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Abstract: Accurate pre-harvest estimation of avocado (Persea americana cv. Haas) yield offers a
range of benefits to industry and growers. Currently there is no commercial yield monitor available
for avocado tree crops and the manual count method used for yield forecasting can be highly
inaccurate. Remote sensing using satellite imagery offers a potential means to achieve accurate
pre-harvest yield forecasting. This study evaluated the accuracies of high resolution WorldView
(WV) 2 and 3 satellite imagery and targeted field sampling for the pre-harvest prediction of total
fruit weight (kg·tree−1) and average fruit size (g) and for mapping the spatial distribution of these
yield parameters across the orchard block. WV 2 satellite imagery was acquired over two avocado
orchards during 2014, and WV3 imagery was acquired in 2016 and 2017 over these same two orchards
plus an additional three orchards. Sample trees representing high, medium and low vigour zones
were selected from normalised difference vegetation index (NDVI) derived from the WV images
and sampled for total fruit weight (kg·tree−1) and average fruit size (g) per tree. For each sample
tree, spectral reflectance data was extracted from the eight band multispectral WV imagery and 18
vegetation indices (VIs) derived. Principal component analysis (PCA) and non-linear regression
analysis was applied to each of the derived VIs to determine the index with the strongest relationship
to the measured total fruit weight and average fruit size. For all trees measured over the three year
period (2014, 2016, and 2017) a consistent positive relationship was identified between the VI using
near infrared band one and the red edge band (RENDVI1) to both total fruit weight (kg·tree−1)
(R2 = 0.45, 0.28, and 0.29 respectively) and average fruit size (g) (R2 = 0.56, 0.37, and 0.29 respectively)
across all orchard blocks. Separate analysis of each orchard block produced higher R2 values as well
as identifying different optimal VIs for each orchard block and year. This suggests orchard location
and growing season are influencing the relationship of spectral reflectance to total fruit weight and
average fruit size. Classified maps of avocado yield (kg·tree−1) and average fruit size per tree (g) were
produced using the relationships developed for each orchard block. Using the relationships derived
between the measured yield parameters and the optimal VIs, total fruit yield (kg) was calculated for
each of the five sampled blocks for the 2016 and 2017 seasons and compared to actual yield at time of
harvest and pre-season grower estimates. Prediction accuracies achieved for each block far exceeded
those provided by the grower estimates.
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1. Introduction

Accurate pre-harvest yield parameter estimation in high value fruit tree crops, such as avocado
(Persea americana cv. Haas), offers improved decision making from the grower to the industry
level. For individual orchards, a strong understanding of yield variability allows growers to form
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improved decisions regarding the variable rate application of inputs (water, fertilizer, pesticides)
and the logistical planning of field operations (e.g., harvest scheduling, number of pickers and bins
required, etc.) [1–3]. At the start of the picking season when the price of high quality fruit is at its
premium, an understanding of fruit size distribution across an orchard prior to harvest can greatly
reduce labour and fuel costs through selective harvesting [4]. Additionally, accurate yield estimation
during a growing season supports post-harvest decisions such as the storage, handling, packing,
and forward selling of produce [4,5].

Currently, yield estimation in avocado orchards is undertaken by the visual counting of fruit
growing on a small number of selected trees [4]. However, this method possesses several disadvantages:
(1) poor accuracy as the avocado fruit is often occluded by leaves that are the same colour and shape;
(2) time consuming and labour intensive, with many man hours required to undertake the counts
on selected trees; (3) limited sample size, with the trees selected not accurately representing the high
spatial and temporal variability of an entire orchard block.

Crop simulation models have been developed for a number of tree crops to estimate fruit number
based on (i) yield capacity, (ii) average fruit set density, and (iii) average weight of the fruit at harvest.
The ‘Bavendorf Crop Estimation Model’ initially developed by Winter [6] for apple and pear orchards
was later evaluated for avocado by Köhne [3]. However, these methods are only conducted on a limited
number of sample trees and therefore suffer the same inaccuracies as those identified by the visual
count technique. Aggelopoulou et al. [7] and Alburquerque et al. [8] identified empirical relationships
between fruit yield to number of new leaves and to number of flower buds after thinning in the
spring. However, highly erroneous results occurred when the thinning process was not completed
by spring. Whiley et al. [9] developed a ‘pheno-physiological model’ for ‘cv. Haas’ avocado grown
in south-eastern Queensland Australia to establish a stronger understanding between physiological
status of the tree in terms of its vegetative (roots and shoots) and reproductive (flowers and fruit)
components to growth parameters including fruit set, fruit retention and yield. A relationship between
the level of starch concentration in the tissues of the tree trunks immediately prior to flowering and
subsequent fruit yield was identified. However, the occurrence of additional biotic or abiotic conditions
between final crop set and harvest largely influenced the prediction accuracy.

Digital imaging or machine-vision techniques using stereo and colour photographs have also
been investigated for yield estimation and/or real-time yield mapping of a number of horticultural
crops including wild blueberries [10] and ‘Gala’ apple [11]. However, occlusion of fruit by branches
and leaves, variations in illumination conditions, and thresholding errors were identified to be sources
of error [12–15]. For avocado, fruit occlusion is likely to cause similar issues due to the leaves being
the same shape and colour as the fruit, the fruit themselves growing inside the canopy, and the size
of trees.

