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Abstract: Hyperspectral imaging technology has been used for geological analysis for many years
wherein mineral mapping is the dominant application for hyperspectral images (HSIs). The very
high spectral resolution of HSIs enables the identification and the diagnosis of different minerals with
detection accuracy far beyond that offered by multispectral images. However, HSIs are inevitably
corrupted by noise during acquisition and transmission processes. The presence of noise may
significantly degrade the quality of the extracted mineral information. In order to improve the
accuracy of mineral mapping, denoising is a crucial pre-processing task. By leveraging on low-rank
and self-similarity properties of HSIs, this paper proposes a state-of-the-art HSI denoising algorithm
that implements two main steps: (1) signal subspace learning via fine-tuned Robust Principle
Component Analysis (RPCA); and (2) denoising the images associated with the representation
coefficients, with respect to an orthogonal subspace basis, using BM3D, a self-similarity based
state-of-the-art denoising algorithm. Accordingly, the proposed algorithm is named Hyperspectral
Denoising via Robust principle component analysis and Self-similarity (HyDRoS), which can be
considered as a supervised version of FastHyDe. The effectiveness of HyDRoS is evaluated in a
series of mineral mapping experiments using noise-reduced AVIRIS and Hyperion HSIs. In these
experiments, the proposed denoiser yielded systematically state-of-the-art performance.

Keywords: hyperspectral image; denoising; low-rank representation; self-similarity; mineral mapping

1. Introduction

In recent years, hyperspectral imaging technology has achieved great success in many applications
such as agriculture, surveillance, and mining. A convenient mental picture of a hyperspectral image
(HSI) is that of a data cube formed by the collection of hundreds (even thousands) of 2D images,
termed bands, representing the spectral reflectance of a given surface in contiguous spectral narrow
bands. We may also interpret a HSI as the collection of spectral vectors, one per pixel, with dimension
equal to the number of bands [1]. The difference between hyperspectral and multispectral images
(MSIs) is application dependent, but, in general, HSIs have comparatively higher spectral and lower
spatial resolution, whereas MSIs have lower spectral and higher spatial resolution [2]. In geological
remote sensing, multispectral images generally offer high spatial resolution for geological mapping.
The spectral resolution of these images is, however, very low, which severely constrains the application
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and development of mineral mapping. In order to address this problem, hyperspectral imaging
provides high spectral resolution in visible, near-infrared, and shortwave infrared spectral bands.
Indeed, hyperspectral imaging can be applied in many different spectral setups: Near Infrared (NIR),
Mid Infrared (MIR), Raman, Terahertz (THz) spectroscopy, etc. Owing to various constraints, HSIs often
cover only the visible and the infrared (IR) (in any of the modalities). The rich and detailed spectral
information of HSIs opens the door to the identification and quantification of a large number of minerals
with a precision beyond the reach of the techniques based on MSIs. Taking advantage of their increased
information content, HSIs have been both the natural and logical choice for hyperspectral geological
mapping during the last decades; a great deal of scholarly and practical attention has been devoted to
the application of hyperspectral mineral mapping. Research work [3] highlights the advantages of
using hyperspectral data to identify alteration minerals and defines their zonation. The work [4] uses
a knowledge-based expert system to produce mineral maps from AVIRIS HSI data. Kruse et al. [5]
compare Hyperion HSI data with airborne AVIRIS HSI data to show that Hyperion HSI data provides
the ability to remotely map basic surface mineralogy. The relevance of having HSIs with a low level
of noise or, equivalently, with a high signal-to-noise-ratio (SNR), to improve the accuracy of mineral
prediction, food spectroscopy, and of various tasks such as classification and retrieving supported
by spectral libraries has been pointed out, for example, in [6-8].

Although HSIs have become a powerful tool in regional geologic and mineral studies, there are
still some obstacles, one of which is noise. For instance, EO-1 Hyperion data has been employed
extensively on arid sites in Australia and South America, where it has been proven to perform really
well for the location and characterization of minerals and alteration zones [5,9]. However, apart from
these sites, whose HSIs are little affected by noise, Hyperion data has been less used, mainly because
most of its images have low SNR [3]. As an important pre-processing step, denoising is necessary for
nearly all subsequent processing tasks, for example, classification, unmixing, target detection, etc. It is
also important in hyperspectral remote sensing geological applications, where the common processing
chain is well documented and includes (1) denoising; (2) estimating the dimensionality; (3) locating the
purest pixels; (3) identifying endmembers based on their spectral signatures with a spectral library or
the image-derived endmembers; and (4) mapping the abundance estimation of particular endmembers.
We remark that, in low SNR HSIs, the usefulness of steps (2)—(4) relies heavily on the performance of
the denoising step (1) [10].

HSI denoising has attracted much research attention over the past decades due
to its importance in HSIs quality improvement [11]. Initially, classical denoising algorithms
conceived for 2D natural images were, with due adjustments, applied to hyperspectral data.
Examples of this research line of attack are nonlocal means (NLM) [12], total variation (TV) [13],
block-matching and three-dimensional collaborative filtering (BM3D) [14], and block-matching
and four-dimensional collaborative filtering (BM4D) [15]. Apart from BM4D, these methods are
typically applied separately in either the spatial or the spectral domain and classified as spatial-based
or spectral-based HSI denoising methods.

