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Abstract: In this study, the C-band radar backscatter features of the shallow water topography of
Subei Bank in the Southern Yellow Sea are statistically investigated using 25 ENVISAT (Environmental
Satellite) ASAR (advanced synthetic aperture radar) and ERS-2 (European Remote-Sensing Satellite-2)
SAR images acquired between 2006 and 2010. Different bathymetric features are found on SAR
imagery under different sea states. Under low to moderate wind speeds (3.1~6.3 m/s), the wide
bright patterns with an average width of 6 km are shown and correspond to sea surface imprints
of tidal channels formed by two adjacent sand ridges, while the sand ridges appear as narrower
(only 1 km wide), fingerlike, quasi-linear features on SAR imagery in high winds (5.4~13.9 m/s).
Two possible SAR imaging mechanisms of coastal bathymetry are proposed in the case where the
flow is parallel to the major axes of tidal channels or sand ridges. When the surface Ekman current is
opposite to the mean tidal flow, two vortexes will converge at the central line of the tidal channel in
the upper layer and form a convergent zone over the sea surface. Thus, the tidal channels are shown
as wide and bright stripes on SAR imagery. For the SAR imaging of sand ridges, all the SAR images
were acquired at low tidal levels. In this case, the ocean surface waves are possibly broken up under
strong winds when propagating from deep water to the shallower water, which leads to an increase
of surface roughness over the sand ridges.
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1. Introduction

A bathymetric measurement of shallow water is of fundamental importance to coastal
environment research and resource management. The traditional bathymetric survey uses a shipboard
sonar, single-beam, or multi-beam sounding system, which can provide high-precision data but is
costly and inefficient. With the development of remote sensing techniques, the shallow water depth
can be measured with high efficiency [1–4]. A spaceborne synthetic aperture radar (SAR), in particular,
provides valuable information of shallow water topography in all-weather and day-night conditions
with a high spatial resolution (a few to tens of meters). Although the SAR signal does not penetrate
through sea water, the bathymetric features of shallow water (water depth < 50 m) or even deep
water (water depth of about 600 m) can still be observed indirectly through the interaction between
the ocean current and the underwater topography [5–12]. Shallow water bathymetric features were
first discovered on radar images in 1969 [6,13]. Since then, many researchers have investigated
the radar imaging mechanism of underwater topography in shallow waters. In 1984, Alpers and
Hennings [7] developed a one-dimensional (1-D) SAR imaging model under the assumption that the
current velocity is primarily normal to the direction of the major axis of topographic corrugation in the
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un-stratified ocean. The model was further enhanced by Van der Kooij et al. [14], Vogelzang et al. [15],
and Romeiser and Alpers [16]. For a stratified ocean, Zheng et al. [8] obtained dynamical solutions for
the vertical propagation of disturbance signals induced by underwater topography from the ocean
bottom to the surface. All of these studies have shown that under the condition of a tidal current
perpendicular to topographic features, the underwater topography can be imaged by SAR. However,
recent satellite observations show that when the tidal current is parallel to topographic corrugations
such as underwater sand ridges, sand bars, or tidal channels, the shallow water topography can also
appear on SAR imagery [9,17–19]. These observations cannot be explained using the existing 1-D
radar imaging model. Considering the tidal convergence, Li et al. [9] developed a two-dimensional
(2-D) analytical model for the interpretation of SAR imaging of underwater sand ridges parallel to
the tidal current. Recently, Zheng et al. [17] analyzed the secondary circulation induced by the flow
parallel to the topographic corrugation by solving the three-dimensional (3-D) disturbance governing
equations of the shear-flow. The theoretical results were applied to interpret SAR imaging of tidal
channels. The above studies show that different bathymetric features might appear on SAR imagery.
Then, under what dynamic conditions can shallow water bathymetry be observed by SAR in the case
of the current being parallel to underwater topographic corrugations? Particularly, when will the sand
ridges or tidal channels be shown on SAR imagery? The answers to these questions are still unclear.