Satellite and aerial remote sensing platforms present as an accurate and time efficient alternative
to the manual fruit count method [4] and for the non- invasive measure of avocado yield. Whilst these
technologies have been found to be highly effective for measuring yield in row crops [16–20], generally
attributed to harvest index (HI) (i.e., fraction of biomass allocated to yield components divided
by the total above ground biomass) [21–23], similar studies in perennial fruit tree crops, such as
citrus [24,25], apple [7,26], pear [27], peach [28], olives [28], mango [29], and grapevines [30,31] have
produced varying levels of success. For avocado, there has only been limited remote sensing research
investigating fruit size and yield mapping as well as tree number auditing [4]. It is hypothesised that
remote sensing may provide an accurate measure of avocado yield via the relationship between tree
canopy size/health measured after final fruit set.

The recent advent of very high resolution (VHR) satellites, such as WorldView-2 (WV2)
(1.85 m multispectral resolution), WorldView-3 (WV3) (1.2 m multispectral resolution) and GeoEYE-1
(1.84 m resolution), allows the spectral reflectance characteristics of individual tree canopies to be
measured. Additionally, the increased spectral resolution of these sensors i.e., up to 16 spectral
wavebands for WV3, and the high temporal resolution support an increased capacity to measure
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variations in tree crop health. Vegetation indices (VIs) derived from multispectral imagery have been
used effectively to predict yield in many cropping systems. These VIs are dimensionless, radiometric
measures usually formed from combinations of two wavebands in visible and NIR spectrum that
function as indicators of relative abundance and activity of green vegetation [32]. Two of the earliest
and most commonly used VIs are the normalized difference vegetation index (NDVI) [33] and simple
ratio (SR = NIR/Red) [34]. However, with the advancement of multispectral and hyperspectral imagery,
there is greater capacity to calculate a large number of structural and pigment based VIs that better
correlate to crop attributes and yield parameters [35].

If a large number of potential predictors are available for model development, variable selection
and dimension reduction is an important first step. Principal component analysis (PCA) and Partial
least squares (PLS) are two popular methodologies when some of the predictive variables might be
correlated [36], such as the VIs used in this study. When the key area of application is to reduce the
number of variables while maximizing the separation of classes, such as in a yield forecasting scenario,
PLS is a better approach [37] as it accounts for both the explanatory and predicted variable as part of
the process. In contrast, the use of PCA combined with biplots allows selection of a subset of those
VIs with the strongest correlation with yield and least correlation with the other VIs. Once identified,
regression models can be fit to mathematically relate the selected VIs to yield. This feature selection
approach facilities greater understanding of VI importance whilst also reducing the data sampling
requirements of the model.

This paper investigates the accuracies of the high spatial resolution WV imagery for measuring the
spatial and temporal variability of avocado yield and fruit size on the individual tree and orchard level.
More specifically, the objectives are (i) to determine if the yield parameters of avocado (average fruit
size (g) per tree and total fruit weight (kg·tree−1)) are correlated to the canopy reflectance characteristics
extracted from high resolution satellite imagery, (ii) to identify optimal VIs and specific algorithms that
strongly correlate to measured yield parameters, and (iii) to extrapolate those algorithms to estimate
total yield as a validation of the model and to derive yield maps at the orchard block level.

2. Materials and Methods

2.1. Study Site and Crop Status

For the 2014 harvest season, two commercial avocado blocks (cv. Haas) (Blocks 1 and 2) located
near the township of Childers, Queensland, Australia (Figure 1), were selected. For the 2016 and
2017 harvest season, three additional orchard blocks (cv. Haas) near Childers (Blocks 3, 4 and 5) were
selected (Figure 1). The study area is located between longitudes 152.12◦E and 152.38◦E and latitudes
25.11◦S and 25.23◦S. The region experiences a subtropical climate with long hot summers and mild
winters. The mean annual rainfall between January and December is 1026.4 mm (1942–2016), the mean
maximum temperature is 26.7 ◦C, reaching a peak in January (30.2 ◦C), and the mean minimum
temperature is 16.4◦C, with a low occurring in July (10.2 ◦C) (1959–2016) [38].

The trees in Block 1 were planted in 2006, Block 2 in 2005, Block 3 and 4 in 1998, and Block 5 in
2007. All orchards are commercially owned and managed. Each block receives post-harvest pruning in
late winter or early spring where major limbs are removed to maintain orchard access between rows
and enhance light interception. Flowering occurs between early September to mid-October, followed
by two fruit drop events usually between late October to January [39]. Harvesting of avocado fruits
normally occurs over a split harvest where the larger fruits are removed first, allowing more time for
the smaller fruit to grow [40]. In Childers, harvest commences in April depending on fruit maturity,
which is determined by ripening and dry matter testing, and continues until late July. Avocado fruit
yields are extremely variable across farms and regions depending on variety, season and level of
management as well as from biannual bearing that can occur at varying degrees. The average yield
across Childers region is over 10 tonnes per hectare.
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Figure 1. Location of the five avocado orchards in Bundaberg, Queensland, Australia (green 
polygons). 

2.2. Satellite Imagery and Pre-Processing 

For this study, imagery acquired by the WV2 and WV3 satellites was selected due its high 
spatial, spectral, temporal, and radiometric resolutions. WV2, launched by DigitalGlobe on 8 October, 
2009, provides a spatial resolution of 1.84 m in the multispectral bands and 0.46 m in panchromatic 
band; Whilst WV3, launched on 13 August, 2014, provides a spatial resolution of 1.2 m in the 
multispectral bands and 0.3 m in panchromatic band. Both WV2 and WV3 have one panchromatic 
band (450–800 nm) and eight multispectral bands: coastal blue (407–448 nm), blue (455–509 nm), 
green (516–578 nm), yellow (585–623 nm), red (631–689 nm), red edge (703–742 nm), near infra-red 1 
(NIR1) (774–874 nm), and near infra-red 2 (NIR2) (869–958 nm). Further details about the WV2 and 
WV3 sensor can be found on the website (https://www.digitalglobe.com/about/our-constellation) 
and in Kuester [41]. 

