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Abstract: Hyperspectral images are well-known for their fine spectral resolution to discriminate
different materials. However, their spatial resolution is relatively low due to the trade-off in imaging
sensor technologies, resulting in limitations in their applications. Inspired by recent achievements
in convolutional neural network (CNN) based super-resolution (SR) for natural images, a novel
three-dimensional full CNN (3D-FCNN) is constructed for spatial SR of hyperspectral images in this
paper. Specifically, 3D convolution is used to exploit both the spatial context of neighboring pixels
and spectral correlation of neighboring bands, such that spectral distortion when directly applying
traditional CNN based SR algorithms to hyperspectral images in band-wise manners is alleviated.
Furthermore, a sensor-specific mode is designed for the proposed 3D-FCNN such that none of the
samples from the target scene are required for training. Fine-tuning by a small number of training
samples from the target scene can further improve the performance of such a sensor-specific method.
Extensive experimental results on four benchmark datasets from two well-known hyperspectral
sensors, namely hyperspectral digital imagery collection experiment (HYDICE) and reflective optics
system imaging spectrometer (ROSIS) sensors, demonstrate that our proposed 3D-FCNN outperforms
several existing SR methods by ensuring higher quality both in reconstruction and spectral fidelity.
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1. Introduction

Hyperspectral remote sensing usually collects reflectance information of objects in hundreds of
contiguous bands over a certain electromagnetic spectrum. It collects images with a very high spectral
resolution, enabling a fine discrimination of different objects by their spectral signatures. However, due
to the limitation of imaging sensor technologies, signal to noise ratio (SNR) and time constraints, there
exists a trade-off between the spatial resolution and spectral resolution. Consequently, hyperspectral
images (HSIs) are often acquired under a relatively low spatial resolution, degrading their performance
in practical applications, including mineralogy, manufacturing and surveillance. Therefore, it is highly
desirable to increase the spatial resolution of HSIs via post-processing.

In general, there are several ways to improve spatial resolution of HSIs: (1) image fusion with other
high-spatial-resolution sources; (2) sub-pixel based analysis; and (3) single-image super-resolution (SR).
The first two approaches have been widely exploited in hyperspectral applications. When an auxiliary
image with a higher spatial resolution is available, such as a panchromatic image or multispectral image,
image fusion can be applied for spatial-resolution enhancement. Statistics based fusion techniques
are firstly proposed, such as maximum a posteriori (MAP) estimation, stochastic mixing model
based method, etc. [1–3]. Recently, dictionary-based fusion methods dominate hyperspectral and
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multispectral image fusion, including spectral dictionary [4–6] and spatial dictionary based methods,
but they cannot effectively utilize both spatial and spectral information equally. The Spatial–Temporal
remotely sensed Images and land cover Maps Fusion Model (STIMFM) was proposed to produce land
cover maps at both fine spatial and temporal resolutions using a series of coarse spatial resolution
images together with a few fine spatial resolution land cover maps that pre- and post-date the series
of coarse spatial resolution images [7]. The major limitation in these fusion techniques for HSI
spatial-resolution enhancement is that an auxiliary co-registered image with a higher spatial resolution
is required, which may be unavailable in practice.

Sub-pixel based analysis aims to exploit the information in the area covered by a pixel for
different applications. Spectral mixture analysis (SMA) intends to estimate fractional abundance
of pure ground objects within a mixed pixel [8]. Such analysis can be fulfilled by extracting
endmembers [9,10] and estimating their fractional abundance [11] separately, or treating these
two problems simultaneously as a blind signal decomposition problem, for which non-negative
matrix factorization (NMF) [12,13], convex optimization [14], and Neural Network (NN) based
techniques [15] are widely used. Sub-pixel level target detection has also been proposed to detect
objects of interest within a pixel [16,17]. Soft-classification can be an option to handle the classification
problem of low-spatial-resolution HSI [18]. Recently, sub-pixel mapping (SPM) techniques, which
predict the location of land cover classes within a coarse pixel (mixed pixel) [19,20], have also
been proposed to generate a high-resolution classification map using fractional abundance images.
Various methods based on linear optimization technique [21], pixel/sub-pixel spatial attraction
model [22], pixel swapping algorithm [23], maximum a posteriori (MAP) model [24,25], Markov
random field (MRF) [26,27], artificial neural network (ANN) [28–30], simulated annealing [31], total
variant model [32], support vector regression [33], and collaborative representation [34] are proposed.
In general, sub-pixel based analysis only overcomes the limitation in spatial-resolution for certain
applications, e.g., classification and target detection.

Single-image SR, which aims to reconstruct a high-spatial-resolution image only from a
low-spatial-resolution image, can break the limitation of the inherent spatial resolution in hyperspectral
imaging systems without any other prior or auxiliary information. The basic method of single-image SR
is through a traditional linear interpolator, such as bilinear and bicubic interpolation. However, these
methods often lead to edge blur, and a jagged and ringing effect. Villa et al. [35] attempted to split pixels
into sub-pixels according to a zoom factor and to find the sub-pixel positions. However, sub-pixels
are assumed to be pure pixels which may not be a reasonable assumption. In the past decades, the
SR of traditional color images has gained great attention and many algorithms have been developed,
such as iterative back projection (IBP) based on reconstruction [36,37] and sparse representation based
algorithms [38,39]. Recently, deep learning based methods have been applied to the SR of color images
and demonstrated to be of great superiority [40–42]. Deep convolutional NN (CNN) is designed to
directly learn an end-to-end mapping between low- and high-spatial-resolution images [40]. The CNN
has also been extended to a very deep version to explore contextual information over large image
scenes by cascading small filters many times in a deep network structure [43]. These CNNs for the
SR of color images can be directly applied to HSIs for spatial SR in a band-by-band or 3-band-group
manner. For example, the msiSRCNN algorithm extended the SRCNN in [42] to spatial SR of
multispectral images [44]. However, spectral distortion is often induced in such extensions since
spectral correlation in contiguous bands is ignored. Recently, Li et al. applied CNN to the SR of
the spectral difference in HSIs to preserve the spectral information [45,46]. The spatial constraint
or spatial-error-correction model are also imposed to further correct the spatial error in the SR
process. However, the spatial down-sampling function (i.e., spatial filter) is required as complemental
information in the training process.