Spatial-based or spectral-based denoising methods fail to take advantage of the high correlation
between spectral and spatial dimensions, which has attracted much interest in HSI denoising
research. Recently, many spectral-spatial based denoising methods have been developed. In [16],
a principal component analysis (PCA) combined to BM4D method is proposed for HSI denoising.
Firstly, the principal component scores are filtered by PCA, and then, the low score components are
filtered by BM4D. Lately, low-rank property of HSI has been widely exploited and low-rank based
frameworks have become increasingly popular for HSI denoising [17]. Low-rank matrix recovery
(LRMR) in [18] is implemented with ssGoDec for HSI noise removal and achieves noticeable denoising
results. Meanwhile, in order to extend the LRMR framework in the hyperspectral denoising problem,
a noise-adjusted iterative low-rank matrix approximation (NAILRMA) [19] method has been proposed
by considering the fact that the noise intensity varies from hyperspectral bands, which is more realistic
than the previous work [18], namely closer to real scenario. The recently introduced FastHyDe [20]
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denoising algorithm fully exploits the low-rank and self-similarity properties of HSIs. FastHyDe starts
by estimating the subspace where the spectral vectors live, herein termed the signal subspace, and then
denoises the representation coefficient images, herein termed eigen-images using a state-of-the-art
self-similarity denoiser. Experimental results in [20] have shown that FastHyDe is state-of-the-art and,
arguably, the fastest HSI denoising algorithm.

Contribution

HyDRoS, the denoising algorithm herein proposed, is inspired by FastHyDe. As in FastHyDe,
HyDRoS exploits HSI low-rank property and self-similarity by implementing two consecutive steps:
(1) signal subspace learning; and (2) denoising the eigen-images associated with the representation
coefficients using a self-similarity based state-of-the-art denoising algorithm. Since the signal subspace
has much smaller dimension than the number of bands, the first step largely attenuates the noise
and renders a much lighter inverse problem, from the computational point of view. The second step
exploits the fact that the eigen-images are self-similar, and thus they may be effectively denoised
with a state-of-the-art self-similarity based denoiser.

The main contributions regard a robust estimation of the signal subspace and the assessment
of HSI denoising performance in mineral mapping applications. In more detail, the contributions are
the following:

1.  Decomposing the observed data as the sum of a low-rank matrix and a sparse matrix containing
outliers. The decomposition is solved by the robust principle component analysis (RPCA)
algorithm [21]. The estimated signal subspace corresponds to the column span of the low-rank
matrix and is a sub-product of RPCA. This procedure, which allows to control the dimension
of the signal subspace by a proper setting of the RPCA regularization parameters, brings
robustness to the signal subspace estimation and underlies performance gains with respect
to an unsupervised version of FastHyDe, as shown in Section 3.

2. Extending the application of HSI denoising methods. The denoised spectra are used to do
hyperspectral mineral mapping by two methods: Spectral Angle Mapping (SAM) [22]
and Spectral Feature Fitting (SFF) [23]. Using the noise-reduced HSI data, pixels related to
three kinds of minerals presented in the Cuprite data sets, NV, USA, namely Alunite, Chalcedony,
and Kaolinite, are mapped by SAM and SFF methods. Receiver operating characteristic (ROC)
curves [24] and the area under ROC curves (AUC) are displayed to evaluate the mapping accuracy,
which can be considered as an indicator of the denoising performance.

The rest of this paper is organized as follows: Section 2 introduces the low-rank representation
based HyDRoS denoising method. Section 3 evaluates the performance of the proposed method
by comparison with state-of-the-art HSI denoising methods in both simulated data with artificial noise
and real data experiments using the data sets collected by the Airborne Visible/Infrared Imaging
Spectrometer (AVIRIS) and Hyperion on board NASA’s EO-1 satellite over the Cuprite Mining District,
NV, USA. Then, hyperspectral mineral mapping is conducted on the noise-reduced HSI data sets
obtained by different denoising methods to show the impact of denoising on mineral mapping accuracy.
Section 4 discusses the denoising performance for the proposed HyDRoS algorithm. Finally, Section 5
presents conclusions and remarks.

2. Proposed Low-Rank Representation Based Denoising Method

High dimensional hyperspectral data admits low-rank and sparse representations owing
to the very high correlation among spectral channels and spatial pixels [25,26]. For the hyperspectral
remote sensing image denoising problem, the low-rank representation (LRR) based method has
proven to be a powerful tool [19,20,27,28]. The proposed hyperspectral denoising method integrates
spatial filtering, in addition to a low-rank structure, which promotes self-similar bands. Section 2.1
explains the low-rank structure of HSI in detail; Section 2.2 introduces eigen-image filtering, exploiting
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self-similarity; Section 2.3 proposes our denoising method combining low-rank representation
and eigen-image filtering.