For the 2014 harvest season a WV2 image was acquired on 29th of May 2014, whilst additional 
WV3 images were acquired on 7 April 2016 and 16 May 2017 to correspond with the 2016 and 2017 
harvest seasons (Processing Level: Ortho Ready Standard Level 2A, Scan Direction: reverse). All 
images were acquired under cloud-free conditions with the ‘at-sensor’ pixel digital numbers 
converted to ‘Top of Atmosphere’ (TOA) reflectance following the equation given in Kuester [41] and 
projected to WGS-84 UTM Zone 56S. The timing of image acquisition coincided with the ‘fruit filling’ 
growth period between final fruit set in late January and pre-harvesting in May.  

2.3. Sampling Trees 

For each selected orchard block, a Normalised Difference Vegetation Index (NDVI = (NIR1 − 
Red)/(NIR1 + Red)) was derived, followed by an unsupervised classification of the IsoData (eight 
classes) (Figure 2). This process was applied to differentiate the variation in tree vigour (health and 
size) and as such guide where on-ground sampling should be conducted to quantify the variability 
in terms of the measured yield parameters [4]. Nine trees per orchard (three replicate trees from high, 
medium, and low NDVI regions) were selected in 2014, and 18 trees per orchard (six replicate trees 
from high, medium and low NDVI zones) in 2016 and 2017. In order to locate the selected tree within 
the orchard, the block, row, and tree number were manually counted from each respective pan-
sharpened image. Once located in the orchard, the exact position of each tree centre was recorded 
using a hand-held Trimble DGPS (Trimble, Sunnyvale, CA, USA).  

Figure 1. Location of the five avocado orchards in Bundaberg, Queensland, Australia (green polygons).

2.2. Satellite Imagery and Pre-Processing

For this study, imagery acquired by the WV2 and WV3 satellites was selected due its high spatial,
spectral, temporal, and radiometric resolutions. WV2, launched by DigitalGlobe on 8 October, 2009,
provides a spatial resolution of 1.84 m in the multispectral bands and 0.46 m in panchromatic band;
Whilst WV3, launched on 13 August, 2014, provides a spatial resolution of 1.2 m in the multispectral
bands and 0.3 m in panchromatic band. Both WV2 and WV3 have one panchromatic band (450–800 nm)
and eight multispectral bands: coastal blue (407–448 nm), blue (455–509 nm), green (516–578 nm),
yellow (585–623 nm), red (631–689 nm), red edge (703–742 nm), near infra-red 1 (NIR1) (774–874 nm),
and near infra-red 2 (NIR2) (869–958 nm). Further details about the WV2 and WV3 sensor can be
found on the website (https://www.digitalglobe.com/about/our-constellation) and in Kuester [41].

For the 2014 harvest season a WV2 image was acquired on 29th of May 2014, whilst additional
WV3 images were acquired on 7 April 2016 and 16 May 2017 to correspond with the 2016 and
2017 harvest seasons (Processing Level: Ortho Ready Standard Level 2A, Scan Direction: reverse).
All images were acquired under cloud-free conditions with the ‘at-sensor’ pixel digital numbers
converted to ‘Top of Atmosphere’ (TOA) reflectance following the equation given in Kuester [41] and
projected to WGS-84 UTM Zone 56S. The timing of image acquisition coincided with the ‘fruit filling’
growth period between final fruit set in late January and pre-harvesting in May.

2.3. Sampling Trees

For each selected orchard block, a Normalised Difference Vegetation Index (NDVI =
(NIR1 − Red)/(NIR1 + Red)) was derived, followed by an unsupervised classification of the IsoData
(eight classes) (Figure 2). This process was applied to differentiate the variation in tree vigour (health
and size) and as such guide where on-ground sampling should be conducted to quantify the variability
in terms of the measured yield parameters [4]. Nine trees per orchard (three replicate trees from high,
medium, and low NDVI regions) were selected in 2014, and 18 trees per orchard (six replicate trees from
high, medium and low NDVI zones) in 2016 and 2017. In order to locate the selected tree within the
orchard, the block, row, and tree number were manually counted from each respective pan-sharpened
image. Once located in the orchard, the exact position of each tree centre was recorded using a hand-held
Trimble DGPS (Trimble, Sunnyvale, CA, USA).

https://www.digitalglobe.com/about/our-constellation
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Figure 2. Classified Normalised Difference Vegetation Index (NDVI) images of the five avocado 
blocks with sampling locations for the 2016 and 2017 season presented as black circles. In Block 1 and 
2, the individual tree sampling locations for 2014 are indicated as white circles. (Note some sample 
locations overlap between years.) Block 1: 14.4 ha, Block 2: 28.2 ha, Block 3: 6.8 ha, Block 4: 14.7 ha, 
Block 5: 12.7 ha and Block 6: 11.3 ha.  