Recently, CNN has also been attempted to the SR of HSIs in the spectral dimension [47],
demonstrating the feasibility and superiority of convolution to spectral dimension. Therefore, in order
to alleviate spectral distortion by extending existing CNN based SR algorithms to HSIs, effectively
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utilizing both spatial context and spectral discrimination is of crucial importance. Such integration of
spatial context and spectral discrimination has been demonstrated to be of great superiority in many
hyperspectral applications, e.g., noise removal [48,49], classification [50,51], and SR [52]. In CNN
based hyperspectral applications, Makantasis et al. integrated spatial-spectral information into CNN
using a randomized principal component analysis (RPCA) [53]. However, the spatial-spectral features
fed to CNN using RPCA cannot be directly extended for SR applications due to information loss.
The 3D convolution has been demonstrated to be very effective to explore volumetric data [54–57]
and successfully applied to HSIs to explore both spatial context and spectral discrimination for
classification [58]. Therefore, in order to explore both spatial context and spectral discrimination for
spatial SR of HSIs, a three-dimensional full CNN (3D-FCNN) framework is proposed. Specifically, the
3D convolution operation is used to explore both spatial context between neighboring pixels and
spectral correlation in adjacent band images so that spectral distortion is alleviated. In order to avoid
the requirement of a large amount of labelled samples to train such a 3D-FCNN, a sensor-specific
manner is designed such that the 3D-FCNN trained on a certain HSI can be directly applied for the
SR of other HSIs acquired by the same sensor. Finally, extensive experiments on four HSIs acquired
by two well-known hyperspectral sensors, namely HYDICE and ROSIS sensors, are carried out to
demonstrate the effectiveness of the proposed algorithms for spatial SR of HSIs.

In summary, the main contributions of this work can be summarized as follows:

(1) A 3D-FCNN architecture is designed to directly learn an end-to-end mapping between low
spatial-resolution and high spatial-resolution HSIs. Specifically, a 3D convolution operation
is designed to explore both the spatial context between neighboring pixels and the spectral
correlation in adjacent band images so that the spectral distortion is alleviated.

(2) A sensor-specific manner is designed for the proposed 3D-FCNN to avoid the requirement of a
large amount of training samples from the target scene, such that a well-trained 3D-FCNN model
from an HSI can be directly applied for spatial SR of other HSIs acquired by the same sensor.

The rest of this paper is organized as follows: our proposed 3D-FCNN architecture for spatial
SR of HSIs is proposed in Section 2. The experimental results on HSIs acquired by different
sensors are reported in Section 3. Finally, discussions and conclusions are presented in Sections 4
and 5, respectively.

2. Materials and Methods

Deep learning networks have achieved great success in the SR of color images. For example,
SRCNN [42] aims at learning an end-to-end mapping by taking low spatial-resolution images as input
and directly outputs the high spatial-resolution of the input image. However, the 2D convolutional
layer utilized in SRCNN mainly takes the spatial information into consideration. When these networks
are directly used for SR of HSIs in a band-by-band manner (or three bands treated as a false color image),
e.g., msiSRCNN [44], it easily results in spectral distortion because the strong spectral correlation in
HSIs is ignored. Therefore, in order to maintain the spectral fidelity of HSIs after spatial SR, both spatial
context of adjacent pixels and spectral correlation among neighboring bands should be considered.

In this paper, 3D convolution is used to explore both spatial context and spectral correlation
for spatial SR of HSIs. Consequently, a 3D full convolutional network (3D-FCNN) is proposed for
single-image spatial SR of HSIs without any auxiliary information. In order to solve the problem of
training deep NN in HSIs where it is very difficult to acquire a large amount of training samples,
our proposed 3D-FCNN is extended to a sensor-specific manner such that it can be trained with
hyperspectral datasets collected by the same sensor as the targeted dataset. As a result, the requirement
of a large amount of training samples from the target scene is avoided. As shown in Figure 1, our work
can be divided into the following steps: (1) Training: constructing, training and validating 3D-FCNN
for SR of HSIs; (2) Testing: applying the trained network to a sensor-specific task. Specifically, the SR of
an HSI can be fulfilled by using a 3D-FCNN trained by HSIs acquired with the same sensor without
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extra training. Moreover, when possible, such sensor-specific 3D-FCNN can be fine-tuned with only a
few training data from the target HSIs to further improve the performance of SR.
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2.1. Proposed 3D-FCNN for Spatial SR of HSIs

2.1.1. 2D Convolution

In a traditional 2D CNN, 2D convolution is performed to extract features from the previous layer.
As shown in Figure 2, a convolution kernel is used to filter a small area of the image, so as to generate
the feature value of these small regions. For each pixel of the image, the product of its neighboring
pixels and the corresponding elements of the filter matrix is calculated and then added as the feature
value of this pixel, which can be expressed as

cxy = f

(
∑
i,j

wija(x+i)(y+j) + b

)
(1)

where cxy is the output feature value targeted at position (x, y), a(x+i)(y+j) is the input unit at position
(x + i, y + j) with an offset of (i, j) to (x, y), wij is the weight for the input a(x+i)(y+j) which is located
at (i, j) in the 2D convolution kernel, b is the bias in the convolution neuron, and f is the activation
function. If the kernel has the size F× F and the input image has the size W ×W, the output feature
map will have a smaller size N × N, in which N = W − F + 1.

In general, a convolution layer consists of a set of learnable filters (or kernels) that have small
receptive fields, which are trained to learn specific types of features at the same spatial position
in the input. In addition, parameters of kernel windows are forced to be identical to all possible
locations of the previous layer, which is called weight sharing. Both the weight sharing technology
and small receptive fields strategy can effectively reduce the number of parameters and increase
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the generalization capability of the network. Weights are replicated over the input image, leading to
intrinsic insensitivity to translation in the input. A convolutional layer usually contains multiple feature
maps so that multiple features can be detected. The network is trained with the back propagation (BP)
gradient-descent procedure.
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Figure 2. Illustration of 2D convolution to extract spatial features.

