizhou, and 653 samples were collected for Guyuan.
The samples of each study area were equally divided into two groups: training samples and test
samples. The first group was used both to analyze the separability of land cover types and to train
the machine learning classifiers, while the second group was used to assess the classification accuracy.
The spatial distribution of the samples in the two study areas is displayed in Figure 2.

Table 2. The land cover classification scheme and the number of collected samples in Jizhou
and Guyuan.

Land Cover Types Remarks
Number of Samples

Jizhou Guyuan

Plastic-Mulched Farmland (PMF) White Plastic Film 189 161
Impervious Surface (IS) Buildings, Factories, Road, and Dam Boundaries 165 139
Vegetation Cover (VC) Crop, Vegetable Field, Grassland, Woodland 197 101

Water Body (WB) Rivers, Lakes and Irrigation Canals 64 30
Bare Soil (BS) Bare Land, Fallow land and Abandoned Land 93 71

Plastic Greenhouse (PG) Walk-in or Medium Plastic Tunnel - 30
Mountain Area (MA) Mountain Area - 121

Sum of Samples - 708 653
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3. Methodology

The workflow of this study is displayed in Figure 3. The preprocessing algorithms of Radarsat-2
data, the polarimetric decomposition algorithms and the machine learning algorithms were used in
this study. To begin with, the Radarsat-2 data were calibrated, filtered (using the 7× 7 refined Lee filter)
and geo-corrected. Then, the backscattering intensity was obtained, and the coherency matrix T3 was
extracted from the S matrix using PolSARpro software [48]. The coherency matrix T3 contained all the
polarimetric information. Then, the Krogager decomposition, Freeman decomposition, Yamaguchi4
decomposition and H/A/Alpha decomposition algorithms were applied to extract a total number of
17 different polarimetric decomposition descriptors. Next, the backscattering intensity and polarimetric
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decomposition features were combined to form a multichannel image including a total number of
24 features for mapping PMF. After this, two machine learning algorithms, the Random Forest (RF)
algorithm and the Support Vector Machine (SVM) algorithm, were used to map the PMF in the two
selected study areas. Additionally, RF was also used to assess feature importance.
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3.1. Separability Analysis

The mean values of the backscattering coefficient of different polarization were extracted from
preprocessed images (Figure 4 for Jizhou and Figure 5 for Guyuan). In Figure 4, it can be seen
that the backscattering intensities of PMF and bare soil in Jizhou were very similar. In particular,
the mean values of the cross-polarization (HV, VH) were substantially overlapped with each other.
This situation on the cross-polarization (VH, HV) was slightly better than co-polarization (HH, VV),
but the separation was still poor. However, the separability between PMF and the impervious
surface was better. In Figure 5, it can be seen that the backscattering intensity of PMF in Guyuan
on cross-polarization (VH, HV) was poorly separated from other land cover types. Additionally,
the separation on the co-polarization (HH, VV) was better than cross-polarization, while the separation
on HH was better than VV polarization.
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3.2. Polarimetric Decomposition

The full polarization SAR data can represent the information about land surface geometrical
structure, direction, shape, humidity and surface roughness. The inclusion of SAR polarization
information allows us to discriminate the different scattering mechanisms of different land cover
types, so as to improve the accuracy and quality of classification significantly [33]. Polarimetric
decomposition is a technique that separates a signal received by the radar into a combination of the
several electromagnetic scattering responses, which can be used to extract the information of different
land cover types in images. Several types of polarimetric decomposition algorithms were used
successfully in the land cover classification. The H/A/Alpha decomposition, Freeman decomposition,
Yamaguchi4 decomposition and Krogager decomposition algorithms were tested in this study. All the
polarimetric decomposition algorithms were performed in the PolSARPro-4.2 software [48], and the
corresponding polarimetric descriptors were extracted for mapping support (Table 3).