With large amounts of sediment input from the river runoff, the radial sand ridges offshore
from the middle Jiangsu coast in the Southern Yellow Sea (also called Subei Bank) were formed
as a sediment physiognomy and represent an ideal region for harbor construction, agricultural
development, and fishery production [20] (see Figure 1a). The distinguished characteristic of the
topography in this area is the unique distribution of a group of tidal channels and shallow sand ridges
radiating from Jianggang city [21] (see Figure 1b), which encompass an area larger than 200 km long
and 140 km wide [22]. The major axes of the topographic corrugations are roughly parallel to the
semidiurnal tidal currents.
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Figure 1. (a) Bathymetry (m) of the Yellow Sea and (b) Subei Bank boarded by dashed lines in panel 
(a). The bathymetry data are from ETOPO2 (National Centers for Environmental Information, 2006) 
for (a) and Sea Chart (published by China Navy Hydrographic Office, 2013) for (b). The cross sections 
A and B in (b) (black lines) are primarily perpendicular to the paralleled bright stripes on SAR 
imagery in Figure 2. The black dots denote the locations of the Dongsha and Liyashan tide gauges.  

Figure 1. (a) Bathymetry (m) of the Yellow Sea and (b) Subei Bank boarded by dashed lines in panel (a)
The bathymetry data are from ETOPO2 (National Centers for Environmental Information, 2006) for (a)
and Sea Chart (published by China Navy Hydrographic Office, 2013) for (b). The cross sections A and
B in (b) (black lines) are primarily perpendicular to the paralleled bright stripes on SAR imagery in
Figure 2. The black dots denote the locations of the Dongsha and Liyashan tide gauges.
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In this study, the radar backscatter features of the shallow water topography of Subei Bank are
investigated using ENVISAT (Environmental Satellite), ASAR (advanced synthetic aperture radar),
and European Remote-Sensing Satellite-2 (ERS-2) SAR images. We analyze the influences of wind,
current, and tide on the capability of C-band SAR in observing the underwater topography in this
region, and try to find out the possible radar imaging mechanisms.

2. Data and Methods

The SAR data used in this study include 16 ENVISAT ASAR images and nine ERS-2 SAR images
over Subei Bank in the Southern Yellow Sea acquired between 2006 and 2010. All these C-band SAR
images are VV-polarized with a nominal spatial resolution of 30 × 30 m [23]. The ASAR system has been
designed to provide continuity with ERS SAR by the European Space Agency (ESA). Compared with
the ERS-1/2 SAR launched in 1991/1995, ASAR, launched in 2002, features extended observational
capabilities, three new modes of operation, and improved performances [24]. Figure 2 presents
examples of three typical types of SAR images over Subei Bank.

SAR not only observes oceanic or atmospheric phenomena, but also provides direct measurements
of sea surface roughness that is related to sea surface wind speed (e.g., [25–28]). In this study, the sea
surface wind speed (at 10-m height) is derived from SAR using the C-band geophysical model function
CMOD5 [29] with wind direction interpolated from the six-hourly blended sea surface wind data
from NOAA/National Climatic Data Center (NCDC). The NOAA/NCDC blended sea winds with
a spatial resolution of 0.25◦ × 0.25◦ are generated by blending observations from multiple satellites,
which fills in the data gaps (in both time and space) of the individual satellite samplings and reduces
the subsampling aliases and random errors [30].

In order to investigate the contribution of the tidal current and height to the SAR imaging of
shallow water topography, we use the Tidal Model Driver (TMD) tide data to demonstrate the tide
condition when SAR images were acquired. TMD is a package for accessing the harmonic constituents
and making predictions of tidal height and currents [31,32]. As shown in Figure 3, compared with
the data from two tide gauges and the Tide Table, the TMD results perform well in the tidal phase
but present a systematic underestimation of tidal amplitude, which is possibly caused by the input
of inaccurate water depth data in the tidal model in this region. By fitting the TMD results with in
situ observations of the tidal height at Dongsha tide gauge in the lunar month of July 2014 (Figure 3a),
we obtain a relationship between the observed tidal height ζ (m) and the TMD output ζTMD (m):

ζ = 1.4612 ∗ ζTMD + 0.0016 (1)

To validate the relationship, the TMD outputs of the tidal height in lunar August 2014,
were corrected by Equation (1) and compared with in situ measurements from the same tide gauge
(Figure 3b). One can see that the root mean square error (RMSE) between the TMD results and tide
gauge observations is decreased significantly from 0.64 to 0.39 m after the correction. Similar results
can be obtained for Liyashan tide gauge data collected in lunar September 2016, with the RMSE
decreasing from 0.75 to 0.40 m (Figure 3c). Therefore, in the following study, the TMD output of the
tidal height at SAR imaging time is corrected using Equation (1) for further analysis.