2.1. Low-Rank Structure Of HSI

Let X = [xy,...,Xs] € R™*" be a matrix representation of a given HSI with n spatial samples
(the columns of X) of size n, (the number of bands). In the hyperspectral imaging systems
carried on satellite platforms, there is often the problem that some pixels are much noisier than
others and sparsely distributed (relative to the independent identically distributed (i.i.d) noise) [29].
These perturbations are called outliers and are represented by matrix S € R"*". The degradation
model of the observed HSI, which is denoted by Y = [y1, ..., yu] € R™*", is often expressed as the sum
of a noise-free HSI matrix X, an outlier matrix S, and additive noise N € R"*" that is,

Y=X+S+N. 1)

In real-world HSIs, the high correlation among bands implies that the rank of X is much lower
than n;, [28]. Therefore, X in Equation (1) can be expressed by a linear combination of a basis
E = [e,..,ep] € R"*F and a coefficient matrix Z = [z,...,z,] € RP*" with respect to (w.r.t) E,
with p < ny,:

X =EZ. ()

Figure 1 illustrates a common property of HSIs: the dimension of signal subspace, p, is much
lower than the number of bands, n;, . Figure 1 is given as an example in real scenarios: Figure 1a,b
show a clean data cube X € R"*" and a noisy HSI data cube Y € R™*", respectively. Figure lc
plots the eigenvalues of the sample correlation matrices XX /n and YYT /1 ordered by non-increasing
values. Clearly, the bulk of the signal energy, shown in green, is able to be explained by less than p = 6
components; while the bulk of noisy observation energy, shown in red, can only be explained by using
a number of components much higher than p due to the existence of noise.
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Figure 1. (a) Clean HSI data cube; (b) Noisy HSI data cube; (c) Eigenvalues of the sample correlation
matrices computed from the clean and noisy observations shown in (a,b), respectively.

We herein adopt RPCA, firstly proposed by Wright et al. [21], to estimate the p-dimensional signal
subspace from the noisy observation Y, with p < n,. RPCA decomposes the observed data matrix
Y € R™*" into the sum of a low-rank matrix X € R™*" and a sparse matrix S € R"™*".

The RPCA problem in the presence of noise can be formulated as

1
r;(usn E”Y—X—S|‘§+Trank(X)+’y||S||o, 3)
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where ||X||2 = trace(XXT) is the Frobenious norm of X, ||S||o denotes the number of non-zero
components of S, abusively termed the {p-norm of S, and 7, ¥ > 0 set the relative weight of the terms
rank(X) and ||S||p. Optimization Equation (3) is non-convex and no efficient solution is known.
Following a popular approach [30-32], in order to obtain a tractable optimization problem, we replace
the Jp-norm with /;-norm given by ||S||1 = Y}, [|si[l1, where s; denotes the i-th columns of S,
and rank(X) with the nuclear norm ||X||. = }; 0; (X) , where 0;(X) denotes the i-th singular value of X.
The obtained convex optimization is written as

min 2 [Y = X = 8|+ T [X + 1], @
where T,A > 0 set the relative weight of the terms ||X||« and ||S||; and are manually adjusted.

Considering that RPCA is a robust subspace learning method against sparse outliers, we employ
RPCA to estimate the signal subspace E and outliers matrix S from noisy HSI observation.
To solve optimization Equation (4), and under the assumption on i.i.d noise, we run the publicly
available accelerated proximal gradient singular value thresholding algorithm [33], which terminates
in O (1/+/€) iterations with an e-optimal solution. Part of the computational effectiveness of this
algorithm relies on the use of the PROPACK package [34] to efficiently compute partial singular
value decompositions (SVDs).

2.2. Eigen-Image Filtering Exploiting Self-Similarity

From the estimated outlier matrix §, we compute

Y:=Y-S. ®)

Then, the observation model of Y becomes

Y=X+N=EZ+N, (6)

where matrix E = [ey,...,ep] € R"*7 is obtained by solving Equation (4). As already mentioned,
the p rows of Z are termed eigen-images. We remark that

p
X=EZ=

eiZ(i,:), @)
i=1

where Z(i,:) denotes the i-th eigen-image, that is, the i-th row of Z. Given the observation model

Equation (6), our denoising inverse problem consists in computing X = EZ, where X and Z are

estimates of X and of Z, respectively. At this point, a few remarks are worth noting;:

1. LetPr and P denote, respectively, the projection matrices onto span(E), that is, onto the linear
space spanned by the columns of E and onto the orthogonal complement of span(E).
Multiplying Pr by Y, we have PrY = EZ + PrN and Pﬁ? = P£N. We conclude, therefore,
that Z is affected only by PEN which, in the case of i.i.d. noise, has power p/n; times smaller than
power of N. The representation in the subspace alone yields therefore a large noise attenuation.

2. From the equation Z = (ETE) " 'ETX, we conclude that the eigen-images are linear combinations
of the bands of X. Since the hyperspectral bands represent reflectance of the same surface
at different wavelengths, the spatial structure of the self-similarity is the same across all HSI
bands. We conclude, therefore, that the eigen-images are self-similar as well.

In order to clarify the two above remarks clearly, Figure 2 shows the eigen-images obtained
by projecting an HSI into the low dimensional signal subspace. Figure 2a—c are 2nd—4th eigen-images
Z="P E? of the AVIRIS HSI data set acquired at Cuprite, NV, USA, and it is clear that there is still
some residual noise in the eigen-images. A natural conclusion is that the eigen-images Z = PrY
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may be effectively denoised by a state-of-the-art self-similarity based algorithm. In this work, we use
BMB3D [14], which operates on a single image. BM3D is based on an enhanced sparse representation
in the transform domain and is realized by three successive steps for groups of similar patches:
3-D transformation, collaborative filtering, and inverse 3-D transformation. Figure 2d—f show the BM3D
filtered eigen-images corresponding to Figure 2a—c, in which the noise is obviously reduced. Figure 2
shows that BM3D efficiently filters out the noise from the eigen-images.