The manual harvesting of the selected trees occurred during the first week of May 2014, the last 
week of May 2016, and first week of June 2017 to coincide with commercial harvesting. All harvested 
fruit was counted and weighed providing a total number of fruit per tree, total yield per tree 
(kg·tree−1), and average fruit size (g) per tree. Following commercially adopted practice, ‘eye ball’ (i.e., 
visual assessment) estimates of average orchard yield for each of sampled blocks (T·ha−1) were 
sourced from the growers during 2016 and 2017 growing seasons.  

2.4. Extraction of Spectral Data 

Initially, the differential GPS locations of each sampled tree were overlayed onto the WV2 and 
WV3 images (panchromatic band) using ArcGIS 10.2 (Environmental Systems Research Institute. 
Redlands, CA, USA). A 2 m radius buffer area was applied around each point (12.6 m2 area) as the 
canopy radius of each sampled trees was greater than 2 m. This ensured that the extracted pixel 
values were specific to the selected tree canopies only and did not include any pixels influenced by 
shade or specific to inter rows. Using the open source software Starspan GUI [42] each area of interest 
(AOI) was used to subset the 8 band spectral information for each tree canopy from the non-
pansharpened imagery. From the extracted data, 18 structural and pigment based VIs specific to crop 
biomass and yield parameters [35] were derived (Table 1) and regressed against total fruit weight 
(kg·tree−1) and average fruit size (g·tree−1). This was undertaken for all combined individual tree data 
collected over the three year study as well as for each block separately.  

  

Figure 2. Classified Normalised Difference Vegetation Index (NDVI) images of the five avocado blocks
with sampling locations for the 2016 and 2017 season presented as black circles. In Block 1 and 2,
the individual tree sampling locations for 2014 are indicated as white circles. (Note some sample
locations overlap between years.) Block 1: 14.4 ha, Block 2: 28.2 ha, Block 3: 6.8 ha, Block 4: 14.7 ha,
Block 5: 12.7 ha and Block 6: 11.3 ha.

The manual harvesting of the selected trees occurred during the first week of May 2014, the last
week of May 2016, and first week of June 2017 to coincide with commercial harvesting. All harvested
fruit was counted and weighed providing a total number of fruit per tree, total yield per tree (kg·tree−1),
and average fruit size (g) per tree. Following commercially adopted practice, ‘eye ball’ (i.e., visual
assessment) estimates of average orchard yield for each of sampled blocks (T·ha−1) were sourced from
the growers during 2016 and 2017 growing seasons.

2.4. Extraction of Spectral Data

Initially, the differential GPS locations of each sampled tree were overlayed onto the WV2 and
WV3 images (panchromatic band) using ArcGIS 10.2 (Environmental Systems Research Institute.
Redlands, CA, USA). A 2 m radius buffer area was applied around each point (12.6 m2 area) as the
canopy radius of each sampled trees was greater than 2 m. This ensured that the extracted pixel values
were specific to the selected tree canopies only and did not include any pixels influenced by shade or
specific to inter rows. Using the open source software Starspan GUI [42] each area of interest (AOI)
was used to subset the 8 band spectral information for each tree canopy from the non-pansharpened
imagery. From the extracted data, 18 structural and pigment based VIs specific to crop biomass and
yield parameters [35] were derived (Table 1) and regressed against total fruit weight (kg·tree−1) and
average fruit size (g·tree−1). This was undertaken for all combined individual tree data collected over
the three year study as well as for each block separately.
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Table 1. Vegetation indices used in this study.

NAME FORMULA REFERENCES
1 Normalized Difference Rededge/Red (NDVI rededge) (RE − R)/(RE + R) [43]
2 Transformed Chlorophyll Absorption in Reflectance Index (TCARI) 3 × ((RE − R) − 0.2 × (RE − G) × (RE/R)) [44]
3 Structure Insensitive Pigment Index (SIPI) (NIR1 − B)/(NIR1 + R) [45]
4 Coastal Blue Structure Insensitive Pigment Index (CB SIPI) (NIR1 − CB)/(NIR1 + CB) [45]
5 Normalized difference Red/Red-edge index (R/RENDVI) (NIR1 − R)/(NIR1 + RE) [46]
6 Normalized difference Red/NIR2 index (R/N2NDVI) (NIR1 − R)/(NIR1 + NIR2) [4]
7 Green normalized difference vegetation index (GNDVI) (NIR1 − G)/(NIR1 + G) [47]
8 Modified Simple Ratio (MSR) (NIR1/R − 1)/(SQRT((NIR1/R) + 1)) [48]
9 Ratio Vegetation Index (RVI) NIR1/R [34]

10 Normalized Difference Vegetation Index (N1NDVI) (NIR1 − R)/(NIR1 + R) [33]
11 Normalized Difference Vegetation Index (N2NDVI) (NIR2 − R)/(NIR2 + R) [33]
12 Normalized difference red edge index 1 (RENDVI1) (NIR1 − RE)/(NIR1 + RE) [49]
13 Normalized difference red edge index 2 (RENDVI2) (NIR2 − RE)/(NIR2 + RE) [50]
14 RDVI1 (NIR1 − R)/(SQRT (NIR1 + R)) [51]
15 RDVI2 (NIR2 − R)/(SQRT (NIR2 + R)) [51]
16 Transformed difference vegetation index (TDVI) 1.5 × ((NIR1 − R)/(SQRT(NIR12 + R + 0.5)) [52]
17 Transformed difference vegetation index 2 (TDVI2) 1.5 × ((NIR2 − R)/(SQRT(NIR22 + R + 0.5)) [52]
18 Non Linear Index (NLI) (NIR2 − R)/(NIR2 + R) [53]

2.5. Selection of VIs and Data Analysis

A number of statistical methods were employed to determine the VI most strongly related
to the measured yield parameters average fruit size (g) per tree and total fruit weight (kg·tree−1).
These included a principal component analysis (PCA) and a non-linear regression, both undertaken
using the statistical software R [54]. Although PCA is quite commonly adopted to remove the
redundancy in a large number of variables, in this study, we applied it as a variable reduction
procedure to select the two optimal VIs out of the 18 most related to avocado yield parameters. The VI
that produced the highest coefficient of determination (R2) and the lowest root mean square error
(RMSE) (Equation 1) was selected as optimal.