The bathymetry data of the whole study area are generated from the Sea Chart published by
the China Navy Hydrographic Office in 2013 [33]. However, most Sea Chart data were measured in
1979. In addition, the data are relatively sparse and antiquated because of the evolution of sand ridges
induced by the action of tidal current year after year [34]. For more accurate and higher-resolution
water depth data, we carried out a field survey along the two cross sections A and B (Figure 1b) in
December, 2016. The measured water depth data are used to interpret the bathymetric features of
Subei Bank on SAR imagery.
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Figure 2. Examples of three typical ENVISAT ASAR images over Subei Bank: (a) image without any 
bathymetric features acquired at 13:45:32 UTC on 22 December 2008; (b) image with bathymetric 
features shown as wide bright stripes (WBS) in the small region denoted by the black rectangle, 
acquired at 13:45:29 UTC on 13 October 2008; (c) image with bathymetric features shown as narrow 
bright stripes (NBS) in the same region as (b), acquired at 13:45:28 UTC on 11 February 2008. The 

Figure 2. Examples of three typical ENVISAT ASAR images over Subei Bank: (a) image without
any bathymetric features acquired at 13:45:32 UTC on 22 December 2008; (b) image with bathymetric
features shown as wide bright stripes (WBS) in the small region denoted by the black rectangle, acquired
at 13:45:29 UTC on 13 October 2008; (c) image with bathymetric features shown as narrow bright stripes
(NBS) in the same region as (b), acquired at 13:45:28 UTC on 11 February 2008. The contours are
water depth (m). The cross sections A and B (yellow lines, also shown as black lines in Figure 1b) are
perpendicular to the paralleled bright stripes on SAR images.
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Figure 3. Comparison of the TMD results of the tidal height with in situ observations in lunar July (a) 
and August (b), 2014 at Dongsha tide gauge, and lunar September, 2016 at Liyashan tide gauge (c). 
Figure 3. Comparison of the TMD results of the tidal height with in situ observations in lunar July (a)
and August (b), 2014 at Dongsha tide gauge, and lunar September, 2016 at Liyashan tide gauge (c).
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3. Bathymetric Features of Subei Bank on SAR Imagery

From Figure 2, one can see the tidal channels or sand ridges are not always clearly shown on SAR
imagery (see Figure 2a). Under certain sea states and wind conditions, the shallow water topography
appears as fingerlike features (see Figure 2b,c). What is interesting is that distinct bathymetric features
of the same region are shown on SAR images acquired at different times. In particular, an apparent
difference occurs in the northeastern area (see the black boxes in Figure 2b,c). As shown in Figure 2b,
there are some paralleled wide bright patterns in this region, and the average width of the stripes is
about 6 km. However, the locations of the bright stripes change and are much narrower in Figure 2c
with an average width of only 1 km.