2.1.2. 3D Convolution

Though CNN has achieved great success in 2D convolution, the 2D convolution is only applied in
the 2D space to capture spatial features. In 3D hyperspectral applications, the most straightforward
method is to perform 2D CNN processing on each band of HSIs. However, such a 2D convolution on
multiple images separately does not explore spectral information encoded in contiguous bands, easily
resulting in spectral distortion. To this end, the spectral dimension should also be considered in the
convolutional kernel to extract spectral features. Therefore, in this paper, 3D convolution instead of 2D
convolution is used to simultaneously conduct convolution in both spatial and spectral dimensions to
capture spatial-spectral features. As shown in Figure 3a, 3D convolution is realized by convolving
a 3D kernel with the cube formed by stacking multiple contiguous spectral information together.
By extending 2D convolution in Equation (1), 3D convolution is calculated as the weighted sum of
pixels in a 3D data cube as

cxyz = f

(
∑
i,j,k

wijka(x+i)(y+j)(z+k) + b

)
(2)

where cxyz is the output feature at position (x, y, z), a(x+i)(y+j)(z+k) represents the input at the position
(x + i, y + j, z + k) in which (i, j, k) denotes its offset to (x, y, z), and wijk is the weight for input
a(x+i)(y+j)(z+k) with an offset of (i, j, k) in the 3D convolutional kernel. Similar to 2D convolution, the
feature cube has a smaller size.
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Figure 3. Illustration of 3D convolution: (a) illustration of a 3D kernel to extract spatial-spectral features;
(b) illustration of multiple 3D kernels to extract different kinds of spatial-spectral local feature patterns.

Similar to the 2D convolution, weight sharing technique—in which the kernel weights are
replicated across the entire cube—is also used in the 3D convolution such that one kernel extracts one
type of feature all over the image cube. In order to explore different kinds of spatial-spectral local
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feature patterns, as shown in Figure 3b, multiple 3D convolutions with distinct kernels are applied to
the same location in the previous layer.

2.1.3. The Architecture of the Proposed 3D-FCNN

In this paper, as shown in Figure 4, a 3D-FCNN is constructed for SR of HSIs by using 3D
convolution to fully explore spatial-spectral features in the 3D hyperspectral data cube. Considering a
single-source low-resolution HSI X, it is firstly up-scaled to X′ with the same size of desired output Y
using bicubic interpolation. Since only spatial information is taken into account in bicubic interpolation,
3D convolution is used to further improve the initial SR result X′ by alleviating spectral distortion.
Therefore, the initial SR result X′ is entered into our 3D-FCNN to generate a high-spatial-resolution
HSI F(X) approaching the desired output Y as accurately as possible, which can fully take advantages
of both spatial context and spectral correlation.

The structure of our proposed 3D-FCNN is shown in Figure 4. It contains five layers including
one input layer, and four convolutional layers where the output of the last convolutional layer is the
output of the whole network. Generally, the number of parameters to be optimized is proportional to
that of neurons in a CNN. In SR problems, the scale of the input, namely the initial super-resolution
result X′, heavily influences the scale of the network. In this paper, a sub-image, rather than the entire
hyperspectral image, is fed to the 3D-FCNN. Specifically, as shown in Table 1, the input is restricted as
a 33× 33× c× 1-pixel sub-image cube, where 33× 33 is spatial dimensions, c is the special dimension
depending on the sensor properties, and the color channel is set as 1 for HSIs. Therefore, all the filers in
the successive convolution layers are designed to learn spectral information from c contiguous spectral
bands. It should be noted that larger sub-images can also be used as input to design the 3D-DCNN
and its construction is similar to that in this paper. We restrict the network to a relatively small scale to
be easily and quickly trained.

Remote Sens. 2017, 9, 1139  6 of 22 

 

feature patterns, as shown in Figure 3b, multiple 3D convolutions with distinct kernels are applied 
to the same location in the previous layer. 

2.1.3. The Architecture of the Proposed 3D-FCNN  

In this paper, as shown in Figure 4, a 3D-FCNN is constructed for SR of HSIs by using 3D 
convolution to fully explore spatial-spectral features in the 3D hyperspectral data cube. Considering 
a single-source low-resolution HSI X , it is firstly up-scaled to ′X  with the same size of desired 
output Y  using bicubic interpolation. Since only spatial information is taken into account in bicubic 
interpolation, 3D convolution is used to further improve the initial SR result ′X  by alleviating 
spectral distortion. Therefore, the initial SR result ′X  is entered into our 3D-FCNN to generate a 
high-spatial-resolution HSI ( )F X  approaching the desired output Y  as accurately as possible, 
which can fully take advantages of both spatial context and spectral correlation. 

The structure of our proposed 3D-FCNN is shown in Figure 4. It contains five layers including 
one input layer, and four convolutional layers where the output of the last convolutional layer is the 
output of the whole network. Generally, the number of parameters to be optimized is proportional 
to that of neurons in a CNN. In SR problems, the scale of the input, namely the initial super-resolution 
result ′X , heavily influences the scale of the network. In this paper, a sub-image, rather than the 
entire hyperspectral image, is fed to the 3D-FCNN. Specifically, as shown in Table 1, the input is 
restricted as a 33 33 1c× × × -pixel sub-image cube, where 33 33×  is spatial dimensions, c  is the 
special dimension depending on the sensor properties, and the color channel is set as 1 for HSIs. 
Therefore, all the filers in the successive convolution layers are designed to learn spectral information 
from c  contiguous spectral bands. It should be noted that larger sub-images can also be used as 
input to design the 3D-DCNN and its construction is similar to that in this paper. We restrict the 
network to a relatively small scale to be easily and quickly trained. 

′X ( )F X

Y

X

 
Figure 4. Framework of the proposed 3D-FCNN for SR of HSIs. 

As shown in Figure 4, four 3D convolutional layers are sequentially connected to the input layer 
to improve the performance of initial SR result by exploring both spatial context and spectral 
correlation. For the first three convolutional layers, the ‘ReLU’ function is adopted as activation 
function for nonlinear mapping since it improves models fitting without extra computational cost 
and over-fitting risk. Suppose the input of neurons in activation layers is represented as , 1, 2,iI i = 
, their output is calculated in an element-wise manner as follows 

{ }max ,0 , 1, 2,i iO I i= =   (3) 

For the fourth convolutional layer, its output without the effect of activation function is used as 
the output of the whole network. The size of kernels in convolution layers is of crucial importance in 

Figure 4. Framework of the proposed 3D-FCNN for SR of HSIs.

As shown in Figure 4, four 3D convolutional layers are sequentially connected to the input layer to
improve the performance of initial SR result by exploring both spatial context and spectral correlation.
For the first three convolutional layers, the ‘ReLU’ function is adopted as activation function for
nonlinear mapping since it improves models fitting without extra computational cost and over-fitting
risk. Suppose the input of neurons in activation layers is represented as Ii, i = 1, 2, · · · , their output is
calculated in an element-wise manner as follows

Oi = max{Ii, 0}, i = 1, 2, . . . (3)
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For the fourth convolutional layer, its output without the effect of activation function is used as
the output of the whole network. The size of kernels in convolution layers is of crucial importance in
CNN since it greatly affects the performance of the network. The size of different convolutional layers
and ‘ReLU’ layers in our proposed 3D-FCNN are listed in Table 1.