(d) ()

Figure 2.  Eigen-images of an AVIRIS hyperspectral image at Cuprite Mining District
before and after filtering: (a) 2nd eigen-image; (b) 3rd eigen-image; (c) 4th eigen-image; (d) 2nd
filtered eigen-image; (e) 3rd filtered eigen-image; (f) 4th filtered eigen-image.

2.3. Proposed HyDRoS Algorithm
The inverse problem which consists in estimating Z from Y is formalized as follows:

~ 1 ~
Z = argmin 3 |[EZ — Y|} + Ap (2) ®)

= argmin 2 ||Z ~ E"YI[} + 19 (2), ©)
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The first term on the right hand side of Equation (8) is the data fidelity; ¢(Z) is a regularizer
tailored to promote self-similar images, and A > 0 is a regularization parameter. The optimization
Equation (9) follows from Equation (8) because matrix E is, by design, orthogonal, that is, E'E = I,,,
where I, stands for the identity matrix of size p.

Owing to the orthogonality of E, the components of Z tend to be decorrelated.
Although decorrelation does not imply independency, it is a necessary condition. Herein, we assume
that function ¢ is decoupled w.r.t. the eigen-images. Therefore, the solution of optimization Equation (9)
is to decouple each row of Z; this may be written as

Prgy (e{?)
Z= g (ET?) = ; , (10)

where ¢y, (y) = arg rr}Airn % |y — w||2 4+ A¢; (w), fori = 1,..., p, is the so-called proximity operator
of ¢; [35]. In this paper, we apply BM3D as a denoiser for each eigen-image. That is, instead of investing
efforts in tailoring regularizer ¢;, promoting self-similar images and then computing its proximity
operators, we directly use a state-of-the-art denoiser conceived to enforce self-similarity. We selected
BM3D, as it is the state-of-the-art, very fast to implement and is publicly available. The denoised HSI
is estimated as

X = EZ. (11)

Algorithm 1 shows the pseudo code of the proposed algorithm.

Algorithm 1 HyDRoS denoising algorithm

1: Input: Noisy HSI observation Y

2: Learn subspaces basis E € R"*? and outliers matrix S from Y by RPCA
3: Compute Y :=Y — S

4: Filter the eigen-images: Z = Prg (ETY) by BM3D

5: Compute the inverse transform X = EZ to obtain the noise reduced HSI
6: Output: Denoised HSI X

3. Experiments and Results

The proposed denoising algorithm HyDRoS is tested with simulated and real data.
Hyperspectral data sets collected by the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
and NASA’s EO-1 Hyperion sensor at Cuprite, NV, USA, are used as simulated data and real data,
respectively. In the simulated data experiments, artificial noise is added to high SNR AVIRIS data
to get the simulated noisy AVIRIS HSIs. The denoising performance is evaluated by comparing
the noise-reduced HSI data with original AVIRIS data. In the real data experiments, the comparatively
low SNR Hyperion HSI data is directly used as real data without a clean reference.

To further verify the effectiveness of the proposed HyDRoS with both high SNR and low SNR
HSI data sets, hyperspectral mineral mapping experiments at Cuprite, NV, USA, are conducted
on the noise-reduced HSI data sets. Cuprite, NV, USA, located approximately 200 km northwest
of Las Vegas, is well understood mineralogically [5,36,37] and has been used as a geological remote
sensing test site since the early 1980s [36,38-41]. Among the 18 minerals presented in this area, three
of them (Alunite, Chalcedony, and Kaolinite) are selected because their outcrops can be spatially
and spectrally clearly identified with both high SNR AVIRIS and low SNR Hyperion HSI data
simultaneously. In hyperspectral geological mapping and exploration, minerals can be more accurately
identified with high SNR HSI data [4]. Therefore, the mapping accuracy of the three minerals



Remote Sens. 2017, 9, 1145 8 of 20

provides evidence of the quality of the noise-reduced HSI data, and can be considered as an indicator
of denoising performance.

Six state-of-the-art HSI denoising methods are used as comparative methods in both simulated
and real experiments, namely BM3D [14], BM4D [15], PCA + BM4D [16], LRMR [27], NAILRMA [19]
and FastHyDe [20]. BM3D, a single band filter, is applied to HSI band by band. PCA + BM4D first
performs PCA to the noisy HSI data cube and uses a BM4D filter to reduce the noise in the low score
components. LRMR is a HSI restoration method based on low-rank matrix recovery, and NAILRMA
is a patch-wise low-rank matrix approximation based HSI denoising method under an iterative
regularization framework. The parameters in LRMR and NAILRMA are manually tuned to obtain
optimal results in our experiment. FastHyDe is an efficient fast hyperspectral denoising method based
on low-rank and sparse representations. Note that, we implemented an unsupervised version of
FastHyDe, wherein called FastHyDe(un), where the subspace is learnt by HySime [42], which is an
unsupervised estimation technique conceived to preserve the signal subspace directions with SNR>1.

3.1. Simulated Data Experiments with AVIRIS HSI Data

3.1.1. Data Description

In the simulated data experiments, the AVIRIS HSI data set is used as simulated data with added
artificial noise. The data was captured at Cuprite, NV, USA, by AVIRIS hyperspectral sensor on 2 May
2006. AVIRIS hyperspectral sensor collects data in 224 contiguous spectral bands with a bandwidth of
10 nm, and has a contiguous spectrum over the range from 400 nm to 2500 nm. The spatial resolution
of AVIRIS HSI data used in this study is 3.4 m.