Among the 25 SAR images over Subei Bank, there are a total of eight SAR images without
any bathymetric features (e.g., Figure 2a) and 17 images showing obvious bathymetric features.
The paralleled wide bright patterns appear on five SAR images (Figure 4). By examining the Sea Chart
bathymetric data, we find the locations of the wide bright stripes mainly coincide with the deep water
area (>10 m) in this region. The relationship can be seen more clearly in Figure 5, which shows the
variation of the SAR derived normalized radar backscatter cross section (NRCS) and water depth
along the cross section A. Apparently, the wide bright stripes on this type of SAR image correspond
to the deep water region, i.e., the tidal channels. The other 12 SAR images show obviously much
narrower bright stripes at different locations (Figure 6). Comparing the variation of the NRCS with
water depth along the cross section B (Figure 7), one can clearly see that these narrow bright stripes are
sea surface imprints of underwater sand ridges. One may also notice that the SAR signal enhancement
in Figure 7 does not take place exactly over the crest of the sand ridge measured in 2016, but with
an offset of about 0.5 km westward (see the dashed blue line in Figure 7). The possible reason for this
is that the topography of Subei Bank changes with time under the action of strong tidal currents [34].
To investigate the evolution of the sand ridges, we collect two optical images from Landsat_7 Enhanced
Thematic Mapper Plus (ETM+) in 2008 (Figure 8a) and Landsat_8 Operational Land Imager (OLI) in
2016 (Figure 8b), respectively. The spatial resolution of the images is 30 m. Figure 8c shows the edge of
the sand ridge in the study area extracted from the Landsat images. The deviation of the edge lines
indicates that the sand ridges moved a little to the northeast from 2008 to 2016. This may partly explain
why there is a small deviation between the locations of the peak of SAR observed NRCS and the crest
of the sand ridge.
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deviation of 0.5 km westward.

Table 1 shows ambient wind, current, and tide conditions at the acquisition time of 25 SAR images
with or without obvious bathymetric features over Subei Bank. Most of the images with obvious
underwater topographic features (13/17) were acquired during the flood tide, while most of those
without any features (7/8) were acquired during the ebb tide. Comparing Figure 4 with Figure 6 and
judging from the extent of the shoal exposed to the sea surface, we find that the water level at the time
when the sand ridges were observed by SAR should be much lower than that when the tidal channels
were imaged. This is further validated by the corrected TMD results. The values of the tidal heights
when the SAR images with sand ridge features were acquired are all negative, and the water levels are
below the mean sea level by over 1.3 m. For the images with tidal channel features, however, the tidal
height is much larger and the water levels are all above the mean sea level. Another interesting thing
to note is that the tidal channels were observed by SAR under low to moderate winds (3.1~6.3 m/s),
while the sand ridges were detected at much higher wind speeds (5.4~13.9 m/s). This means that both
the tidal height and wind may play a significant role in the SAR imaging of shallow water topography
in this region.
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Table 1. Wind, current, and tide conditions at an imaging time of 25 SAR images.

Satellite Date Bathymetric
Features 1 Tidal Phase Wind Direction 2 Tidal Height (m) Wind Speed

(m/s) Wave Height (m) Wave Breaking
Depth (m)

Instantaneous Water
Depth (m)