The H/A/Alpha decomposition algorithm was developed by Cloude and Pottier in 1997 for
extracting polarimetric decomposition descriptors from SAR data based on the coherency matrix T3
extracted from the S matrix [33]. The H/A/Alpha decomposition generated three main parameters:
Alpha (α), entropy (H) and Anisotropy (A). Among them, α changes from 0◦ to 90◦, which represents
different physical scattering mechanisms. When α = 0◦, the scattering mechanism is dominated
by surface scattering. When α changes from 0◦ to 45◦, the scattering mechanism is represented by
dipole scattering. When α changes from 45◦ to 90◦, the scattering mechanism is indicated by dihedral
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angle scattering. When α = 90◦, it represents dihedral or helix scattering. Entropy (H) represents the
randomness of scattering. The H value ranges from 0–1. When H = 0, it represents isotropic scattering
at a complete polarization state. When H = 1, it represents anisotropic scattering at a complete
randomness scattering, and no polarization information can be obtained in this case. Therefore,
when H ranges from 0–1, the scattering mechanism is changed from complete polarization to complete
random scattering. The Anisotropy (A) is a supplement to the entropy. When H is very high or low,
A will not provide effective supplemental information. A is the source of further identification [49–51].
Besides, the high entropy multiple scattering parameters (Combination_1mH1mA), high entropy
plane scattering parameters (Combination_1mHA), low entropy multiple scattering parameters
(Combination_H1mA) and low entropy plane scattering parameters (Combination_HA) were extracted
from H/Alpha/A decomposition and used in this study.

The Krogager decomposition is a coherent decomposition method for decomposing the target
signal into three components of helix (Kh), di-plane (Kd) and sphere (Ks) using a scattering matrix [52].
Ks is the contribution of the decomposed surface scattering component. Kh is the contribution of
the decomposed helix scattering component. Kd is the contribution of the decomposed di-plane
scattering component.

The Freeman decomposition is an incoherent decomposition method for decomposing scattering
mechanism of SAR observations into surface scattering, double-bounce scattering and volume
scattering, which can provide features for distinguishing different surface cover types [50].

Yamaguchi4 decomposition is a further extension of Freeman decomposition. The Yamaguchi4
decomposition descriptors introduce helix scattering based on the three scattering mechanisms
of Freeman decomposition, such as surface scattering, double-bounce scattering and volume
scattering [53,54].

Table 3. The polarimetric decomposition descriptors extracted from Radarsat-2 image.

Polarimetric Decomposition Methods Polarimetric Decomposition Descriptors Abbreviation

Yamaguchi4

Yamaguchi4_Dbl Y_Dbl
Yamaguchi4_Hlx Y_Hlx
Yamaguchi4_Odd Y_Odd
Yamaguchi4_Vol Y_Vol

Freeman
Freeman_Dbl F_Dbl
Freeman_Odd F_Odd
Freeman_Vol F_Vol

H/A/Alpha

Alpha Alpha
Anisotropy Anisotropy

Entropy Entropy_
Combination_1mH1mA C_1mH1mA

Combination_1mHA C_1mHA
Combination_H1mA C_H1mA

Combination_HA C_HA

Krogager
Krogager_Ks K_Ks
Krogager_Kh K_Kh
Krogager_Kd K_Kd

3.3. Machine Learning Algorithms and Accuracy Assessment

In this study, we used RF and SVM classifiers to map the PMF in these two study areas.

3.3.1. Random Forest

RF is an ensemble supervised classifier developed by Breiman in 2001 [55]. RF has been widely
used in remote sensing classification because it is efficient to compute, robust to outliers and noise
and useful for assessing variable importance [56]. In this study, the RF algorithm was used to map the
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PMF using features from Radarsat-2 data. Two parameters, the number of trees and the number of
variables, were set beforehand. A total number of 500 trees and the square root of the input features
number were set in this study.

3.3.2. Support Vector Machine

Another machine learning supervised classifier, SVM, was also used in this study based on
the same features and the same samples to map PMF. The SVM uses the principle of structural risk
minimization, not the empirical risk minimization [57]. The performance of SVM has been proven by
many studies [58–63] using optical and SAR remote sensing data for mapping one-class land cover
types or classifying the land cover/use types. We used the Radial Basis Function (RBF) kernel SVM in
this study. The SVM has been parameterized to determine the regularization parameter (c) and the
Gaussian RBF kernel parameter (g) before each classification. The Gaussian RBF kernel parameter (g)
range was set between 0.001 and 1000 with a multiplier of 10. The regularization parameter (c) range
was set between 0.001 and 1000 with a multiplier of 10. The termination criteria were about 0.1 for grid
search and 0.001 for final training with 3-fold cross-validation. Afterward, we ran the SVM algorithm
using the optimized value of the regularization parameter (c) and the Gaussian RBF kernel parameter
(g) for mapping the PMF.

