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Abstract: Time series vegetation indices with high spatial resolution and high temporal frequency are
important for crop growth monitoring and management. However, due to technical constraints and
cloud contamination, it is difficult to obtain such datasets. In this study, a spatio-temporal vegetation
index image fusion model (STVIFM) was developed to generate high spatial resolution Normalized
Difference Vegetation Index (NDVI) time-series images with higher accuracy, since most of the
existing methods have some limitations in accurately predicting NDVI in heterogeneous regions,
or rely on very computationally intensive steps and land cover maps for heterogeneous regions.
The STVIFM aims to predict the fine-resolution NDVI through understanding the contribution of
each fine-resolution pixel to the total NDVI change, which was calculated from the coarse-resolution
images acquired on two dates. On the one hand, it considers the difference in relationships between
the fine- and coarse-resolution images on different dates and the difference in NDVI change rates at
different growing stages. On the other hand, it neither needs to search similar pixels nor needs to
use land cover maps. The Landsat-8 and MODIS data acquired over three test sites with different
landscapes were used to test the spatial and temporal performance of the proposed model. Compared
with the spatial and temporal adaptive reflectance fusion model (STARFM), enhanced spatial and
temporal adaptive reflectance fusion model (ESTARFM) and the flexible spatiotemporal data fusion
(FSDAF) method, the proposed STVIFM outperforms the STARFM and ESTARFM at three study
sites and different stages when the land cover or NDVI changes were captured by the two pairs of
fine- and coarse-resolution images, and it is more robust and less computationally intensive than
the FSDAF.
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1. Introduction

The Normalized Difference Vegetation Index (NDVI) is a widely used vegetation index (VI) derived
from optical remote-sensing data to evaluate the biophysical or biochemical information related to
vegetation growth [1–5]. Large scale time series NDVI is generally used for assessment and monitoring
of forest [6,7], grassland [8–10], ecological environment [11,12], wildlife habitat disturbance [13],
and to estimate gross primary productivity [14], biomass [15,16], and evapotranspiration [17]. It can
be calculated from the images acquired by sensors such as the Advanced Very High Resolution
Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Medium Resolution
Imaging Spectrometer (MERIS), Sea-Viewing Wide Field-of-View Sensor (SEAWIFS), or VEGETATION,
with spatial resolution ranging from 250 m to a few kilometers [1]. In applications such as crop
monitoring, time series images acquired by high spatial-resolution sensors such as Landsat-OLI (30 m)
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and RapidEye (5 m) are required to provide spatial and temporal details. However, due to cost
and technical limitations (trade-off between pixel spatial resolution and satellite temporal revisiting
cycle) [18] and cloud cover problems, it is difficult to acquire images with both high spatial resolution
and high temporal frequency. Thus, spatio-temporal data fusion techniques have been developed as a
feasible and less expensive way to acquire remote sensing time series data for land surface dynamics
monitoring [19–22].

In general, generating fine-resolution NDVI time series images through spatio-temporal data
fusion can be conducted in two ways [23]: (i) conduct fusion of reflectance first and then calculate
the NDVI (Blend-then-Index, BI); and (ii) calculate the NDVI first and then conduct fusion
(Index-then-Blend, IB). The theoretical basis of the two ways are essentially the same, and some
of the methods developed for reflectance images can also be used for NDVI images. However, the IB is
preferred over BI due to less error propagation and fewer computational steps (blending one index
band versus multiple reflectance bands) [23].

A few categories of spatio-temporal data fusion approaches have been originally proposed to blend
reflectance images including data-assimilation based algorithms, unmixing based methods, dictionary-pair
learning based methods, and weighted function based methods [22]. The data-assimilation based
algorithms incorporate observation data with models and their uncertainties to minimize the residual
errors [24]. The advantage of data-assimilation based algorithms is that a complete time series of
fine-resolution images, rather than single synthetic image, can be synthesized in the implementation.
A recursive Kalman filter algorithm (KF) was implemented to produce frequent fine-resolution
NDVI time series using available fine-resolution images and a time series of coarse-resolution NDVI
images in previous studies [25,26]. The uncertainty of these algorithms is correlated to the number
of available fine-resolution observations, and these algorithms suffer large uncertainties when the
available fine-resolution images are limited in heterogeneous areas.