1 ENVISAT 2008-04-21 WBS flood 105 0.29 6.30 1.22 1.90 4.61
2 ENVISAT 2008-10-13 WBS flood 174 1.61 4.80 0.71 1.10 5.93
3 ENVISAT 2009-04-06 WBS flood 172 1.83 3.10 0.29 0.46 6.15
4 ERS-2 2009-10-18 WBS flood 195 1.90 5.60 0.96 1.50 6.22
5 ENVISAT 2010-04-26 WBS flood 210 1.76 4.60 0.65 1.01 6.08
6 ERS-2 2006-01-22 NBS ebb 351 −1.61 6.10 1.14 1.90 1.86
7 ERS-2 2006-07-16 NBS flood 158 −1.75 10.50 3.38 5.63 1.72
8 ERS-2 2007-04-22 NBS flood 20 −1.46 9.80 2.94 4.90 2.01
9 ENVISAT 2007-08-20 NBS ebb 125 −1.75 10.10 3.12 5.20 1.72
10 ENVISAT 2007-10-29 NBS flood 24 −1.46 6.60 1.33 2.22 2.01
11 ENVISAT 2008-02-11 NBS flood 355 −2.34 9.20 2.59 4.32 1.13
12 ENVISAT 2008-08-04 NBS flood 132 −1.46 6.30 1.22 2.03 2.01
13 ENVISAT 2008-11-17 NBS flood 351 −2.34 13.90 5.91 9.86 1.13
14 ERS-2 2009-02-15 NBS flood 17 −1.46 6.50 1.29 2.16 2.01
15 ENVISAT 2009-03-02 NBS flood 28 −1.90 5.80 1.03 1.72 1.57
16 ERS-2 2009-05-31 NBS ebb 200 −2.04 5.40 0.89 1.49 1.43
17 ENVISAT 2010-03-22 NBS ebb 149 −1.31 6.60 1.33 2.22 2.16
18 ERS-2 2006-02-26 none flood 355 1.61 8.62 2.27 3.67 5.51
19 ENVISAT 2006-09-04 none ebb 45 1.02 8.00 1.96 3.16 4.92
20 ENVISAT 2008-03-17 none ebb 124 1.32 5.90 1.07 1.72 5.22
21 ENVISAT 2008-12-22 none ebb 300 0.59 7.60 1.77 2.85 4.49
22 ERS-2 2009-03-22 none ebb 342 0.44 9.20 2.59 4.18 4.34
23 ERS-2 2009-09-13 none ebb 162 −0.58 3.30 0.33 0.54 3.32
24 ENVISAT 2009-09-28 none ebb 156 −0.29 6.70 1.37 2.22 3.61
25 ENVISAT 2010-01-11 none ebb 346 1.32 10.20 3.18 5.14 5.22
1 ‘WBS’ and ‘NBS’ denote wide and narrow bright stripes, respectively. 2 The wind direction is measured in degrees clockwise from due north. A wind coming from the north
(i.e., the northerly wind) has a wind direction of 0◦ and the southerly wind has a direction of 180◦.
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of the sand ridges in the study area (yellow dashed box in (a,b)) extracted from Landsat images.
The dotted blue line denotes the edge extracted from (a) in 2008, and the light brown patch denotes the
sand ridge area extracted from (b) in 2016. The field survey along cross section B is the same as that in
Figure 1b with R1, R2, and R3 representing the locations of the sand ridge crests measured in 2016.

4. SAR Imaging Mechanisms

Why does the underwater topography in the same region have distinctive radar backscatter
features on SAR imagery? In this section, we discuss the possible imaging mechanisms of SAR imaging
of shallow water topography over Subei Bank.

4.1. SAR Imaging of Tidal Channels

The existing SAR imaging theories of underwater topography are based on the following three
processes: (1) the current and topography interaction generates sea surface current divergence or
convergence zones; (2) the divergence and convergence of the current modulate the wind-generated
sea surface wave spectrum; and (3) the variation of short surface wave height induces the backscatter
variations seen in the SAR image [9]. Considering the sidewall friction, the surface, and the bottom
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Ekman layers, the authors proposed a physics model to analyze the secondary circulation induced by
the flow parallel to underwater topographic corrugation (see Figure 9) [17]. The analytical solutions
show that in the case where the direction of the surface Ekman current is opposite to the mean flow,
there is a surface current convergent zone along the central line of a canal. Using this model, we tried
to find the possible factors causing the sea surface imprints of tidal channels on SAR images over
Subei Bank.

For the small area in this study, the wind and tidal current conditions over the tidal channels
are nearly the same. Therefore, we can take one tidal channel as a representation to analyze the SAR
imaging mechanism of the tidal channels. As sketched in Figure 9, we consider the flow in a long canal
with a free surface and rectangular cross section with two flat sidewalls. The sidewalls have a height D
and the bottom has a width 2b. A Cartesian coordinate system is set up with its origin located at the
bottom. The vertical axis z is positive upward. The horizontal axis y is perpendicular to the central line
and the vertical walls and positive leftward. The horizontal axis x is parallel to the walls and positive
downstream. The 3-D scales of the canal, L1, L2 (=2b), and L3 (=D) satisfy L1 >> L2 >> L3. The mean
flow (u, v, w) is driven by a pressure gradient externally imposed by a large-scale process, such as the
tidal waves or the ocean circulation, and is thus considered a stable process. Due to the confinement of
sidewalls, the mean flow is 1-D and parallel to the x-axis, i.e., (v, w) = 0, and has horizontal and vertical
velocity shears. The horizontal shear can be described by a parabolic profile as a plane Poiseuille
flow [35]

u(y) = − y
µ

dP0

dx
(b − y

2
), (2)

where µ is the dynamic viscosity, and dP0/dx is the externally imposed pressure gradient. On the other
hand, considering the existence of surface and bottom Ekman layers, we suppose that the vertical
shear has a sinusoidal profile with an apex at H, as follows:

u(z) = sin
πz
2H

, 0 � z � D. (3)