According to Figure 4 and Table 1, in the proposed 3D-FCNN, 64 different 3D kernels with size
9× 9× 7 (9× 9 in spatial dimension and 7 in the spectral dimension) are conducted on the input
data to generate 64 feature maps of the size 25× 25× (c− 7 + 1) for Layer ‘Conv1’. Layer ‘Conv2’
consists of 32 features maps of the size 25× 25× (c− 6), which are obtained by applying 32 different
3D kernels size of 1× 1× 1 on the input of Conv1. The third convolution layer ‘Conv3’ is obtained
by applying nine different 3D kernels of size 1× 1× 1, resulting in nine feature maps with a size of
25× 25× (c− 6). Finally, the output layer ‘Conv4’ applies a 3D kernel of the size 5× 5× 3 to produce
the output image F(X) with size 21× 21× (c− 8). In order to prevent the border effects that occur
during training, all convolutions are not padding. Thus, as mentioned earlier, the actual output of the
network is smaller than the input. Specifically, according to Table 1, the proposed 3D-FCNN uses an
initial SR result of 33× 33× c to generate an image of 21× 21× (c− 8).

Table 1. Details of the proposed 3D-CNN for SR of HSIs.

Layer Input Size Kernel Size Output Size

Conv1 33× 33× c× 1 9× 9× 7× 64 25× 25× (c− 6)× 64

Relu1 25× 25× (c− 6)× 64 - 25× 25× (c− 6)× 64

Conv2 25× 25× (c− 6)× 64 1× 1× 1× 32 25× 25× (c− 6)× 32

Relu2 25× 25× (c− 6)× 32 - 25× 25× (c− 6)× 32

Conv3 25× 25× (c− 6)× 32 1× 1× 1× 9 25× 25× (c− 6)× 9

Relu3 25× 25× (c− 6)× 9 25× 25× (c− 6)× 9

Conv4 25× 25× (c− 6)× 9 5× 5× 3× 1 21× 21× (c− 8)× 1

Training an end-to-end network requires a cost function to optimize the parameters in the network.
In practice, we use the mean squared error (MSE) between outputs and ground-truth as cost function.
Considering the actual output of the network is a smaller image, MSE loss function is evaluated only
by the difference between the central pixels of ground-truth high-resolution image Y and the network
output F(X), which can be calculated as

MSE =
1
m

m

∑
n=0

(
1

hwc

h

∑
i=0

w

∑
j=0

c

∑
k=0

(
Yijk − F(X)ijk

))
(4)

where m is the number of training samples, h and w represent the length and width of the output of
the network F(X), respectively, and c is the band of the training samples. Generally, high Peak Signal
to Noise Ratio (PSNR) can also be guaranteed by using MSE, which is widely used to evaluate image
quality. Let n represent the number of bits per pixel. The PSNR can be calculated as

PSNR = 10× log10

(
(2n − 1)2

MSE

)
(5)

The loss function defined by Equation (4) is minimized using adaptive moment estimation
(ADAM) with the standard BP algorithm, because it requires less memory, can calculate different
adaptive learning rates for different parameters, and is suitable for large datasets and high dimensional
space. The main advantage of ADAM is that the learning rate of each iteration has a definite range
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after the correction of bias, which makes the parameters more stable. In particular, the weight matrices
are updated as

mt = µ×mt−1 + (1− µ)× gt

nt = v× nt−1 + (1− v)× g2
t

m̂t =
mt

1−µt

n̂t =
nt

1−vt

∆θt = − m̂t√
n̂t+ε
× η

(6)

where t represents time-step, gt represents the gradients at time-step t, mt is the biased first moment
estimate, nt is the biased second moment estimate, m̂t is the bias-corrected first moment estimate, n̂t

is the bias-corrected second moment estimate, η is the learning rate, θt is the parameter vector, and
µ, v ∈ [0, 1) are exponential decay rates for the moment estimates.

2.2. Sensor-Specific Implementation

Our proposed 3D-FCNN can be extended to the spatial SR problem of hyperspectral sensors,
such as ROSIS and HYDICE. Once the 3D-FCNN is well trained, its parameters can be used for a
sensor-specific mission, which means that our trained network can be directly applied to different
datasets obtained from the same sensor.

As shown in Figure 1, when the proposed 3D-FCNN is used for the sensor-specific mission, there
are two modes as follows:

(1) Unsupervised sensor-specific mode: the parameters involved in the network do not vary
when being directly transferred to the target data obtained from the same sensor as the data
trained on the proposed 3D-FCNN. As a result, any training data of the target dataset is not
required. Thus, this network can be viewed as an unsupervised sensor-specific spatial SR system,
which can be directly used for reconstructing high spatial-resolution HSI from the target low
spatial-resolution HSI without changing the parameters of networks. In this mode, a large
amount of training data and training time is avoided when it is used for the SR of the target scene.
It should also be noted that such unsupervised sensor-specific mode is especially effective for
the target scene which is acquired with similar imaging condition with the dataset on which the
3D-FCNN is trained.

(2) Fine-tuning based sensor-specific mode: the parameters in the network trained under
unsupervised sensor-specific mode can be further fine-tuned using the samples from the target
dataset obtained by the same sensor. Through such fine-tuning, the performance of unsupervised
sensor-specific spatial SR can be further improved. Such fine-tuning based sensor-specific mode
is especially effective when the target scene is acquired with different imaging condition with the
dataset on which the 3D-FCNN is trained. Only a small number of training samples is required, so
the training based on sensor-specific initialization is very fast, compared with previous supervised
training with random initialization.

3. Results

In this section, extensive experiments are conducted to verify the performance of the proposed
3D-FCNN for spatial SR of HSIs.

3.1. Datasets

Datasets from two well-known hyperspectral sensors, namely ROSIS and HYDICE, are used
for evaluation. For the ROSIS sensor, two scenes that are acquired during a flight campaign over
Pavia, northern Italy, i.e., Pavia Centre and Pavia University are selected. The Pavia Centre scene
contains 1096 × 1096 pixels, while the Pavia University scene contains 610 × 340 pixels. In the
Pavia Centre scene, samples that contain no information are discarded in this experiment and
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only 1096 × 715 valid pixels are used. The numbers of spectral bands are 102 for Pavia Centre and
similarly 103 for Pavia University. For the HYDICE sensor, two datasets are adopted, namely the
Washington DC Mall datasets and the Urban dataset. The Washington DC Mall datasets image
contains 1280 × 307 pixels over 191 bands of the original 224 atmospherically corrected bands which
are adopted by removing the channels associated with H2O and OH absorption bands. The Urban
HYDICE datasets is of size 307 × 307 and contains 210 atmospherically corrected bands.