Figure 3a shows a false-color composite image of AVIRIS HSI data captured at Cuprite Mining
District; Figure 3b,c are a reference mineral map and reference spectral signatures of the three dominant
minerals. This data set can be retrieved from http:/ /aviris.jpl.nasa.gov/. Spectral bands covering
between 2000 nm and 2400 nm in shortwave infrared (SWIR) wavelength range are particularly useful
for mineralogical mapping studies because SWIR contains a large number of absorption features
which may be used as a diagnostic of the presence of certain hydroxyl and carbonate bearing minerals
or mineral groups [43]. In this study, 51 AVIRIS hyperspectral bands (band 174-224 or wavelength
range from 2004.8 nm to 2503.5 nm) of size 2100 rows x 1560 columns, have been selected in the
experiments with simulated data.

3500 f — Alunite
~——— Chalcedony

— Kaolinite

3000+

2500

2000+

Reflectance(x10000)

1500

| E Aunite 2100 2200 2300 2400 2500
4 8 m Chalcedony Wavelength(nm)
TR e

Il Kaolinite (C)

(@) )

Figure 3. AVIRIS hyperspectral data acquired at Cuprite Mining District: (a) false-color image
(R: band 183 (2095.0 nm ), G: band 193 (2195.0 nm), and B: band 207 (2334.6 nm); (b) reference
mineral map for Alunite, Chalcedony, and Kaolinite of (a); (c) reference spectral signatures for Alunite,
Chalcedony, and Kaolinite.
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3.1.2. Evaluation Indexes

In simulated data, the evaluation of the proposed denoising HyDRoS algorithm is carried
out by quantitative assessment of the noise-reduced image quality and mineral mapping accuracy.

Two full reference indexes are used for noise-reduced image quality evaluation: the peak
signal-to-noise ratio (PSNR) and the structural similarity (SSIM). Artificial noise is added to the high
SNR AVIRIS data to get the simulated noisy AVIRIS HSIs, while the original AVIRIS data is regarded
as a clean reference. MPSNR and MSSIM denote the mean PSNR and mean SSIM index over bands.
Note that SSIM in this paper refers to the structural similarity index metric of one band, and MSSIM
refers to the mean value of the SSIM index over all bands, which are different from the definitions
of SSIM and MSSIM in [44]. Both indexes are full reference metrics that require a reference image
and a denoised image. Higher index values indicate better image quality.

Mineral mapping accuracy is used as a quality indicator for noise-reduced HSI data sets.
SAM [22] and SFF [23] are implemented to identify the three dominant minerals at Cuprite Mining
District. SAM is used for the similarity measurement between the unknown mineral spectra
and the reference spectra. SFF is an absorption feature based methodology utilized to fit the unknown
spectra to the reference spectra. It compares the fit of unknown spectra to reference spectra using
a least-squares technique.

Mineral mapping accuracy estimated by SAM and SFF is presented in the form of receiver
operating characteristics (ROC) [24] curves and the area under ROC curves (AUC). ROC curves
provide visual information about the performance of binary mineral mapping using the noise-reduced
HSI data. The horizontal coordinate of the ROC curve indicates the false alarm rate, while the vertical
coordinate indicates the detection rate. AUC is estimated to compare the overall mapping accuracies
for different denoising methods.

3.1.3. Experimental Results

In the simulated data experiments, Gaussian i.i.d. noise and non-i.i.d. noise is added to AVIRIS
hyperspectral data (of size 2100 rows x 1560 columns x 51 bands). AVIRIS data is used as a reference
in denoising because the spectral bands of AVIRIS have high SNR [45]. As one of the bands (2493.6 nm)
in the SWIR spectral range is heavily contaminated by noise, it was removed and 50 bands are
ultimately selected. The gray values of each HSI band are normalized to [0, 1] before denoising
and converted to the original level after that. Since the additive noise model is the situation usually
found in HSIs and many HSI denoising algorithms have been derived based on this model [46],
Gaussian i.i.d. noise is added to the reference AVIRIS data in case 1; the variance values are 0.02, 0.04,
0.06, 0.08 and 0.1. However, in real scenarios, the simplified assumption of i.i.d. noise breaks down,
and the noise which exists in a natural HSI is usually non-i.i.d, namely with band-dependent variance
[11]. In other words, different bands in HSI have different noise variances. So different variance
zero-mean Gaussian noise is added to each band of the reference AVIRIS data in case 2, and the
variance values are randomly selected from 0 to 0.1 with the mean value of 0.053. Noise variance in
each case is presented in Figure 4.

The HSI noise degradation model Equation (1) assumes Gaussian i.i.d. noise, meaning that N is
constituted by additive, zero-mean, Gaussian noise. If the spectral vectors n; in N are uncorrelated,
then the covariance matrix Cy = E [ninﬂ is diagonal and C, = ¢I. This is not the case with non-i.i.d
noise, where the spectral vectors are correlated, thus the covariance is not a diagonal matrix. In order to
convert the non-i.i.d noise to i.i.d noise, a whitening transformation [47,48] is applied to the observation
Y prior to the denoising methods in case 2. Let

Y:=,/ClY, (12)
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where C, is the covariance matrix of Y. The whitened data Y is uncorrelated and has unit variance.
In practice, a small constant ¢ = 10~ is added to C, to prevent singularities. The noise degradation

model in case 2 becomes
Y =,/C;'X+,/C;'N.