3.3.3. Accuracy Assessment

The confusion matrix was used in accuracy assessment. The confusion matrix is a widely-used
approach to assess the classification accuracy of remote sensing images. In this study, the Overall
Accuracy (OA) and the Kappa coefficient (K) were employed to assess the general classification
efficiency, while the Producer’s Accuracy (PA) and the User’s Accuracy (UA) were employed to assess
the accuracies of individual class.

The Z test was used in statistical significance testing for classification accuracies [64].
The classification accuracies of this study were further confirmed by using the Z test, which tests the
statistical significance of the K statistic and significance differences of different classifications schemes.

It is satisfying to perform this test on a single error matrix and to confirm that the classification
is meaningful and significantly better than a random classification. The test statistic for testing the
significance of a single error matrix is expressed by Formula (1):

Z =
K√

Var(K)
(1)

where K denotes the estimates of the Kappa statistic for error matrix. The Var(K) denotes the
corresponding estimates of the variance of K. At the 99% confidence level, the critical value would
be 2.58. Therefore, if the absolute value of the Z test statistic is greater than 2.58, the result is stable
and significant.

With this test, it is also possible to compare statistically two analysis, the same analysis over
time, two algorithms or even two types of imagery and to check which produces the higher accuracy.
To verify the effectiveness of different feature sets and different classifiers, the Z test was performed on
the pairwise error matrix of different analysis. The test statistic for testing if two independent error
matrices are significantly different is expressed by Formula (2):

Z =
|K1 − K2|√

Var(K1) + Var(K2)
(2)

where K1 and K2 denote the estimates of the Kappa statistic for Error Matrices 1 and 2, respectively.
The Var(K1) and Var(K2) are the corresponding estimates of the variance of K as computed from the
appropriate equations. At the 99% confidence level, the critical value would be 2.58. Therefore, if the
absolute value of the Z test statistic is greater than 2.58, the two analysts are significantly different.
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3.4. Input Feature Selection

In this study, the RF algorithm was used to assess the features’ importance [65]. A detailed process
for measuring the importance of features by RF was presented by Guan et al. [66]. We repeated the
importance assessment ten times and calculated the average importance value to avoid differences
across different runs. The features were ranked in descending order of their average importance,
and the cumulative average importance was calculated. After that, different feature sets were
developed based on the cumulative percentage of feature importance, such as the cumulative
percentages of 80%, 90% and 100%, for mapping PMF.

In order to discuss the influence of the feature selection algorithm, we also used the SVM feature
selection algorithm to compare the difference between RF and SVM. SVM feature selection uses
a backward/forward elimination approach and selects a fixed number of top ranked features, providing
the largest margin between classes for further classification. The detailed description of SVM feature
selection can be found in [57]. In this study, we selected the top 10, 15 and 24 features to map the PMF
in Jizhou and to compare it with RF.

4. Results

4.1. Importance of SAR Features for Mapping PMF

The RF algorithm was used to evaluate the importance of the total 24 features, which include
backscattering intensity of different polarizations and the polarimetric decomposition descriptors.