Thus, we have:

u(y, z) = − y
µ

dP0

dx

(
b − y

2

)
sin

πz
2H

, 0 � y � 2b, 0 � z � D. (4)

After solving the governing equations and taking some approximations (see Appendix A),
we obtain the analytical solutions:

w(y, z) = w0(sin
πz
2H

)
[1+ y(2b−y)

2(b−y)2
]
, (5)

v(y, z) = −v0

[
y(2b − y)
2(b − y)

]
(sin

πz
2H

)
y(2b−y)
2(b−y)2 cos

πz
2H

, (6)

where v0 = π(2H)−1w0.
Solutions of Equations (5) and (6) are graphically shown in Figure 10. For the study area, we take

D = 15 m, 2b = 6 km, and w0 = 0.01 m/s. One can see the secondary circulation consists of a pair of
current vortexes with opposite signs distributed symmetrically on the two sides of the central line
of the channel, a cyclonic vortex on the right and an anti-cyclonic vortex on the left. The mean flow

(
⇀
V) shear drives upwelling along two sidewalls, and the stronger it is, the closer it is to the sidewalls.

In the case of the presence of a surface Ekman layer where the direction of the Ekman current (
⇀
VE)

component is opposite to that of the mean flow (H < D and
⇀
VE·

⇀
V < 0), the two vortexes converge at

the central line of the canal in the upper layer. Thus, there is a surface current convergent zone along
the central line of the canal. In addition, the convergence gets stronger with the increase of H in the
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case of H < D (see Figure 10a–c), which may imply that the strong tidal current and weak wind are
favorable for the SAR imaging of the tidal channels. We also calculate the convergence value (∂v/∂y)
at the sea surface when H = 5/6D. The value is about 10−3 s−1 and increases with the increase of H
(H < D). Alpers (1985) [36] pointed out that 10−3 s−1 is the typical convergence value for the internal
wave imaged by SAR, which is also sufficient to explain the bright stripes over the tidal channels on
the SAR images in our study. In the case of the absence of a surface Ekman layer (H = D), there is no
current convergent zone to be formed at any depth, as shown in Figure 10d. In the case of the presence

of a surface Ekman layer with the direction identical to the mean flow (H > D, and
⇀
VE·

⇀
V > 0), the two

vortexes diverge at the central line of the canal in all the layers, as shown in Figure 10e.
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As shown in Table 1, all five SAR images with sea surface imprints of tidal channels in Subei Bank
were acquired during flood tide, implying that the tidal current was mainly flowing southward and
was parallel to the submerged sand ridges or tidal channels [37]. Meanwhile, according to the Ekman
theory [38], the wind-driven surface Ekman current flows at an angle to the right of the prevailing
wind direction. The wind direction of the five wide bright stripes images in Table 1 indicates that the
Ekman velocity has a northward component. According to the physic model, when the tidal current

and the surface Ekman current have opposite directions (
⇀
VE·

⇀
V < 0), surface current convergence

zones occur in the middle of two adjacent sand ridges, i.e., over the tidal channel region in this study.
Therefore, the tidal channels appear as wide and bright stripes on the five SAR images.

4.2. SAR Imaging of Sand Ridges

For SAR imaging of underwater sand ridges, in most cases (nine out of 12), the secondary
circulation theory is not applicable because the relationship between the tidal current and wind
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direction does not satisfy the necessary dynamic condition. However, as pointed out in the last section,
the water levels at the imaging time are far below the mean sea level by over 1.3 m. In this case, the sea
surface waves are most likely to break when propagating to shallower waters. Additionally, the ocean
wave breaking has been proved to be one of the most frequent oceanic processes in Subei Bank [39].
In the following section, we will determine whether if this is true for the cases when sand ridges were
observed by SAR.