RMSE =
√

∑(Observed data − Estimated data)2/(n − 1) (1)

An additional stepwise regression and Analysis of covariance (ANCOVA) was performed to
determine if the linear relationships between the optimal VI and the measured yield parameter for
each of the season differed significantly.

2.6. Derivation of Block Level Yield Maps and Predictions of Average Block Yield

In order to extrapolate the linear relationships identified between the selected 18 trees and
the optimal VI for each block to all trees growing within the respective blocks, all non-canopy
related pixel information (i.e., inter-row vegetation, soil, shading etc.) were removed. This was
achieved by identifying only those pixels specific to the individual tree canopies from a 2D scatter
plot (Red versus NIR1) and creating a ‘mask’ to sub-set the imagery. The linear algorithm developed
between the optimal VI and yield parameter for each respective block was then applied to the sub-setted
pixels, converting them from reflectance to the units of the respective yield parameter. Corresponding
with the development of the classified yield maps, the average yield of each block was also calculated
by substituting the average pixel reflectance value for each block into the corresponding block yield
algorithm. Using this process (Figure 3), the average and total yield for each of the five blocks was
calculated for the 2016 and 2017 growing seasons and compared to the actual harvested yield and the
prediction made by the growers ‘eye ball’ estimate
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Figure 3. Process of deriving parameter specific map from WorldView-3 (WV3) imagery using the
algorithm developed from the 18 sampled trees per block.

3. Results

3.1. VIs for Estimatin of Yield Parameters

PCA was used to determine the two VIs most related to total fruit weight (kg·tree−1) and average
fruit size (g). Non-linear regression was applied using the selected top two VIs to total fruit weight
and average fruit size to determine the VI with the highest R-squared value for each block across all
years and for all blocks in all years. The results from this analysis are presented in Table 2.

RENDVI1 was identified as the VI with the highest R-squared for all blocks using all years of
data, with an R-squared value of 0.29 for both total fruit yield (kg·tree−1) and average fruit size (g) per
tree. In general, higher coefficients of determination were produced when each block was analysed
separately using the VI identified with non-linear regression, except for Block 2 total fruit weight with
RENDVI2 (R2 = 0.25) and Block 4 average fruit size with Yellow SAVI (R2 = 0.19).

Table 2. Best vegetation indices (VIs) for all blocks and for each block for average fruit size (g) per tree
and total fruit weight (kg·tree−1) using principal component analysis (PCA) and non-linear regression.

Blocks
Total Fruit Weight (kg·tree−1) Average Fruit Size (g) Per Tree

PCA Non-Linear
Regression R2 PCA Non-Linear

Regression R2

All blocks for 3 years RENDVI1, RENDVI2 RENDVI1 0.29 RENDVI1, RENDVI2 RENDVI1 0.29
block 1 (3 years) RENDVI1, N1GNDVI N1GNDVI 0.48 RENDVI1, N1/RENDVI RENDVI1 0.39
Block 2 (3 years) RENDVI1, RENDVI2 RENDVI2 0.25 RENDVI1, RENDVI2 RENDVI1 0.43
Block 3 (2 years) CB SIPI, Yellow SAVI CB SIPI 0.40 RENDVI2, CB SIPI RENDVI2 0.28
Block 4 (2 years) SIPI, Yellow SAVI SIPI 0.43 Yellow SAVI, RDVI Yellow SAVI 0.19
Block 5 (2 years) RENDVI2, RENDVI1 RENDVI2 0.49 RENDVI2, RENDVI1 RENDVI2 0.40
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3.2. Models for Relationship between Yield Parameters and VIs

The scatter plots of the optimal VI for each of the measured yield parameters derived from
the 18 trees sampled in 2014, 90 trees sampled in 2016 and 90 trees sampled in 2017 are shown in
Figure 4. For both total fruit weight (kg·tree−1) and average fruit size (g) per tree, RENDVI1 produced
the highest coefficient of determination across all three years when fitted with an exponential curve
(R2 = 0.45, 0.28, and 0.29 with RMSE = 29.78, 54.23, and 44.04 kg·tree−1 for 2014, 2016, and 2017,
respectively) and linear trend line (R2 = 0.56, 0.37, and 0.29 with RMSE = 13.9, 13.92, and 14.17 fruit size
(g) per tree for 2014, 2016, and 2017, respectively) (Figure 4). Although the coefficients of determination
were low, a consistent positive relationship between VIs and the measured yield parameter was
observed over the three year study. Additionally, a stepwise regression and ANCOVA applied to
the three years of data identified no significant difference between the slopes of average fruit size (g)
per tree versus RENDVI1 (F-value = 0.24 and p = 0.78), but a significant difference in the intercepts
(F-value = 5.03 and p = 0.0074).
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of average fruit size (g) per tree versus RENDVI1 (F-value = 0.24 and p = 0.78), but a significant 
difference in the intercepts (F-value = 5.03 and p = 0.0074).  
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Figure 4. Scatter plot between the red edge band (RENDVI1) VI identified to have the highest 
coefficient of determination across all blocks for (a) total fruit weight (kg·tree−1) and (b) average fruit 
size (g) per tree. The 2014 sample points are presented as a triangle (∆) (n = 18) with dotted best fit 
line, the 2016 as a diamond (◊) (n = 18) with dashed best fit line, and the 2017 as a circle (o) (n = 108) 
with solid best fit line.  