These four datasets are used as ground-truth of high spatial-resolution HSIs to train and evaluate
the performance of the proposed 3D-FCNN based framework for spatial SR. In order to simulate low
spatial-resolution HSIs, these two images are firstly down-sampled using Gauss kernels. The size
of sub-images used for training is set as 33× 33× c× 1, which is obtained by overlapping from the
original dataset. The proposed 3D-FCNN based framework is designed, trained, and tested based on
the Keras framework using the TensorFlow backend. The BP strategy is adopted to train the network.
For the ADAM based training, the base learning rate is 0.00005.

3.2. Performance Evaluation

Many assessment methods have been used to evaluate the quality of a reconstructed hyperspectral
image for SR and restoration [59]. In this experiment, the performance of SR for HSIs is evaluated by
comparing the reconstructed high spatial-resolution HSI with the ground-truth data from two aspects:
the spatial reconstruction quality of each band image at image levels and the spectral reconstruction
quality of each spectrum at pixel-levels.

To evaluate the spatial reconstruction quality, the mean peak signal-to-noise ratio (MPSNR) and
the mean structural similarity (MSSIM) index are adopted. The MPSNR is defined as

MPSNR =
1
c

c

∑
i=0

10× log10

(
MAXi

2

MSEi

)
(7)

where MAXi is the maximal pixel value in the i-th band image, and MSEi is the MSE of the i-th band
image. The MSSIM between reconstructed image F(X) and its ground truth Y is defined as

MSSIM =
1
c

c

∑
i=0

(
2µF(X)i

µYi + c1

)(
2σF(X)iYi

+ c2

)
(

µ2
F(X)i

+ µ2
Yi
+ c1

)(
σ2

F(X)i
+ σ2

Yi
+ c2

) (8)

where F(X)i and Yi represents the i-th band image of F(X) and Y, respectively, µF(X)i
and µYi are

the mean of F(X)i and Yi, respectively, σ2
F(X)i

and σ2
Yi

are the variance of F(X)i and Yi, respectively,
σF(X)iYi

is the covariance of F(X)i and Yi, and c1 and c2 are constants that are set as 0.0001 and
0.0009, respectively.

In order to evaluate the spectral reconstruction quality, the spectral angle mapper (SAM) between
the reconstructed spectra and their corresponding ground-truth spectra is used. The SAM between
two spectra z and z′ is defined as

SAM = arccos
(
〈z, z′〉
‖z‖2‖z′‖2

)
(9)

where 〈z, z′〉 represents the dot product of z and z′, and ‖•‖2 represents 2-norm of vectors.
Generally, a higher MPSNR and MSSIM value means a better visual quality, and a lower SAM

value implies less spectral distortion and a higher quality of spectral reconstruction.
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3.3. Experimental Results on Hyperspectral Datasets Acquired by ROSIS Sensor

Two datasets acquired by ROSIS sensor, namely Pavia Centre dataset and Pavia University dataset,
were used to evaluate the performance of the proposed 3D-FCNN for SR. These two datasets are
complemented to 103 bands by setting the missing bands as 0.

3.3.1. Experimental Results of Spatial SR with the Proposed 3D-FCNN Method

The performance of the proposed 3D-FCNN for spatial SR is evaluated over the two selected
datasets. For each dataset, a 150 × 150 sub-region is selected to validate the performance of our
proposed 3D-FCNN, while the remaining pixels are used for training. In order to simulate low
spatial-resolution HSIs, these two images are firstly down-sampled by a factor of 2. In addition,
different levels of additive Gaussian white noise, measured by signal-to-noise ratio (SNR), are added
to the low spatial-resolution images to verify the robustness of the proposed 3D-FCNN to noises.

Five strategies are chosen as the baseline for comparison: Bicubic SR, Bilinear SR, SR by nearest
neighbor, SRCNN [40,42] in a band-by-band manner (namely misSRCNN in [44]) and three-band-wise
manner (denoted as 3B-SRCNN). The qualitative comparison results of all the considered algorithms
are listed in Table 2. Their corresponding visual results are shown in Figures 5 and 6, respectively.
It is also observed that: (1) the proposed 3D-FCNN obviously outperforms all the other algorithms
all over these two datasets by ROSIS sensor with the highest MPSNR and MSSIM values and lowest
SAM for all the cases; (2) The proposed 3D-FCNN provides better results no matter how noisy the
dataset is. The average improvements in MPSNR are 2.572 dB and 2.878 dB, and in MSSIM are 0.033
and 0.032 compared with Bicubic when SNR = 30 dB and SNR = 60 dB, respectively, indicating that
the proposed 3D-FCNN is robust to noises in low spatial-resolution HSI; (3) The proposed 3D-FCNN
based algorithm provides much better spectral fidelity (i.e., lower SAM) compared with SRCNN
(msiSRCNN and 3B-SRCNN). Figure 7 further lists the spectra of several typical ground materials after
spatial SR. It can be observed that the spectra reconstructed by the proposed 3D-FCNN is closer to their
ground-truth than that by the bicubic spatial interpolation, demonstrating that the proposed 3D-FCNN
can better maintain spectral characteristics during spatial SR. This is because both spatial context
in neighboring areas and spectral correlation in full-band images are considered in the proposed
method by 3D convolution; (4) The proposed 3D-FCNN based algorithm also achieves best spatial
reconstruction for all the cases, which has the highest MPSNR and MSSIM values. Compared with the
Bicubic algorithm, the average improvements are 2.849 dB in terms of MPSNR and 0.035 for MSSIM.

Table 2. Quantitative comparison results of different SR methods on HSIs by ROSIS sensor.