Analysis of feature importance (Figure 6) suggested that the descriptors derived from the
H/A/Alpha decomposition were the most important features for mapping PMF. Additionally,
the descriptors generated from the Yamaguchi4 and the Freeman decomposition were found to be the
next most important features, while the contribution of Krogager decomposition descriptors was the
smallest. The importance order of Radarsat-2 features for mapping PMF in Jizhou was ranked as Alpha,
entropy, VH, HV, C_1mH1mA, C_H1mA, C_1mHA, C_HA, Y_Odd and anisotropy. Additionally,
that in Guyuan was ranked as Alpha, VH, HH, VV, HV, entropy, C_H1mA, C_1mH1mA, C_1mHA,
C_HA, and so on.
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In Figure 7, we display the images of the more important features for mapping PMF. It can be
seen that the gray value of PMF on the images of Alpha, entropy, C_H1mA and C_HA is darker than
that of other land cover types (except for water body). Additionally, the gray value of PMF is lighter
than the other land cover types on the images of C_1mH1mA and C_1mHA.
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4.2. Classification Accuracy of PMF with Radarsat-2 Data

The classification accuracies are displayed in Table 4. The PMF classification accuracies
indicated that the best result was obtained from all available combined features in Jizhou and
Guyuan. The second best results were generated from the 90% features in Jizhou and Guyuan,
respectively. Additionally, the worst results was generated from the backscattering intensity of
different polarizations alone.

For Jizhou, the accuracies obtained from the backscattering coefficient intensity of different
polarizations (VH, HH, VV and HV) alone were relatively low. The overall accuracy, producer’s
accuracy and user’s accuracy from backscattering coefficient intensity were 59.75%, 68.29% and
52.71%, respectively. However, the accuracies were improved significantly by including the descriptors
derived from the different polarimetric decomposition. The highest overall, producer’s and the
user’s accuracies were improved to 74.82%, 85.31% and 67.56%, respectively, by combining the
backscattering coefficient intensity of different polarizations with the descriptors derived from the
different polarimetric decomposition algorithms. The accuracy improvement was about 15 percentage
points on average.

For Guyuan, the accuracies from the backscattering coefficient intensity of different polarizations
(VH, HH, VV and HV) alone were also relatively low. The overall accuracy, the producer’s accuracy and
the user’s accuracy were 56.83%, 65.43% and 49.69%, respectively. This level of accuracy cannot meet
the practical application requirements generally. However, the accuracies were improved significantly
by combining the backscattering coefficient intensity with the polarimetric decomposition descriptors.
Additionally, the highest overall, producer’s and the user’s accuracies achieved were 64.21%, 74.49%
and 51.93%, respectively. The average accuracy improvement was about 15 percentage points, as well.

We can explain the contribution of the polarimetric decomposition descriptors for mapping PMF
by comparing the approaches with and without polarimetric decomposition descriptors. The overall
accuracy was increased by 15.07 percentage points in Jizhou and 7.38 percentage points in Guyuan
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when using RF with the polarimetric decomposition descriptors in classification. Additionally,
the overall accuracy was increased by 15.20 percentage points in Jizhou and 10.00 percentage
points in Guyuan when using SVM with the polarimetric decomposition descriptors in classification.
Furthermore, the user’s and producer’s accuracies of PMF were improved also by employing the
polarimetric decomposition descriptors. The producer’s accuracies for PMF were increased by
17.02 percentage points in Jizhou and 9.06 percentage points in Guyuan when using RF with the
polarimetric decomposition descriptors in classification. When using SVM, the producer’s accuracies
for PMF were increased by 18.30 percentage points in Jizhou and 3.31 percentage points in Guyuan.
Additionally, the user’s accuracies for PMF were increased by 14.02 percentage points in Jizhou and
2.24 percentage points in Guyuan when using RF with the polarimetric decomposition descriptors in
classification. When using SVM, the user’s accuracies for PMF were increased by 15.71 percentage
points in Jizhou and 1.60 percentage points in Guyuan. From these accuracy improvements, we
can confirm that the polarimetric decomposition descriptors make a great contribution toward PMF
mapping in northern China.

Table 4. The classification accuracy of PMF using Radarsat-2 data.