The wave breaking generally occurs where the wave height reaches the point that the crest of the
wave actually overturns [40]. Nelson and Gonsalvas [41] studied the laboratory and field wave data
and developed a wave breaking relationship applicable to the regular and irregular waves:

γb = 0.55 + exp(−0.012 cot(m)), m ≤ 0.01 (7)

where m is the sea floor slope, and γb is the ratio of the wave height (Hw) to wave breaking water
depth (hb), i.e.,

hb =
Hw

γb
, (8)

Here, the wave breaking depth hb means that a wave will start to break when it reaches an area
where the instantaneous water depth is smaller than hb.

For the fully developed ocean waves, the wave height Hw can be expressed as [42]:

Hw =
A0

g
U10

2, (9)

where A0 is a non-dimensional constant taken to be 0.3, g is the gravitational acceleration, and U10 is
the wind speed at 10 m from the sea surface.

The mean seafloor slope of the sand ridges in the study region (see Figure 7) is close to 0.004.
Hence we have γb = 0.6. Then, using Equations (8) and (9) and the SAR-derived wind speed, the wave
height and the corresponding breaking depth at SAR imaging time are calculated and listed in Table 1.
Considering the tidal height, all the instantaneous water depths at the sand ridge locations are smaller
than the breaking depth, indicating that the surface waves under the relatively strong winds are quite
likely to break when propagating over the extremely shallow sand ridges. The increase of surface
roughness induced by breaking waves over the sand ridges will make the sea surface appear as narrow
bright stripes on SAR imagery.

4.3. Discussion

Note that for some cases where the sand ridges are observed by SAR (cases 6, 7, and 12),
or topographic features are not shown on SAR imagery (cases 19, 21, 22, and 25), the tidal current
was also opposite to the wind direction. According to the secondary circulation theory proposed
above, the tidal channels might also be observed by SAR in these cases. However, the wide bright
stripes corresponding to the tidal channels are not shown on these images. Why? If we look at the
wind and current conditions in more detail, we find the images were all acquired under high winds
(6.1~10.5 m/s), implying relatively high NRCS values throughout the study area. On the other hand,
as the output from the TMD model shows, the time differences between the acquisition times of these
SAR images and the local high or low tide times are within 1.5 h, indicating that the tidal current
velocity might be so weak (and even close to 0) that the convergence does not occur at the surface over
the tidal channels, or the signal enhancement generated by the weak convergence is not strong enough
to be observed by SAR compared to the ambient high NRCS induced by the winds.

From Figure 7, one can see that the peak NRCS positions exhibit very little movement.
One possible reason for this is that the topography of Subei Bank changes slowly with time under
the action of strong tidal currents and this change may fluctuate if the sea state changes severely
(e.g., typhoon, storm current, etc.) in some years [34,37]. From another perspective, we may be able
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to use SAR to observe the short-term change and long-term evolution of the sand ridges. For some
few cases under a relatively high wind speed where the instantaneous water depth is smaller than the
wave breaking depth, since the slope of the sand ridge in the study area is very steep, the relatively
strong wind also impelled the breaking wave to quickly propagate to the peak of the sand ridges.
Therefore, the breaking wave induced increase in surface roughness is larger over the shallower sand
ridge and is observed by SAR.

5. Conclusions

In this study, 25 ENVISAT ASAR and ERS-2 SAR images are analyzed to investigate the C-band
radar backscatter features of the shallow water topography over Subei Bank in the Southern Yellow
Sea of China, where the flow is primarily parallel to the major axes of tidal channels or sand ridges.
Based on the statistical analysis, we find the bathymetric features are not always shown on SAR
imagery. For SAR images with obvious topographic features, paralleled fingerlike bright stripes appear
at different locations and have distinct widths. The tidal channels appear as wide bright stripes with
an average width of 6 km on SAR images under low to moderate wind speeds, while the sea surface
imprints of underwater sand ridges on SAR imagery are narrow (~1 km wide), quasi-linear, bright
stripes at high winds.