Subsequently, the proposed HyDRoS denoising model can be formulated as
=N 1~ STSI2 ~
Z= argmzln§||Z —E'Y|[F+A¢ (Z) :

Finally, the noise-reduced HSI can be estimated as

0.12r
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[\ A /\ case 2
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Figure 4. Power of signal/noise and performance of HyDRoS with band reduction.
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Table 1 shows MPSNR and MSSIM indexes of the noise-reduced AVIRIS HSI data, in which
the highest values are shown in bold and where HyDRoS achieves the highest values in almost

every case.

Table 1. Quantitative assessment of the different denoising algorithms applied to AVIRIS hyperspectral

data at Cuprite Mining District.

o Index Er(\);?e, BM3D BM4D PCA+BM4D LRMR NAILRMA FastHyDe(un) HyDRoS
002 MPSNR(dB) 3398 3916 4352 45.38 44.16 46.11 45.61 47.23
MSSIM 0.7899 09268 09715 0.9813 09756  0.9832 0.9865 0.9870
004 MPSNR(B) 2796 3723 4012 40.27 40.96 4220 4327 44.03
‘ MSSIM 05049 09030  0.9432 0.9474 09655  0.9636 0.9752 0.9757
Casel 00¢ MPSNR(B) 2444 3521 3838 37.59 38.83 39.67 41.30 42.04
: MSSIM 03294 08564 09213 0.9007 09392 09377 0.9631 0.9637
00s MPSNR(dB) 2194 3433 3723 35.22 36.94 37.66 40.26 40.70
: MSSIM 02285 0.8379  0.9030 0.8439 09022 09043 0.9521 0.9523
04 MPSNR(dB) 2000  33.69  36.37 33.42 35.66 36.01 39.22 39.68
MSSIM 0.1676  0.8256  0.8861 0.7839 0.8683  0.8662 0.9420 0.9418
Case? MPSNR (dB) 2751 3294  38.02 36.78 3857 4243 43.99 44.93
MSSIM 04619 0.8048  0.9066 0.8806 09350  0.9670 0.9837 0.9838
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Figure 5. PSNR of each band after denoising for different noise variances: (a) ¢ =0.02; (b) o = 0.04;
(c) 0 =0.06; (d) c =0.08; (e) 0 =0.1; (f) mean(c) = 0.053.

Figure 5 presents the PSNR value of each band in detail for the noise-reduced AVIRIS HSI data
obtained by the seven denoising methods in case 1 and case 2. HyDRoS displays significantly higher
values than competitors in both cases.

Figure 6 shows that the hyperspectral signal can be completely restored using a subspace of very
low dimension, and the highest PSNR value for the dimension of the subspace it chooses.

Figure 7 compares the spectral signatures of the three minerals denoised by HyDRoS
with the reference spectral signatures. Figure 7a is the spectrum signatures of Alunite; Figure 7b
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is the spectrum signatures of Chalcedony; Figure 7c is the spectrum signatures of Kaolinite. Since case
2 is closer to real scenario, the denoised spectral signatures in Figure 7 are selected from noise-reduced
data in case 2.
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Figure 6. Power of the signal (green) and of the noise (red) and performance of HyDRoS as a function

of the subspace dimension.
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Figure 7. Spectral signatures of the three minerals before and after denoising: (a) pixel located
at (257, 629) in the ROI of Alunite; (b) pixel located at (1359, 1071) in the ROI of Chalcedony;
(c) pixel located at (157, 503) in the ROI of Kaolinite.

Figures 8 and 9 compare ROC curves of mineral mapping results obtained by SAM and SFF
methods using noise-reduced AVIRIS HSI data, in which the curve closer to the upper left corner reveals
higher mineral mapping accuracy. Tables 2 and 3 present AUC values of ROC curves in Figures 8 and 9,
in which the highest values are shown in bold and HyDRoS gets the highest value for every mineral.
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Figure 8. ROC curves for the three minerals obtained by SAM: (a) Alunite; (b) Chalcedony; (c) Kaolinite.

PCA+BM4D

- —FastHyDe(un)
| | HyDRoS
0 0.2 0.4 0.6 0.8 1
False Alarm Rate
(a)

1
0.8
o [
Sost—ff- L
c
i1 8
| _—Noisy 3 . ,,3, /. | _—Noisy
" —BM3D 04 i —BM3D
BM4D a BM4D
PCA+BM4D PCA+BM4D
4--—LRMR 0.2 4--—LRMR
! —NAILRMA ! —NAILRMA
--- —FastHyDe(un) A --- —FastHyDe(un)
/ : : HyDRoS ) : : HyDRoS
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
False Alarm Rate False Alarm Rate
(b) (c)

Figure 9. ROC curves for the three minerals obtained by SFF: (a) Alunite; (b) Chalcedony; (c) Kaolinite.

Table 2. AUC obtained by SAM for AVIRIS noise-reduced HSI data at Cuprite Mining District.

Alunite Chalcedony Kaolinite
Noisy 0.7508 0.6878 0.7396
BM3D 0.9880 0.9693 0.9679
BM4D 0.9913 0.9358 0.9842
PCA + BM4D  0.9746 0.8671 0.9351
LRMR 0.9697 0.9168 0.8981
NAILRMA 0.9903 0.9756 0.9815
FastHyDe(un)  0.9936 0.9139 0.9836
HyDRoS 0.9941 0.9808 0.9888

Table 3. AUC obtained by SFF for AVIRIS noise-reduced HSI data at Cuprite Mining District.