Classifiers Features
Jizhou Guyuan

OA CI of OA PA UA OA CI of OA PA UA

RF

100% 74.82 74.00–75.64 85.31 66.73 64.21 63.67–64.75 74.49 51.93
90% 73.81 72.98–74.64 80.73 67.56 63.49 62.95–64.03 72.80 51.88
80% 73.36 72.53–74.19 79.82 67.46 63.26 62.72–63.80 72.29 52.14

Backscattering
Intensity 59.75 58.83–60.67 68.29 52.71 56.83 55.28–57.38 65.43 49.69

SVM

100% 73.45 72.62– 74.28 84.51 66.44 63.97 63.43–64.51 70.85 51.13
90% 73.06 72.22– 73.90 81.99 65.84 62.81 62.27–63.35 69.57 50.92
80% 73.14 72.30– 73.98 78.79 67.24 62.11 61.57–62.65 69.56 50.32

Backscattering
Intensity 58.25 57.32– 59.18 66.21 50.73 53.97 53.41–54.53 67.54 49.53

Note: The highest accuracies from different features are highlighted in bold. OA denotes the Overall Accuracy. PA
denotes the Producer’s Accuracy. UA denotes the User’s Accuracy and CI denotes the 95% confidence interval.

In general, the inclusion of polarimetric decomposition descriptors can improve the overall
accuracy by almost 7–15 percentage points. The RF classifiers were found to be more effective than the
SVM classifiers both in Jizhou and in Guyuan.

After accuracy assessment, the Z test was applied to determine the statistical significance of each
classification. The Z test values of highest and worst accuracy from the RF algorithm and the SVM
algorithm are given in Table 5, and the Z test values between pairs of features and classifiers in Jizhou
and Guyuan are given in Table 6.

Table 5 shows that the Z test value was greater than 99.26 when using both the RF and SVM
algorithms for mapping PMF in Jizhou, and was greater than 5.63 in Guyuan. All these values were
higher than 2.58. This indicates that the classifications are meaningful and significantly better than
a random classification at the 99% confidence level.

Table 6 shows that the Z test value was 32.13 when comparing the highest and the worst accuracy
generated from the RF algorithm for mapping PMF in Jizhou; and that was 29.83 when comparing
the highest and the worst accuracy generated from the SVM algorithm for mapping PMF in Jizhou.
This means that the performance of these two feature sets (the combined features of backscattering
intensity and the polarimetric decomposition descriptors and the backscattering intensity alone) was
significantly different (higher than 2.58) at the 99% confidence level when using RF and SVM.

For the different classifiers, the Z test value was 3.07 (higher than 2.58) when comparing the
highest accuracy of RF and SVM, and the Z test value was 28.99 (higher than 2.58) when comparing
the worst accuracy of RF and SVM. Therefore, the performance of RF was significantly better than
SVM at the 99% confidence level.
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Table 5. Z test values for testing the significance of mapping PMF in Jizhou and Guyuan.

Classifiers Features
Kappa Z Statistic p

Jizhou Guyuan Jizhou Guyuan

RF
with the highest accuracy 0.667 0.531 163.56 7.19 <0.005
with the worst accuracy 0.469 0.439 101.38 16.95 <0.005

SVM
with the highest accuracy 0.649 0.649 156.25 6.84 <0.005
with the worst accuracy 0.401 0.411 99.26 5.63 <0.005

Table 6. Z test values for the pairwise comparison of the error matrices for mapping PMF in Jizhou
and Guyuan.

Pairwise Comparison Z Statistic p
Jizhou Guyuan

The highest accuracy of RF vs. The worst accuracy of RF 32.13 19.32 <0.005
The highest accuracy of SVM vs. The worst accuracy of SVM 29.83 17.56 <0.005
The highest accuracy of RF vs. The highest accuracy of SVM 3.07 2.99 <0.005

The worst accuracy of RF vs. The worst accuracy of SVM 28.99 16.83 <0.005

In general, the combined features of the backscattering coefficient intensity of four polarizations
and the polarimetric decomposition descriptors are superior to the individual features. Additionally,
RF performed significantly better than SVM.

From the confusion matrices (Table 7 for Jizhou and Table 8 for Guyuan), it can be seen that the
main cause for the low classification accuracy was the confusion between PMF and the other land
cover types on the Radarsat-2 image. Especially, the confusion between PMF and the bare soil was
very serious. The commission error and omission error of PMF and the bare soil were 56.11% and
8.16%, respectively, when using the backscattering intensity of four polarizations alone. Additionally,
the commission error and omission error were decreased to 39.14% and 6.18% when introducing the
polarimetric decomposition descriptors and optimizing them using RF. The commission error and
omission error between PMF and water body were 25.97% and 5.99% when using the backscattering
intensity alone. Additionally, the commission error and omission error between PMF and water body
were reduced to 18.00% and 2.44%, respectively, when introducing the polarimetric decomposition
descriptors and optimizing them using RF.