SNR (dB) Bicubic Bilinear Nearest msiSRCNN 3B-SRCNN 3D-FCNN

Pavia Centre

∞
MPSNR 31.1 29.909 29.983 32.479 32.686 33.916
MSSIM 0.937 0.915 0.921 0.957 0.96 0.969

SAM 4.592 5.009 4.786 4.617 4.661 4.14

60
MPSNR 31.097 29.907 29.979 32.238 32.746 33.97
MSSIM 0.937 0.915 0.921 0.955 0.96 0.969

SAM 4.606 5.019 4.805 4.765 4.693 4.163

30
MPSNR 31.083 29.9 29.966 32.248 32.762 33.86
MSSIM 0.937 0.914 0.921 0.955 0.96 0.968

SAM 4.606 5.046 4.86 4.793 4.687 4.218

Pavia University

∞
MPSNR 29.499 28.599 28.752 29.253 30.083 32.381
MSSIM 0.925 0.906 0.914 0.923 0.936 0.964

SAM 3.946 4.38 4.243 4.197 4.071 3.454

60
MPSNR 29.495 28.597 28.748 29.096 30.13 31.701
MSSIM 0.925 0.906 0.914 0.92 0.939 0.958

SAM 3.965 4.391 4.267 4.323 4.041 3.807

30
MPSNR 29.484 28.591 28.736 29.173 29.898 31.852
MSSIM 0.925 0.906 0.913 0.921 0.935 0.958

SAM 4.018 4.425 4.333 4.335 4.142 3.778
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Figure 7. Example spectra of several typical materials in this image scene: (a) trees; (b) meadows; and
(c) asphalt.

3.3.2. Experimental Results of SR for Different Up-Sampling Factors

In this subsection, the SR results of different up-sampling factors are discussed. The low
spatial-resolution HSIs are simulated by down-sampling the high spatial-resolution HSI with the
factor 2, 3 and 4, respectively. Then different SR algorithms are used for spatial SR. Similar to previous
experiments, only a 150× 150 sub-region from the Pavia Centre datasets is used for validation of the
performance of our proposed 3D-FCNN, while all the remaining areas are used for training. Table 3
lists the quantitative results by different SR algorithms for different up-sampling factors over the Pavia
Centre area. It is observed that, the performance of our proposed 3D-FCNN outperforms all the other
algorithms with different up-sampling factors. When the up-sampling factor increases, the superiority
of our proposed 3D-FCNN becomes less obvious. This is because the problem of SR with a higher
up-sampling factor is more difficult. However, even for 4 times spatial SR, the proposed 3D-FCNN
achieves an improvement of 1.74 in MPSNR, 0.045 in MSSIM, and 0.287 in SAM, respectively, compared
with the Bicubic method.
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Table 3. Quantitative comparison of spatial SR for different up-sampling factors over the Pavia
Centre dataset.

Bicubic Bilinear Nearest msiSRCNN 3B-SRCNN 3D-FCNN

Pavia Centre

n = 2
MPSNR 31.1 29.909 29.983 32.479 32.686 33.916
MSSIM 0.937 0.915 0.921 0.957 0.96 0.969

SAM 4.592 5.009 4.786 4.617 4.661 4.14

n = 3
MPSNR 28.519 27.907 27.57 29.159 29.261 29.853
MSSIM 0.882 0.859 0.857 0.889 0.905 0.921

SAM 5.571 5.85 5.864 5.49 5.376 5.300

n = 4
MPSNR 26.83 26.327 26.21 26.21 27.256 27.59
MSSIM 0.808 0.783 0.792 0.792 0.851 0.862

SAM 6.362 6.694 6.616 6.616 6.404 6.336

n is the factor of up-sampling.

3.3.3. Experimental Results of Sensor-Specific SR by the Proposed 3D-FCNN

In this experiment, the 3D-FCNN is used for spatial SR of HSIs in a sensor-specific manner, which
means that it is trained on one dataset and directly applied for spatial SR of other datasets acquired by
the same sensor without any tuning of parameters. Specifically, the 3D-FCNN trained on the Pavia
Centre dataset is used for spatial SR of the Pavia University dataset, and the model trained on the
Pavia University dataset is used for spatial SR of the Pavia Centre dataset. Such sensor-specific manner
can be viewed as an unsupervised version of our proposed 3D-FCNN for spatial SR of HSIs since
training samples from the target scene are not required. In addition, the performance of fine-tuning for
sensor-specific SR, in which the parameters of sensor-specific 3D-FCNN is fine-tuned with a limited
number of available training samples from target datasets, is also tested.

Table 4 lists the quantitative results from our proposed 3D-FCNN for spatial SR of the two datasets
from the ROSIS sensor. The results of previous supervised 3D-FCNN are also listed as benchmark
results. It is observed that, the performance of spatial SR by the proposed 3D-FCNN does not degrade
even if it is not trained by the targeted datasets, demonstrating the effectiveness of the proposed
sensor-specific strategy for spatial SR of hyperspectral sensors. The visual results of our proposed
3D-FCNN for spatial SR of the Pavia Centre dataset and the Pavia University dataset are shown
in Figures 8 and 9, respectively, including both supervised mode that is trained by samples from
the target scene and sensor-specific mode that is trained by other datasets from the same sensor.
These results also confirmed that our proposed sensor-specific mode is very effective for spatial SR of
HSIs. However, it avoids the requirement of a huge amount of training samples from the target scene
and the time-consuming training.

Table 4. Quantitative comparative results of the proposed 3D-FCNN for SR of datasets from the ROSIS
sensor in different modes.

Supervised Sensor-Specific
Fine-Tune

50 100 150

Pavia Centre
MPSNR 34.908 34.899 34.937 34.978 34.998
MSSIM 0.979 0.979 0.977 0.979 0.979

SAM 4.396 4.447 4.429 4.423 4.424

Supervised Sensor-Specific
Fine-Tune

50 100 150

Pavia
University

MPSNR 34.519 34.506 34.49 34.502 34.559
MSSIM 0.977 0.977 0.976 0.976 0.976

SAM 3.16 3.172 3.168 3.146 3.122

50, 100, 150 is the number of fine-tuning samples.
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is firstly down-sampled by a factor of 2 and additive Gaussian white noises are added to the 
simulated low-dimensional HSI such that the robustness of the 3D-FCNN is tested for images with 
different SNRs. Five strategies are chosen as the baseline for comparison: Bicubic SR, Bilinear SR, SR 
by nearest neighbor, SRCNN [40,42] in a band-by-band manner (namely misSRCNN in [44]) and 
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University dataset. The area in the red rectangle is enlarged in the upper left corner of the image.
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Centre dataset. The area in the red rectangle is enlarged in the lower right corner of the image.

It is also observed from Table 4 that the fine-tuning process of training sensor-specific 3D-FCNN
with a few samples from the target dataset cannot improve the performance of sensor-specific very
much. This may be because these two datasets are acquired during one flight and the imaging
condition, e.g., acquisition time, weather, atmosphere, texture of images, etc., does not vary much.
Therefore, we further evaluated the performance of our proposed 3D-FCNN on two datasets acquired
at different imaging conditions by the HYDICE sensor.