Alunite Chalcedony Kaolinite
Noisy 0.7886 0.4884 0.6269
BM3D 0.9825 0.6620 0.8598
BM4D 0.9800 0.6178 0.8743
PCA +BM4D  0.8936 0.5448 0.7860
LRMR 0.9615 0.5703 0.7951
NAILRMA 0.9807 0.5872 0.8744
FastHyDe(un)  0.9861 0.5183 0.8924
HyDRoS 0.9877 0.6508 0.8948
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3.2. Real Data Experiments With Hyperion HSI Data

3.2.1. Data Description

The Hyperion HSI data set is used as real data. The data was captured at Cuprite, NV, USA,
by Hyperion hyperspectral sensor on 19 September 2011. Hyperion hyperspectral sensor collects
data in 242 channels with a spectral resolution of 10 nm, and has a contiguous spectrum covering
from 355.0 nm to 2577.0 nm. The spatial resolution of Hyperion HSI data used in this study is
approximately 30 m.

Figure 10a shows a false-color composite image of Hyperion HSI data captured at Cuprite Mining
District; Figure 10b,c are a reference mineral map and reference spectral signatures of the three
minerals. The data set used in this study is Hyperion level 1R data and can be retrieved
from https:/ /earthexplorer.usgs.gov/. Level 1R data has already been radiometrically corrected, but it
still needs the following pre-processing before conducting mineral mapping: band selection, destriping,
atmospheric correction, geometric correction and registration. The flowchart of pre-processing steps
is shown in Figure 11. Forty out of the Hyperion hyperspectral bands (band 185-224 or wavelength
range from 2002.1 nm to 2395.5 nm) of size 238 rows X 176 columns are selected for mineral mapping
in the real data experiment.

3500 f —— Alunite
~——— Chalcedony
—— Kaolinite
S 3000F
o
o
o
<
X
& 25001
f=4
]
o
L5}
T 2000]
4
Bl Aunte 1500t ‘ ‘ ‘ ‘
| [ Chalcedony 2100 2200 2300 2400 2500
“_Q’. Il Kaolinite Wavelength(nm)

(b) (c)

Figure 10. Hyperion hyperspectral data acquired at Cuprite Mining District: (a) false-color image
(R: band 194 (2092.8 nm), G: band 204 (2193.7 nm ), and B: band 218 (2335.0 nm)); (b) reference
mineral map for Alunite, Chalcedony, and Kaolinite of (a); (c) reference spectral signatures for Alunite,
Chalcedony, and Kaolinite.

Y YN Y Y
[ Hyperion L1R data [—» Band selection H Atomosp_herlc ’—» Destriping ‘
‘ ‘ , \ correction \ |
\ 4 \ 4 \ / \ l _/
- N : I a I a I
[ Mineral mapping ’ HyDRoS ' Redistration ‘ Geometric ‘
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[ Accuracy [
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Figure 11. Flowchart of the real data experiment using Hyperion Level 1R data.
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3.2.2. Evaluation Indexes

The evaluation of the proposed denoising HyDRoS algorithm is performed by visual comparison,
quantitative assessment with mineral mapping accuracy, and computational time.

Since the reference is unknown, we resort to visual evaluation to get a qualitative assessment
of the noise-reduced Hyperion HSI data.

Mineral mapping accuracy is used as a quantitative assessment for the denoising performance
of HyDRoS, which is the same evaluation as in the simulated data experiments. ROC curves and
AUC obtained by SAM and SFF methods are used to illustrate the validity of the HyDRoS denoising
algorithm.

Computation time of different denoising methods is compared to evaluate the computational
performance of HyDROoS in the real data experiment.

3.2.3. Experimental Results

Figure 12 presents the denoising results of the 37-th band (2365.2 nm) for Hyperion HSI data,
in which Figure 12h denoised by HyDRoS shows the best visual quality.

Figure 12. Denoising results for band 37 (2365.2 nm) of the Hyperion hyperspectral image at Cuprite
Mining District: (a) original; (b) BM3D (16 s); (c) BM4D (69 s); (d) PCA + BM4D (58 s); (e) LRMR (21 s);
(f) NAILRMA (46 s); (g) FastHyDe(un) (11 s); (h) HyDRoS (34 s).

Figures 13 and 14 compare ROC curves of mineral mapping results obtained by SAM and SFF
methods using noise-reduced Hyperion HSI data, in which the curve closer to the upper left corner
reveals higher mineral mapping accuracy. Tables 4 and 5 present AUC values of ROC curves
in Figures 13 and 14, in which the highest values are shown in bold and HyDRoS obtains the highest
value in every mineral.
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Computational time is presented in the caption of Figure 12 and the shortest time is shown in bold.
The algorithms were implemented using MATLAB R2014a on a desktop PC equipped with eight Intel
Core i7-6700 CPU @ 3.4 GHz and 8 GB of RAM memory.
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Figure 13. ROC curves for the three
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Figure 14. ROC curves for the three minerals obtained by SFF: (a) Alunite; (b) Chalcedony; (c) Kaolinite.

Table 4. AUC obtained by SAM for Hyperion noise-reduced HSI data at Cuprite Mining District.