The unmixing based methods include the Multisensor Multiresolution Technique (MMT) [27],
the spatial temporal data fusion approach (STDFA) [28], and the spatial and temporal reflectance
unmixing model (STRUM) [29]. These methods assume that remote sensing signal of coarse-resolution
pixels is the weighted average of the mean reflectance of each class and a residual error. The weight
of each class is its fractional cover within one coarse-resolution pixel, which can be calculated from
a fine-resolution land-cover map. The mean reflectance of each land cover is estimated by solving a
number of spectral unmixing model equations of coarse-resolution pixels, and the mean reflectance
of each land cover is assigned to the fine-resolution pixels. The unmixing based concept can also
be used for spatio-temporal fusion of NDVI images. Busetto et al. [1] proposed an approach for the
estimation of sub-pixel NDVI time series by combining fine- and coarse-resolution NDVI images based
on an unmixing approach. This approach aims to estimate the mean NDVI of each land cover within
one coarser-resolution pixel from daily MODIS data by solving the linear weighted equations using
manually selected coarse-resolution pixels, and disaggregate MODIS NDVI using weights calculated
by Gaussian functions of MODIS spectral dissimilarity index and the Euclidean spatial distance
between the target and each pixel. Rao et al. [30] proposed the NDVI Linear Mixing Growth Model
(NDVI-LMGM) to produce high spatial resolution NDVI time-series data by using MODIS NDVI time
series data and Landsat images. The NDVI-LMGM combines the NDVI linear mixing model with the
NDVI linear growth model. It assumes that the short-term changes in NDVI can be interpreted as
linear, and long-term NDVI changes can only be predicted reliably by several short-term predictions.
The change rate of each land cover during the two dates on the TM/ETM+ pixel scale within the
corresponding MODIS pixel can be estimated by solving the linear weighted equations. Another
method, NDVI-Bayesian spatiotemporal fusion model (NDVI-BSFM) [31], employed the Bayesian pixel
unmixing process through incorporating the prior multi-year average MODIS NDVI from the first day
of the year to the last day of the year for each land cover type, and it can predict a single Landsat-like
NDVI image as well as build a Landsat-like NDVI time-series dataset. However, these methods
are computationally intensive and rely heavily on the quality of MODIS NDVI data. Furthermore,
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the performance of these methods will be affected by the classification accuracies [32], especially when
there are land cover changes within a year. These methods are not applicable when reliable Land
cover/Land use (LC/LU) ancillary information is not available. For example, in some cropland area,
the crop types change every year due to the annual rotation of the crops. Thus, the LC/LU data are
generally produced at the end of the growing season.

The dictionary-pair learning based methods, such as the sparse representation-based spatio-temporal
reflectance fusion model (SPSTFM) [33,34] and the error-bound-regularized semi-coupled dictionary
learning (EBSCDL) [35], need one or two pairs of fine- and coarse-resolution images and one
coarse-resolution image as input data. It builds relationships (dictionaries) between the features
of fine-resolution images and their corresponding coarse-resolution images through dictionary-pair
learning [36,37], and then applies the relationship (dictionary) to predict a fine-resolution image on the
prediction date. The dictionary-pair learning based methods performed well in phenology change, but
they still face challenges in heterogeneous regions with abrupt land cover type changes [22], and they
are computationally complex [22,33].

The weighted function based methods include the spatial and temporal adaptive reflectance
fusion model (STARFM) [19], and the enhanced spatial and temporal adaptive reflectance fusion model
(ESTARFM) [18]. Due to simple input requirements (no ancillary land cover data or classification data
required) and robustness, they are widely used in many applications [11,16,23,38,39]. The input data of
the STARFM algorithm are one or two pairs of fine- and coarse-resolution images acquired at the same
time and one coarse-resolution image acquired at the prediction time. This algorithm assumes that the
reflectance of a given coarse-resolution pixel can be aggregated from fine-resolution homogeneous
pixels. The STARFM attempts to search neighboring similar homogeneous coarse-resolution pixels
within a moving window and endows the weights of these similar pixels calculated according to the
spectral difference between coarse-resolution and fine-resolution data, the temporal difference between
the input MODIS data, and the distance to the central pixel. The reflectance of the central fine-resolution
pixel is estimated from the neighboring similar homogeneous pixels. However, the STARFM algorithm
is not applicable to heterogeneous areas such as croplands [18]. Due to this limitation, an improved
STARFM with help of unmixing-based method (USTARFM) was proposed [40]. However, it still
subjects the problem of land cover changes. The ESTARFM was proposed by Zhu et al. [18] to enhance
the ability of STARFM through the use of two pairs of fine-resolution and coarse-resolution images
obtained on two dates. It is able to minimize the system biases between the sensors and is more
suitable for heterogeneous areas by using two pairs of fine- and coarse-resolution images to detect
land cover changes and it keeps more spatial details [18]. However, the ESTARFM method assumes
that there is no temporal variation in change rate of the vegetation during a period, which is not
reasonable if it is long a period between the input images. Furthermore, the ESTARFM neglects
the variation of the relationship between the fine- and coarse-resolution images caused by different
acquisition dates. The spatial and temporal nonlocal filter-based data fusion method (STNLFFM) [41] is
a recently proposed method that can predict the fine-resolution reflectance accurately and robustly by
introducing the idea of nonlocal filtering, for both heterogeneous landscapes and temporally dynamic
areas. However, it is based on the assumption that the reflectance change rate is linear, which is
not accurate over a long period. The flexible spatiotemporal data fusion (FSDAF) model [22] is a
method using one pair of fine- and coarse-resolution images and one coarse-resolution image acquired
on the prediction date. This method integrates the unmixing-based methods, spatial interpolation,
and STARFM into one framework. It performs better in predicting abrupt land cover changes than
other methods that use only one pair of fine- and coarse-resolution images. However, this method is
computationally expensive and the prediction accuracy greatly depends on the extent of land cover
changes between the two dates of the input images.