3.4. Experiments on Hyperspectral Datasets Acquired by the HYDICE Sensor

Two datasets acquired by the HYDICE sensor, namely the Washington DC Mall and Urban
datasets, are used to evaluate the performance of the proposed 3D-FCNN. As with the ROSISI sensor,
the two datasets are complemented to 210 bands by setting the missing bands as 0.

3.4.1. Experimental Results of SR with the Proposed 3D-FCNN Method

Since the Urban dataset is too small to train the proposed 3D-FCNN, only the Washington DC Mall
dataset is selected to evaluate the performance of the proposed 3D-FCNN for SR in supervised mode.
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Unlike the ROSIS sensor, we selected a larger region with 600 × 307 pixels to test the performance
of our proposed 3D-FCNN, while the remaining pixels are used for training. The image is firstly
down-sampled by a factor of 2 and additive Gaussian white noises are added to the simulated
low-dimensional HSI such that the robustness of the 3D-FCNN is tested for images with different
SNRs. Five strategies are chosen as the baseline for comparison: Bicubic SR, Bilinear SR, SR by nearest
neighbor, SRCNN [40,42] in a band-by-band manner (namely misSRCNN in [44]) and three-band-wise
manner (denoted as 3B-SRCNN).

The qualitative comparison results of all the considered algorithms are listed in Table 5. These results
also confirm similar conclusions from previous experiments: (1) the performance of our 3D-FCNN
obviously outperforms traditional methods, i.e., Bicubic SR, Bilinear SR and SR by nearest neighbor; (2)
the spectral distortion caused by applying SRCNN of natural images directly to HSIs in band-wise manner
or 3-band-group manner can be greatly alleviated by the 3D convolution in the proposed 3D-FCNN
algorithm; (3) the proposed 3D-FCNN is robust to noise. Even in very noisy cases when SNR = 30 dB,
our proposed 3D-FCNN improves the performance of 3B-FCNN (the second best results) by about 2.5 dB
in MPSNR, 0.02 in MSSIM, and 0.2 in SAM. The visual results of all these algorithms are also listed in
Figure 10, which demonstrate the superiority of the proposed 3D-FCNN for spatial SR of HSIs.
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Table 5. Quantitative results of different methods for spatial SR of the Washington DC Mall dataset.

SNR(dB) Bicubic Bilinear Nearest msiSRCNN 3B-SRCNN 3D-FCNN

Washington DC Mall

∞
MPSNR 47.588 46.76 46.89 45.866 49.62 53.556
MSSIM 0.981 0.979 0.98 0.956 0.976 0.989

SAM 0.455 0.49 0.462 0.718 0.56 0.357

60
MPSNR 42.503 41.876 41.465 42.929 43.908 46.028
MSSIM 0.978 0.975 0.973 0.966 0.971 0.987

SAM 0.544 0.564 0.602 0.647 0.614 0.412

30
MPSNR 39.004 38.713 37.924 40.94 41.743 44.288
MSSIM 0.963 0.965 0.954 0.96 0.968 0.984

SAM 0.749 0.711 0.844 0.735 0.668 0.481

3.4.2. Experimental Results of Sensor Specific SR for the HYDICE Sensor

In this experiment, the 3D-FCNN trained on the Washington DC Mall dataset is directly applied
for spatial SR of the Urban dataset in a sensor-specific manner. The performance of fine-tuning is also
tested. The spatial SR results of the Urban dataset using sensor-specific 3D-FCNN are listed in Table 6.
It is observed that the performance of sensor-specific 3D-FCNN can be effectively improved by the
fine-tuning process, especially for the quality of spectral reconstruction. When more training samples
from the target scene are used for fine-tuning, slightly better results can be achieved. This is because
these two datasets are acquired under different conditions, i.e., different time, weather, atmosphere, etc.
As shown in these results, the performance of sensor-specific spatial SR can be further improved when
even a small amount of training samples from the target scene is used for fine-tuning. These conclusions
are also confirmed by the visual results listed in Figure 11.

Table 6. Quantitative results of the proposed 3D-FCNN for sensor-specific spatial SR.

Sensor-Specific
Fine-Tune

50 100 150

Urban
MPSNR 27.563 28.922 29.039 29.091
MSSIM 0.89 0.93 0.932 0.933

SAM 14.04 11.67 11.525 11.457

50, 100, 150 is the number of fine-tuning samples.

Remote Sens. 2017, 9, 1139  17 of 22 

 

Table 5. Quantitative results of different methods for spatial SR of the Washington DC Mall dataset. 

 SNR(dB)  Bicubic Bilinear Nearest msiSRCNN 3B-SRCNN 3D-FCNN

Washington DC Mall 

∞  
MPSNR 47.588 46.76 46.89 45.866 49.62 53.556
MSSIM 0.981 0.979 0.98 0.956 0.976 0.989

SAM 0.455 0.49 0.462 0.718 0.56 0.357

60 
MPSNR 42.503 41.876 41.465 42.929 43.908 46.028
MSSIM 0.978 0.975 0.973 0.966 0.971 0.987

SAM 0.544 0.564 0.602 0.647 0.614 0.412

30 
MPSNR 39.004 38.713 37.924 40.94 41.743 44.288
MSSIM 0.963 0.965 0.954 0.96 0.968 0.984

SAM 0.749 0.711 0.844 0.735 0.668 0.481

3.4.2. Experimental Results of Sensor Specific SR for the HYDICE Sensor 

In this experiment, the 3D-FCNN trained on the Washington DC Mall dataset is directly applied 
for spatial SR of the Urban dataset in a sensor-specific manner. The performance of fine-tuning is also 
tested. The spatial SR results of the Urban dataset using sensor-specific 3D-FCNN are listed in Table 
6. It is observed that the performance of sensor-specific 3D-FCNN can be effectively improved by the 
fine-tuning process, especially for the quality of spectral reconstruction. When more training samples 
from the target scene are used for fine-tuning, slightly better results can be achieved. This is because 
these two datasets are acquired under different conditions, i.e., different time, weather, atmosphere, 
etc. As shown in these results, the performance of sensor-specific spatial SR can be further improved 
when even a small amount of training samples from the target scene is used for fine-tuning. These 
conclusions are also confirmed by the visual results listed in Figure 11. 

Table 6. Quantitative results of the proposed 3D-FCNN for sensor-specific spatial SR. 