Table 7. The confusion matrix from RF in Jizhou.

Features
OA: 59.75 PA: 68.29 UA: 52.71 CI: 58.83–60.67

Land Cover Types WB VC PMF BS IS Total

Backscattering Intensity
of four polarizations

WB 560 52 157 91 7 867
VC 103 1985 379 246 500 3213

PMF 267 454 1790 726 159 3396
BS 44 77 214 100 54 489
IS 54 561 81 131 2032 2859

Total 1028 3129 2621 1294 2752 10,824

Optimized Feature Set

OA: 74.82 PA: 85.31 UA: 66.73 CI: 74.00–75.64

Land Cover Types WB VC PMF BS IS Total

WB 643 34 62 72 14 825
VC 110 2587 145 224 211 3277

PMF 181 88 2236 827 19 3351
BS 28 72 165 146 21 432
IS 66 348 13 25 2487 2939

Total 1028 3129 2621 1294 2752 10,824
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Table 8. The confusion matrix from RF in Guyuan.

Features
OA: 56.83 PA: 65.43 UA: 49.69 CI: 55.28–57.38

Land Cover Types WB VC PMF MA PG IS BS Total

Backscattering Intensity
of four polarizations

WB 888 77 38 117 174 291 25 1610
VC 0 1057 447 1100 48 515 136 3303

PMF 0 597 2968 861 16 78 1453 5973
MA 0 1018 382 7192 386 1622 173 10,773
PG 0 9 26 46 71 184 1 337
IS 90 475 150 1130 609 5144 18 7616
BS 0 209 525 202 7 20 128 1091

Total 978 3442 4536 10,648 1311 7854 1934 30,703

Optimized Feature Set

OA: 64.21 PA: 74.49 UA: 51.93 CI: 63.67–64.75

Land Cover Types WB VC PMF MA PG IS BS Total

WB 377 3 0 16 35 147 0 578
VC 510 1637 306 658 30 441 83 3665

PMF 0 639 3379 846 10 34 1599 6507
MA 0 751 320 8143 185 1064 142 10,605
PG 0 6 0 6 84 168 4 268
IS 90 355 136 847 967 5999 10 8404
BS 1 51 395 132 0 1 96 676

Total 978 3442 4536 10,648 1311 7854 1934 30,703

Figures 8 and 9 show the spatial distribution of PMF in Jizhou and Guyuan obtained from RF and
SVM using Radarsat-2 data, respectively. The general spatial pattern is consistent with the knowledge
obtained from the field survey. However, there is some visible classification noise that can be ascribed
to speckle noise, carrying serious omission and commission error, of SAR data. Compared with the
classification results from SVM, the misclassification of the RF classifier is less.
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5. Discussion

The highest classification accuracy of PMF obtained from the Radarsat-2 data is close to 75%.
However, it is relatively lower than the results from optical remote sensing data [27–29]. The reasons
can be attributed to the data type, the data processing, the characteristics of the classified land cover
types and the other factors.

5.1. The Data and Features

In terms of data type, Radarsat-2 data are obtained from a C-band (long-wave radar system) radar
system. Compared with the X-, L- and S-bands (short-wave radar system), C-band has a certain
ability to penetrate the thin surface (such as the canopy) to monitor the soil surface below the
vegetation. Therefore, there was serious confusion between vegetation and bare soil, vegetation
and PMF to a certain degree. In terms of the data processing, the features used in this study include
backscattering intensity of the four modes of polarization (HH, VV, VH and HV) and a number of
polarimetric decomposition descriptors. Therefore, the parameters used in the data preprocessing and
the feature extraction process have some effect on the classification result, such as filtering window
size, the parameters of polarization decomposition extraction, and so on. The impact of these factors
should be discussed in further work. In addition, the land cover classification system of this study
contains the land cover types with surface scattering, double-bounce scattering and volume scattering.
Therefore, the inclusion of the polarization decomposition features leads to the improvement of the
classification accuracy. However, PMF mainly reflects the surface scattering, which is very similar to
the scattering characteristics of water body and bare soil. Thus, the PMF confused seriously with the
water body and the bare soil in the classification process.