Theoretical analysis suggests that the reason why tidal channels are observed by C-band SAR
under low to moderate winds is that the tidal current and the wind-driven surface Ekman current
have opposite directions. In this case, a convergent zone at the sea surface forms at the central line
of the tidal channel due to the convergence of two vortexes in the upper layer. Therefore, the tidal
channels are shown as relatively wide bright stripes on SAR imagery. However, the tidal channels
might not be able to be detected by SAR at high winds due to the high NRCS value of background
seawaters, even if the above dynamic condition is fulfilled. For SAR imaging of the sand ridges in the
study area, both the low water level and strong winds provide favorable conditions for the breaking
of ocean surface waves when propagating to the shallow waters, thus leading to an increase of SAR
observed NRCS over the shallow sand ridges.
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Appendix A. Derivation of Secondary Circulation Solutions

Consider the governing equations for a flow consisting of mean flow and disturbance:

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

+ W
∂U
∂z

− f V =
1
ρ

∂P
∂x

+ A2U + Fx, (A1)

∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y

+ W
∂V
∂z

+ f U =
1
ρ

∂P
∂y

+ A2V + Fy, (A2)

∂W
∂t

+ U
∂W
∂x

+ V
∂W
∂y

+ W
∂W
∂z

=
1
ρ

∂P
∂z

− g + A2W + Fz, (A3)
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∂U
∂x

+
∂V
∂y

+
∂W
∂z

= 0, (A4)

where f is the Coriolis parameter; P is the pressure; ρ is the water density; A is the kinetic viscosity; Fx,
Fy, and Fz are the components of external forcing; g is the gravitational acceleration; and:

U = u + u, V = v + v, W = w + w, P = p + p. (A5)

The boundary conditions are:

U = V = W = 0, f or z = 0, (A6)

and
U = V = 0, f or y = 0, and y = 2b. (A7)

Substituting (A5) into (A1)–(A4) yields the disturbance governing equations:

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

− f v =
1
ρ

∂p
∂x

+ A2u, (A8)

∂v
∂t

+ u
∂v
∂x

+ f u =
1
ρ

∂p
∂y

+ A2v, (A9)

∂w
∂t

+ u
∂w
∂x

=
1
ρ

∂p
∂y

+ A2w, (A10)

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0. (A11)

The boundary conditions are:

u = v = w = 0, f or z = 0, (A12)

and
u = v = 0, f or y = 0, and y = 2b. (A13)

In order to examine the role of velocity shear in generating the secondary circulation, we further
take the following approximations: (1) ignoring the viscous terms; (2) assuming the x-coordinate scale
of mean flow u, L, is much larger than that of the disturbance, L, thus resulting in ∂/∂t � u∂/∂x;
(3) the x-coordinate scale of disturbance is much larger than that of the y-coordinate scale, thus resulting
in ∂/∂x � ∂/∂y; (4) in Equations (A8)–(A10), the velocity shear terms are much larger than other
terms. Thus, we have the simplified disturbance equations:

v
∂u
∂y

+ w
∂u
∂z

= 0, (A14)

u
∂v
∂x

= 0, (A15)

u
∂w
∂x

= 0, (A16)

∂v
∂y

+
∂w
∂z

= 0, (A17)

From (A15) and (A16), we have:
∂v
∂x

=
∂w
∂x

= 0, (A18)
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i.e., v and w are independent of x. From (A14) and (A17), we derive a secondary circulation equation
of w:

∂w
∂y

F − ∂w
∂z

= −w
∂F
∂y

, (A19)

where F is defined as

F ≡
∂u
∂z
∂u
∂y

. (A20)

Equation (A19) has an analytical solution of

w(y, z) = w0(sin
πz
2H

)
[1+ y(2b−y)

2(b−y)2
]
, (A21)

where w0 is a constant to be determined. From (A14) we have:

v = −w(
∂u
∂z

/
∂u
∂y

), (A22)

v(y, z) = −v0

[
y(2b − y)
2(b − y)

]
(sin

πz
2H

)
y(2b−y)
2(b−y)2 cos

πz
2H

, (A23)

where v0 = π(2H)−1w0.
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