 Sensor-Specific 
Fine-Tune

50 100 150 

Urban 
MPSNR 27.563 28.922 29.039 29.091 
MSSIM 0.89 0.93 0.932 0.933 

SAM 14.04 11.67 11.525 11.457 

50, 100, 150 is the number of fine-tuning samples. 

 
(a) (b)

  
(c) (d) (e) 

Figure 11. Visual results of spatial SR over the Urban dataset. (a) Ground-Truth (High spatial-
resolution HSI); (b) Sensor-specific SR; (c) Fine-tuning with 50 samples; (d) Fine-tuning with 100 
samples; (e) Fine-tuning with 150 samples. 

Figure 11. Visual results of spatial SR over the Urban dataset. (a) Ground-Truth (High spatial-resolution
HSI); (b) Sensor-specific SR; (c) Fine-tuning with 50 samples; (d) Fine-tuning with 100 samples;
(e) Fine-tuning with 150 samples.
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4. Discussion

The 3D-FCNN is proposed to learn an end-to-end full-band mapping between low and high
spatial-resolution HSIs. It can effectively reconstruct high spatial-resolution HSI using a single low
spatial-resolution HSI without any auxiliary information. According to previous experiments, its
sensor-specific version can restore a high spatial-resolution HSI without the requirement of training on
it. Generally, fine-tuning by using training samples from the target scene can improve the performance
of SR. However, if the target scene is acquired with similar conditions to the scene that the 3D-FCNN
is trained over, there is no need to fine-tune the network for SR since the performance of SR cannot be
further improved.

Table 7 lists the computation time of three CNN based spatial SR algorithms for the Pavia Centre
dataset by the ROSIS sensor. All these algorithms are implemented on a computer with one GPU card
(NVIDI GTX1070 with 16GB memory). It is observed that, in order to learn the spectral correlation
in adjacent band images, our proposed 3D-FCNN takes more time for training. However, once our
network is well trained, it takes less than one second to reconstruct an image, indicating that it is
computationally effective when working under an unsupervised sensor-specific manner.

Table 7. The computation time of different SR methods on the Pavia Centre dataset.

msiSRCNN 3B-SRCNN 3D-FCNN

Training 7 h 9 h 20 h
Test 0.492 s 0.536 s 0.426 s

In order to further evaluate the performance of our proposed 3D-FCNN with different parameters
for SR, various experiments are conducted over the Pavia University dataset by varying different
parameters involved in the proposed 3D-FCNN, including the number of convolutional layers, the
size of input, activation function, filter size, and the size of receptive field. The corresponding results
are listed in Tables 8–12.

As shown in Table 8, the 3D-FCNN with four convolutional layers slightly outperforms that with
other numbers of convolutional layers. Actually, the 3D-FCNN with different convolutional layers
does not vary much. Here, four convolutional layers are adopted since more convolutional layers will
bring about many more parameters to be learned and the computational time for training and testing
will increase rapidly.

In Table 9, the 3D-FCNN with the input of 33x33xc slightly outperforms that with other inputs.
Moreover, larger inputs also result in more parameters to be trained.

Table 8. Experimental results of the proposed 3D-FCNN with different numbers of convolutional
layers over the Pavia University datasets while other parameters are fixed as listed in Table 1.

Number of 3D Convonlution Layers MPSNR SAM

3 33.64 4.27
4 33.92 4.14
5 33.78 4.19
6 33.70 4.29

Table 9. Experimental results of the proposed 3D-FCNN with different sizes of input over the Pavia
University datasets while other parameters are fixed as listed in Table 1.

Size of Input MPSNR SAM

33 × 33 × c 33.92 4.14
44 × 44 × c 33.84 4.21
55 × 55 × c 33.79 4.25
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The 3D-FCNN with the activation function of ‘Relu’ slightly outperforms the other two
well-known activation functions, namely ‘Tanh’ and ‘PRelu’, as tabulated in Table 10.

In terms of the filter size, as shown in Table 11, the 3D-FCNN with ‘64-32-9-1’ slightly outperforms
that with other filters, where the numbers in these filters represent the last dimension of filters listed in
‘Table 1’ (in the manuscript) for the four convolutional layers, respectively.

As for the size of receptive field in Table 12, the 3D-FCNN with a receptive field of 16 produces
the best results. However, the number of parameters are much more than that with a smaller
receptive field. Therefore, 12 is adopted to achieve the balance between the performance of SR
and computational complexity.

Table 10. Experimental results of the proposed 3D-FCNN with different activation functions over the
Pavia University datasets while other parameters are fixed as listed in Table 1.

Activation Function MPSNR SAM

Relu 33.92 4.14
Tanh 33.37 4.19
PRelu 33.76 4.29

Table 11. Experimental results of the proposed 3D-FCNN with different filter sizes over the Pavia
University datasets while other parameters are fixed as listed in Table 1.

Filter Size MPSNR SAM

64-32-9-1 33.92 4.14
64-32-16-1 33.85 4.17
32-16-8-1 33.67 4.24

Table 12. Experimental results of the proposed 3D-FCNN with different sizes of receptive field over
the Pavia University datasets while other parameters are fixed as listed in Table 1.

Receptive Field MPSNR SAM Parameters

12 33.92 4.14 39403
14 33.94 4.13 55789
16 34.03 4.11 88557

5. Conclusions and Future Work

In this paper, a novel 3D-FCNN model is proposed for spatial SR of HSIs by learning an end-to-end
full-band mapping between low and high spatial-resolution HSIs. Compared with traditional CNN
based SR algorithms in color images, 3D convolution is used to reconstruct a high spatial-resolution
HSI by exploring both spatial context in neighboring areas and spectral correlation in neighboring
bands, such that the spectral distortion can be alleviated. The proposed 3D-FCNN is also extended
to a sensor-specific version such that well-trained 3D-FCNN from a dataset can be directly used for
spatial SR of other HSIs from the same sensor. The training samples from the target scene, if available,
can also be used to further improve the performance of sensor-specific spatial SR. Experiments on
four simulated datasets by two well-known hyperspectral sensors have demonstrated the proposed
3D-FCNN based spatial SR algorithm obviously outperforms existing methods and it is also very
effective to reconstruct sensor-specific spatial SR which is more practically useful.

Recent work in SR of HSIs proposed to use CNN for SR of spectral difference of HSIs [44,45].
The proposed 3D-FCNN can also be extended for this kind of SR. In addition, using 3D-FCNN for SR
of HSIs in both spatial and spectral domains is also of interest for future research.
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