To address the influence of location, scatter plots of the optimal VI versus total fruit weight 
(kg·tree−1) were derived for each block, for three years of data collection (Block 1 and 2) and two years 
(Blocks 3, 4, and 5) (Figure 5). In 2014, 2016, and 2017 the coefficients of determination for total fruit 
weight (kg·tree−1) using NIR1GNDVI were for Block 1 (R2 = 0.78, 0.89, and 0.46 with RMSE = 13.67, 
25.46, and 28.7 kg·tree−1 respectively) and RENDVI2 for block 2 (R2 = 0.60, 0.61, and 0.26 with RMSE 
= 31.15, 40.81, and 40.35 kg·tree−1 respectively). In 2016, Block 1 produced the highest coefficient of 
determination (NIR1GNDVI, R2 = 0.89 with RMSE = 25.46 kg·tree−1), followed by Block 5 (RENDVI1, 
R2 = 0.72 with RMSE = 21.22 kg·tree−1); Block 3 (CBSIPI, R2 = 0.68 with RMSE = 48.31 kg·tree−1); block 
2 (RENDVI2, R2 = 0.61 with RMSE = 40.81 kg·tree−1); and Block 4 (SIPI, R2 = 0.43 with RMSE = 39.72 
kg·tree−1). As well as the varying VIs, the models that produced the best fit also varied between 
exponential and quadratic.  

Figure 4. Scatter plot between the red edge band (RENDVI1) VI identified to have the highest coefficient
of determination across all blocks for (a) total fruit weight (kg·tree−1) and (b) average fruit size (g) per
tree. The 2014 sample points are presented as a triangle (∆) (n = 18) with dotted best fit line, the 2016 as
a diamond (♦) (n = 18) with dashed best fit line, and the 2017 as a circle (o) (n = 108) with solid best
fit line.

To address the influence of location, scatter plots of the optimal VI versus total fruit weight
(kg·tree−1) were derived for each block, for three years of data collection (Block 1 and 2) and two
years (Blocks 3, 4, and 5) (Figure 5). In 2014, 2016, and 2017 the coefficients of determination for
total fruit weight (kg·tree−1) using NIR1GNDVI were for Block 1 (R2 = 0.78, 0.89, and 0.46 with
RMSE = 13.67, 25.46, and 28.7 kg·tree−1 respectively) and RENDVI2 for block 2 (R2 = 0.60, 0.61,
and 0.26 with RMSE = 31.15, 40.81, and 40.35 kg·tree−1 respectively). In 2016, Block 1 produced the
highest coefficient of determination (NIR1GNDVI, R2 = 0.89 with RMSE = 25.46 kg·tree−1), followed
by Block 5 (RENDVI1, R2 = 0.72 with RMSE = 21.22 kg·tree−1); Block 3 (CBSIPI, R2 = 0.68 with RMSE
= 48.31 kg·tree−1); block 2 (RENDVI2, R2 = 0.61 with RMSE = 40.81 kg·tree−1); and Block 4 (SIPI,
R2 = 0.43 with RMSE = 39.72 kg·tree−1). As well as the varying VIs, the models that produced the best
fit also varied between exponential and quadratic.



Remote Sens. 2017, 9, 1223 10 of 20
Remote Sens. 2017, 9, 23  10 of 18 

 

Figure 5. Scatter plot between those VIs identified to have the highest coefficient of determination to 
total fruit weight (kg·tree−1) for each sampled block derived from WorldView-2 (WV2) and WV3 
imagery. The 2014 sample points are presented as a triangle (∆) (n = 9 per block) in blocks 1 and 2, 
with 2016 as a diamond (◊) (n = 18 per block) and 2017 as circle (o) (n = 18 per block). 

For average fruit size (g), scatter plots of the optimal VIs were again derived for each separate 
block (Figure 6). Unlike total fruit weight (kg·tree−1), strong coefficients of determination were 
achieved across all three seasons for Block 1 (RENDVI1: R2 = 0.78 with RMSE = 13 g (2014), R2 = 0.65 
with RMSE = 24.8 g (2016) and R2 = 0.41 with RMSE = 43.7 g (2017)) and Block 2 (RENDVI1: R2 = 0.64 
with RMSE = 18.78 g (2014), R2 = 0.77 with RMSE = 15.83 g (2016) and R2 = 0.68 with RMSE = 33.5 g 
(2017)). For the remaining blocks sampled during the 2016 and 2017 growing season, a respectable 
coefficient of determination were also identified: Block 3 (RENDVI2, R2 = 0.45 with RMSE = 20.96 g); 
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Figure 5. Scatter plot between those VIs identified to have the highest coefficient of determination
to total fruit weight (kg·tree−1) for each sampled block derived from WorldView-2 (WV2) and WV3
imagery. The 2014 sample points are presented as a triangle (∆) (n = 9 per block) in blocks 1 and 2,
with 2016 as a diamond (♦) (n = 18 per block) and 2017 as circle (o) (n = 18 per block).