The accuracy improvement indicates that the polarimetric decomposition descriptors can
provide valuable information for mapping PMF in these two study areas. Focusing on dominant
scatter mechanisms, this research indicated that the surface scattering of H/A/Alpha polarimetric
decompositions is the most important backscattering mechanism. The main contribution of the
polarimetric decomposition descriptors extracted from Radarsat-2 images is to alleviate the confusion
between PMF and water body (7.97%), between PMF and vegetation cover (11.73%) and between
PMF and impervious surface (5.23%) in Jizhou. This can be attributed to the valuable information
for mapping the impervious surface (built-up area) provided by the polarimetric decomposition
descriptors. Although speckle filtering was used to the Radarsat-2 images, the speckle noise of SAR
data still affected the classification accuracy significantly. Besides the speckle noise in backscattering
intensity of different polarizations and coherency matrices, there was much noise, as well as in the
polarimetric decomposition descriptors that were extracted later [42].

5.2. The Differences of Classifiers

Two pixel-based machine learning classifiers (RF and SVM) were used in this study to map PMF.
There were some differences between the two classifiers. RF performed better than the SVM in most
cases. We attribute this superiority to the combination of the flexibility of the tree-based techniques
and the stability introduced by the bootstrap sampling. RF performed better than SVM, indicating
the improved efficiency produced by integrating classifiers [67]. Therefore, RF is more effective in
the high dimensional feature space and can avoid the problem of over-fitting. On the other hand,
the performance of the classifier is related to the remote sensing data, the number of samples and the
selected features.

In this section, we mainly discussed the influence of features selected by different algorithms
(RF and SVM). We selected features using SVM feature selection algorithm and found that the order
of important features was slightly different from that of RF feature selection (Table 9). Afterward,
we mapped the PMF using RF based on the selected features from RF. Additionally, we also mapped the
PMF using SVM based on the selected features from SVM. The results indicated that the classification
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accuracies of RF were higher than that of SVM when using the features selected by the same classifier
(Table 10).

Table 9. The order of the features selected by RF and SVM in two study areas.

No.
Order of Features

Jizhou Guyuan

RF SVM RF SVM

1 Alpha VH Alpha HV
2 F_Vol F_Vol VH VH
3 Entropy HH HH Alpha
4 Y_Vol Anisotropy VV Entropy
5 VH VV HV C_H1mA
6 HH Alpha Entropy F_Vol
7 Y_Odd c_HA C_H1mA Anisotropy
8 c_H1mA HV C_1mH1mA HH
9 F_Odd Entropy C_1mHA VV

10 c_1mH1mA c_H1mA C_HA C_1mHA
11 c_1mHA Y_Hlx Anisotropy C_1mH1mA
12 VV K_Ks T22 C_HA
13 Anisotropy c_1mH1mA T33 Y_Vol
14 c_HA F_Dbl F_Vol T22
15 Y_Hlx Y_Vol T11 T33
16 Y_Dbl T11 K_Ks F_Odd
17 HH F_Odd K_Kd T11
18 T33 Y_Dbl Y_Odd Y_Odd
19 T22 Y_Odd Y_Vol Y_Dbl
20 K_Kd T22 F_Odd Y_Hlx
21 F_Dbl T33 K_Kh Y_Odd
22 K_Kh K_Kd Y_Dbl F_Dbl
23 T11 c_1mHA Y_Hlx K_Kh
24 K_Ks K_Kh F_Dbl K_Ks

Table 10. The overall classification accuracy of RF and SVM using the features selected by the same
classifier (RF-RF denotes the accuracy of the RF classifier using the features selected by RF; SVM-SVM
denotes the accuracy of the SVM classifier using the features selected by SVM).