Alunite Chalcedony Kaolinite
Original 0.8925 0.7852 0.7894
BM3D 0.8972 0.8152 0.7935
BM4D 0.8984 0.8190 0.7929
PCA +BM4D  0.8856 0.8098 0.7823
LRMR 0.8965 0.8094 0.7910
NAILRMA 0.8837 0.8094 0.7799
FastHyDe(un)  0.8952 0.8181 0.7870
HyDRoS 0.9547 0.8350 0.8278
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Table 5. AUC obtained by SFF for Hyperion noise-reduced HSI data at Cuprite Mining District.

Alunite Chalcedony Kaolinite

Original 0.8077 0.4443 0.6311
BM3D 0.8337 0.4369 0.6383
BM4D 0.8315 0.4302 0.6353
PCA + BM4D  0.8227 0.4306 0.6305
LRMR 0.8205 0.4149 0.6257
NAILRMA 0.8178 0.4305 0.6233
FastHyDe(un)  0.8314 0.4345 0.6519

HyDRoS 0.8983 0.5062 0.6983

4. Discussion

This section discusses the denoising performance of HyDRoS and the results are shown
in Sections 3.1.3 and 3.2.3. Before the discussion, we remark that all the compared methods, apart from
FastHyDe(un), are supervised in the sense that the parameters are tuned for optimal performance.
FastHyDe(un), on the contrary, is unsupervised and therefore cannot be considered as a direct
competitor.

Based on the performance evaluation in the simulated data experimental results from Section 3.1.3,
it can be seen in Table 1 and Figure 5 that HyDRoS gets the highest PSNR and SSIM index values
in almost every case. In case 1, as the noise variance level increases from 0.02 to 0.1 in Figure 5a—e,
the PSNR value decreases gradually, in which HyDRoS almost manages to get the highest PSNR value
in every band and every case. In case 2 of Table 1, which is closer to real scenario, HyDRoS gets
the highest PSNR and SSIM index values. Quantitative assessment of the noise-reduced HSI
data with PSNR and SSIM indexes shows that HyDRoS is effective with respect to HSI image
quality improvement. The denoised spectral signatures of case 2 in Figure 7 show good agreement
with the reference spectral signatures, which provides evidence that HyDRoS can efficiently recover
the spectral signatures as well, though they are heavily contaminated by noise. Figure 6 gives evidence
that the robust subspace identification used in HyDRoS contributes to its performance gains. ROC
curves in Figures 8 and 9 compare the mineral mapping accuracy of the seven denoising methods,
in which HyDRoS gets almost uniformly the highest accuracy for every mineral. Tables 2 and 3 present
the corresponding AUC values of Figures 8 and 9, in which higher AUC indicates better image quality
and HyDRoS manages to achieve the best performance. Figures 8 and 9 and Tables 2 and 3 reveal that
HyDRoS significantly improves mineral mapping accuracy compared with competitors, indicating its
effectiveness for HSI denoising. In terms of image quality and mineral mapping accuracy evaluations,
HyDROoS achieves the best denoising performance in the simulated data experiments.

Based on the performance evaluation in real data experimental results from Section 3.2.3, it can be
seen that HyDRoS achieves a good visual effect in Figure 12. ROC curves in Figures 13 and 14 show
that HyDRoS significantly improves mineral mapping accuracy when compared with the original noisy
HSI data, and achieves higher accuracy than other denoising methods. AUC values corresponding
to Figures 13 and 14 in Tables 4 and 5 illustrate that the highest mineral mapping accuracy is
implemented with HyDRoS. Regarding the computational time shown in the caption of Figure 12,
HyDROoS is within an acceptable range, relative to the competitors such as BM4D, PCA + BM4D
and NAILRMA. In terms of visual effect, computational time and mineral mapping accuracy
evaluations, HyDRoS outperforms other HSI denoising methods in the real data experiment.

5. Conclusions

Hyperspectral image denoising is an important pre-processing step for subsequent applications.
The proposed HSI low-rank representation based denoising method, called HyDRoS, implements
three steps: firstly, it applies RPCA to get the signal subspace and eigen-images of the observed HSI
under the low-rank constraint, then it applies a BM3D filter to denoise the eigen-images, exploiting
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the self-similarity property, and finally the noise-reduced HSI is obtained by an inverse transformation.
The structure of HyDRoS parallels the structure of FastHyDe(un). The main difference is that the
former uses RPCA, with a mild form of supervision, to estimate the signal subspace and the presence of
outliers, whereas the latter does not consider outliers and learns the subspace blindly. This difference
turns out to be important and is the main reason for the better performance of HyDRoS.

This study highlights the importance of denoising for hyperspectral mineral mapping.
Two hyperspectral data sets acquired at Cuprite, NV, USA, were used as simulated and real data,
respectively. Both simulated and real data experiments provide evidence that noise-reduced AVIRIS
and Hyperion hyperspectral data helps to improve the mineral mapping accuracy with SAM and SFF
methods, and that the proposed HyDRoS markedly outperforms the state-of-the-art denoising methods.
Compared to FastHyDe(un), the proposed denoiser is slower owing to the process of outliers removal
by RPCA. Removal of the outliers will be subjected to future research aiming at improvements in regard
to computational time. In addition, this study focuses on three dominant minerals at the Cuprite Mining
District. More applications using HyDRoS could be carried out in the future, using HSIs acquired with
various sensors, using all the available wavelengths range and /or focusing on other minerals.
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