For average fruit size (g), scatter plots of the optimal VIs were again derived for each separate
block (Figure 6). Unlike total fruit weight (kg·tree−1), strong coefficients of determination were
achieved across all three seasons for Block 1 (RENDVI1: R2 = 0.78 with RMSE = 13 g (2014), R2 = 0.65
with RMSE = 24.8 g (2016) and R2 = 0.41 with RMSE = 43.7 g (2017)) and Block 2 (RENDVI1: R2 = 0.64
with RMSE = 18.78 g (2014), R2 = 0.77 with RMSE = 15.83 g (2016) and R2 = 0.68 with RMSE = 33.5 g
(2017)). For the remaining blocks sampled during the 2016 and 2017 growing season, a respectable
coefficient of determination were also identified: Block 3 (RENDVI2, R2 = 0.45 with RMSE = 20.96 g);
Block 5 (RENDVI2, R2 = 0.41 with RMSE = 43.32 g) and Block 4 (SIPI, R2 = 0.35 with RMSE 88.98 g).
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Figure 6. Scatter plot between those VIs identified to have the highest coefficient of determination to
average fruit weight per tree (g) for each sampled block derived from WV2 and WV3 imagery. The 2014
sample points are presented as a triangle (∆) (n = 9 per block) in blocks 1 and 2, with 2016 as a diamond
(♦) (n = 18 per block) and 2017 as circle (o) (n = 18 per block).

The results of stepwise regression and ANCOVA for average fruit size (g) per tree in all five blocks
are shown in Table 3. No significant differences were observed in slopes for any of the three years data
for all five blocks, with the lowest p-value = 0.07 for Block 2. However, the intercepts again differed
for all blocks except block 5 (F-value = 0.67 and p-value = 0.42). This results show the consistency of
correlation between average fruit size (g) per tree data against optimal VI in different years.

Table 3. The stepwise regression and Analysis of covariance (ANCOVA) results for average fruit size
(g) per tree for Block 1 and 2 in three years period and Block 3, 4, and 5 in two years period.

Blocks
Slopes Intercepts

F-Value p-Value F-Value p-Value

Block 1 0.72 0.49 16 0
Block 2 2.85 0.07 11.6 0.0001
Block 3 0.23 0.63 4.72 0.04
Block 4 0.23 0.63 3.98 0.05
Block 5 2.87 0.10 0.67 0.42
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3.3. Accuracy of Block Level Yield Maps

In order to extrapolate the measured yield of the selected trees to the entire orchard block,
the process described in Figure 3 was employed for the 2016 and 2017 harvest seasons. Estimations of
total fruit weight (t·ha−1) per block were compared against actual commercially harvested yield as well
as to grower ‘eye ball’ estimates (Figure 7). The results demonstrate that for all blocks the predicted
yield derived from the remotely sensed imagery calibrated with the sampling of strategically located
trees, was much closer to actual yield than that provided by the growers ‘eye ball’ estimate. Note,
the growers estimated result for Block 5 was not undertaken. The estimation accuracies ranged from
an under estimation of 20% (Block 4, 2017) to an over estimation of 19% (Block 1, 2016). The average
estimation accuracy for all five blocks was 98.2% in 2016 and 99.5% in 2017.

Figure 7. Comparison between the actual yield (t·ha−1) to that predicted from satellite imagery and
that made by visual assessment from growers in (a) 2016 and (b) 2017. Note that no growers estimate
was supplied for Block 5.

Using the relationship developed with the VIs, yield maps (kg·tree−1) were derived for each block
using the process presented in Figure 3. The yield maps of Block 2 in 2016 and 2017 are shown as an
example in Figure 8. Maps of average fruit size (g) per tree were also derived for each block, with the
maps of Block 2 for the 2016 and 2017 harvest season presented in Figure 9.
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Figure 8. Classified yield maps derived from the best fit model of the relationship between VIs and 
total fruit weight (kg·tree−1) for Block 2 in (a) 2016 and (b) 2017. 
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Figure 9. Classified fruit size (g) per tree maps derived from the best fit model of the relationship 
between VIs and average fruit size (g) per tree for Block 2 in (a) 2016 and (b) 2017. Figure 9. Classified fruit size (g) per tree maps derived from the best fit model of the relationship

between VIs and average fruit size (g) per tree for Block 2 in (a) 2016 and (b) 2017.

4. Discussion

The results from this study indicate the potential of high resolution WV imagery for accurately
mapping fruit yield (kg·tree−1) and average fruit size (g) across multiple avocado orchards and seasons
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in the Bundaberg region of Queensland, Australia. The low R-squared values achieved using the
data for all blocks and all years for both yield parameters, and the subsequent increase in R-squared
values when the data for each block was analysed separately, suggests that there is not a consistent
relationship across all blocks between yield and canopy reflectance as measured by the selected VI.
The results suggest that a single ‘generic’ algorithm is not suitable, and that a site specific algorithm
(i.e., for each block) is needed to estimate the yield parameters at the individual block level, a result
that is consistent with those presented for apple and pear crops [55]. It is likely that climatic factors
based on location as well as other factors such as tree age, orchard management (pruning, irrigation
and fertiliser or mulch use), soil type, and pollinators are influencing the yield achieved for each
block as well as the relationship between canopy reflectance and yield. Furthermore, the relationships
between yield and VIs are different for each growing season for each block. This shows the importance
of using targeted field sampling during each growing season to calibrate the relationship between
yield and the VIs derived from the satellite imagery.