Number of Features
Jizhou Guyuan

RF-RF SVM-SVM RF-RF SVM-SVM

24 74.82 73.14 64.21 63.57
15 73.81 74.02 63.49 63.04
10 73.36 72.52 63.26 62.53

5.3. Difference in Regions

The difference of PMF classification accuracy between these two study areas can be attributed to
the land cover types and their distribution pattern. The land cover types in Jizhou are simpler and
distributed more uniformly (large plain agricultural land use), while the land cover types in Guyuan
are more complex and distributed unevenly (Figure 10). In addition, the mulching mode in Guyuan
includes mulching in autumn, mulching in early spring and mulching before sowing. The data used
in this study were acquired in April. Therefore, there may be some discrepancies between the data
acquisition time and the mulching time. As a result, the classification accuracy in Guyuan is lower
than that in Jizhou.
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Guyuan; (b) field photo of PMF in Jizhou; (c) GF-1 image of PMF in Guyuan; (d) GF-1 image of PMF in
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5.4. Comparison with Previous Studies

Table 11 shows that a small number of research works have been conducted to map the PMF
with remote sensing data. All the existing studies have only used optical remote sensing data. SAR
remote sensing data have never been used to map PMF until now. Definitely, the classification accuracy
obtained from optical remote sensing data is much higher than that generated from SAR remote
sensing data. However, SAR remote sensing data have their unique advantages over optical remote
sensing data for mapping land cover types. It is well known that the SAR can provide all-weather
and all-day data, which can fill the data missing due to cloudy weather or nighttime. Therefore,
for the agricultural remote sensing operational monitoring system, SAR remote sensing data can be
considered as powerful supplemental and alternative data for optical remote sensing data. In addition,
SAR data can provide the structural information for mapping, which is hard to provide from optical
remote sensing data. Therefore, the SAR data can be an important compensation for optical remote
sensing in land cover classification. However, the relatively lower classification accuracy of SAR data
can be attributed to the speckle noise (the inherent shortcomings of SAR data) and the confusion with
other land cover types. This problem can also be resolved by using optical remote sensing data to
mask the special land cover types (the water body or the bare soil), which were easily confused with
PMF on the SAR image.

Table 11. Accuracies of the existing results.

No. OA PA UA Data Study Region Reference

1 92.84 99.70 94.58 MODIS Xinjiang, China [26]
2 97.82 100.0 95.90 Landsat-5 Xinjiang, China [5]
3 94.14 90.67 90.58 Landsat-8 Hebei, China [27]
4 97.01 92.48 96.40 Landsat-8 Hebei, China [28]
5 96.05 90.99 94.22 GF-1 Hebei, China [29]
6 74.82 85.31 66.73 Radarsat-2 Hebei, China This study
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6. Conclusions

The consideration of SAR data makes a novel contribution to map PMF in northern China.
Our preliminary conclusions are as follows:

The space-borne full-polarimetric C-band Radarsat-2 data are found to be applicable for
mapping PMF in northern China generally. The highest accuracy is 74.82% in Jizhou and 64.21%
in Guyuan, respectively.

The analysis of feature importance by RF indicated that the polarimetric decomposition features
are more important than the backscattering intensity of four polarizations. The results also suggested
that the descriptors from H/A/Alpha decomposition are more important than the descriptors from
other polarimetric decompositions for PMF mapping. The inclusion of polarimetric decomposition
descriptors is found to improve the classification accuracy considerably.

In terms of classifiers, RF performed significantly better than SVM with regards to PMF classification
accuracy and efficiency.

This study indicates that promising results can be achieved for mapping PMF in northern China
by using full-polarization C-band Radarsat-2 and machine learning algorithms. Further researches
should focus on the following aspects: (1) we will assess the effectiveness of X-band SAR data for
mapping PMF; (2) we will transfer this presented methodology to the south region of China, which is
affected seriously by cloudy and rainy weather; (3) we will introduce the object-oriented algorithm
to relieve the inherent speckle noise effect of SAR data themselves; (4) and we will improve the
classification accuracy by combining SAR remote sensing data and optical remote sensing data.
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