The vegetation indices RENDVI1 and RENDVI2 consistently produced the strongest relationship
to the measured yield parameters. This result indicates that variations in the avocado canopy that
are sensitive to fruit filling and holding capacity are measurable with the NIR1, NIR2, and Red-edge
spectral bands. The Red-edge spectral band has been identified to be highly sensitive to the foliar
nitrogen concentration, a plant constituent that is essential for yield development in avocado [56].
Similarly canopy reflectance measures in the NIR1 and NIR2 spectral bands have been related to
variations in canopy structure, density and turgidity [4,17]. Therefore, it follows that an avocado
canopy that produces lower reflectance in the NIR bands is likely to have lower biomass and potentially
lower turgidity, both symptoms of an unhealthy plant. Research has shown that stressed avocado trees
are more susceptible to yield decline or smaller fruit than a healthy tree. As an example, trees suffering
from constraints such as water stress or Phytophthora (Phytophthora cinnamomi) root rot will produce
smaller fruit than a healthy tree [57,58].

The results from the ANCOVA analysis show the consistency of correlation between average fruit
size and the optimal VI across different years. While there was no significant difference in p-values
for the model slopes (so the relationship remained constant), the significant differences in p-values
(p < 0.05) for the model intercepts show that between years the average fruit size achievable differed
i.e., in some years average fruit size achievable was higher, possibly due to abiotic or biotic factors
such as climate or management.

Prediction of average orchard yield derived from this method, was found to be consistently more
accurate than the ‘eyeball’ forecasting method currently adopted by the avocado industry. This has
important implications as having accurate pre-harvest yield estimates is important for planning and
forward selling. It suggests that the use of the method presented in this study would provide growers
with more accurate yield forecasts than the method currently used across the avocado industry.

The block level yield maps of total fruit weight and average fruit size offer significant benefit to
growers for harvest segregation at the start of the season when prices for large fruit is optimal. Growers
can use this information to better target orchard zones with larger fruit thus saving on labour costs and
time currently used for the selective harvesting of every tree. Moreover, the classified maps of total
yield (kg·ha−1) and the average fruit size (g) per tree, generated in this study allow growers to visually
assess the spatial variation of yield across their blocks, thus enabling them to identify low performing
regions. By employing targeted inspections, soil and leaf tissue testing etc., growers can identify
the causal constraint and therefore investigate methods of remediation to maximise productivity.
In addition, the maps can be used to detect change in fruit yield between years. For example, Figure 9
shows a clearly visible decline in overall yield in 2017, compared to 2016, potentially due to the biennial
bearing pattern of avocados.

In this study, a correlation between spectral reflectance derived VIs from WV satellite imagery and
both total fruit weight and average fruit size per tree was observed. This result has also been reported
in previous studies [4]. Worldview satellite imagery offers high spatial resolution, and individual
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avocado tree canopies are able to be observed at tree maturity. However, it is also costly to purchase,
and a minimum area of 100 m2 is required to be ordered for tasking to occur. Freely available
alternatives are Landsat and Sentinel 2 (25 m and 10–20 m pixel resolution respectively). However,
the coarser resolution of these satellite images mean that multiple tree canopies determine the spectral
reflectance of each pixel. In addition, the red-edge band in WV imagery was shown in this study to
be an important predictor of yield and this band is not available from Landsat, and only available at
20 m resolution from Sentinel 2. Other alternatives for imagery capture are unmanned aerial vehicles
(UAVs) or manned aircraft. These alternatives are generally more expensive on a cost to area ratio,
unless the vehicle and image processing is completed by the orchard grower themselves (something
that is beyond the scope of many growers).

For this reason, the purchase of high-resolution satellite imagery such as Worldview is a viable
cost-effective solution for orchard variability mapping and yield prediction, particularly if costs are
shared between adjacent orchards. It is also possible that new additions such as Planet’s Dove satellites,
which offer almost daily temporal coverage, will offer a viable cost-affordable option in terms of spatial
resolution (3 m pixels). However, these sensors do not currently provide a re-edge sensor. Further
research would need to be completed to determine if the increased temporal frequency offered by the
Dove satellite constellation is able to be used for accurate avocado yield prediction.

This study only explored the relationship between yield and satellite imagery in the Bundaberg
region of Queenlsand, Australia. It is likely that different relationships will occur in other regions
and different VIs to those identified here may be the best predictors of yield. Further research will
investigate how VIs relate to avocado yield in other growing regions of Australia.

5. Conclusions

The results from this three-year study indicate that high-resolution multispectral satellite imagery
(WV2 and WV3) coupled with targeted field sampling can be used to accurately determine the spatial
variability of yield (kg·tree−1) and average fruit size (g) per tree across an avocado orchard. Although,
the relationship between canopy reflectance properties (VIs) with total fruit yield (kg·tree−1) was
largely variable, the positive relationship to fruit size (g) per tree remained consistent. This result,
offers great benefit to avocado growers as the largest fruit can be better located and then selectively
harvested at the start of the season when prices are high. This offers efficiencies in time, fuel costs and
labour. In terms of yield, the estimation accuracies achieved from satellite imagery for all five blocks in
2016 and 2017 far exceeded those derived from the ‘eyeball’ method of yield estimation. Although
RENDVI1 was identified as the best algorithm for yield estimation across all blocks, the relatively low
coefficient of determination indicated growing location and season were influencing the relationship.
To further assess the robustness of this methodology, additional growing locations and growing years
with different varieties are warranted.
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