In this study, a spatio-temporal vegetation index image fusion model (STVIFM) is proposed to
generate NDVI time series images with high spatial and high temporal resolution in heterogeneous
regions such as croplands more accurately and robustly. Different from the methods mentioned above,
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we aim to predict the NDVI change for each fine-resolution pixel by using a weighting system to
disaggregate the total NDVI change within a moving window, which can be calculated from the
coarse-resolution NDVI images acquired on two different dates. The proposed model employed:
(1) a new weighting system; (2) a new method to obtain the relationship between the two resolution
images; and (3) more reasonable assumptions on the NDVI change rate of non-evergreen vegetation,
which considers the change rate variations at both spatial scale and temporal scale. This algorithm is
tested by Landsat-OLI and MODIS data acquired in three study sites. The results generated by the
STARFM, ESTARFM and FSDAF methods are validated by the real Landsat NDVI images or field
measurements for three study sites and different growth stages of a cropland area.

2. Methodology

2.1. Theoretical Basis

Most of the spatio-temporal data fusion methods are based on the linear mixture model, which
assumes that the reflectance of a coarse-resolution pixel (mixed pixel) can be modeled as the sum
of the reflectance of different land cover endmembers (pure pixels) within the pixel, weighted by
the corresponding fractional cover of each component [1,42]. This assumption can also be used
for NDVI values, and it was demonstrated that this linear assumption for NDVI only led to minor
inaccuracies [43]. The linear mixture model can be written as in Equation (1):

NDVI =
k

∑
c=1

( fc ×NDVIc) + ε (1)

where k is the number of classes. fc represents the fractional cover of land cover class c in this pixel
and ∑k

c=1 fc = 1. NDVIc is the NDVI of endmember of land cover class c. ε is the residual error term.
This model can be applied to both fine- and coarse-resolution pixels.

The difference in NDVI between a single coarse-resolution pixel and a fine-resolution pixel results
from the heterogeneity of the observed area and the systematic biases caused by the difference in sensor
systems [18]. For heterogeneous areas, there may be great changes of fine-resolution pixels within one
original coarse-resolution pixel, so it is inappropriate to build relationships between the individual
fine-resolution pixels and coarse-resolution pixels with a linear regression method. The relationship
between NDVI of a pure coarse-resolution pixel (NDVI′c) and NDVI of a pure fine-resolution pixel
(NDVIc) for a given class c can be described with a linear model:

NDVIc = a×NDVI′c + b (c = 1, 2, . . . , k) (2)

where a and b are the coefficients of the linear regression model between the coarse- and fine-resolution
NDVI of pure pixels.

For fine-resolution pixels contained by a coarse resolution pixel, if we neglect the residual error,
NDVI of the ith fine-resolution pixel can be calculated from Equations (1) and (2):

NDVIi =
k

∑
c=1

( fci ×
(
a×NDVI′c + b

)
) = a× (

k

∑
c=1

fci ×NDVI′c) + b (3)

The average fractional cover of class c of all the fine-resolution pixels within one coarse-resolution
image is equal to the fractional cover of the coarse-resolution image. Therefore, the average NDVI of
fine-resolution pixels can be obtained using Equation (4):

NDVI = a×NDVI′ + b (4)

where NDVI′ is the NDVI of one coarse-resolution pixel. If the coarse-resolution image is resampled to
the same spatial resolution as the fine-resolution image using the nearest neighbor method (the value
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of each resampled pixel is the same within a coarse-resolution pixel), the NDVI value of each original
coarse-resolution pixel is equal to the mean value of the resampled pixels within the original pixel. If
there are three pairs of fine- and coarse-resolution images acquired on date m (tm), date n (tn), and the
prediction date p (tp), which is between tm and tn (tm < tp < tn), the mean NDVI of the N fine-resolution
image pixels on the three dates (NDVIm, NDVIn, NDVIp) have linear relationships with the mean
NDVI of the corresponding N resampled coarse-resolution image pixels (NDVI′m, NDVI′n, NDVI′p)
respectively. The relationships can be expressed as Equation (5):

NDVIk = ak ×NDVI′k + bk (k = m, p, n). (5)

where am, an and bm, bn can be obtained through the regression of the two pairs of images, respectively.
As there is no available fine-resolution image at tp, the correlation cannot be achieved through
regression. ap and bp may be different from am, bm or an, bn; thus, the total NDVI difference between the
prediction date (tp) and the date before (tm) or after (tn) of the fine-resolution pixels within the moving
window can be obtained by Equation (6):

N

∑
i=1

(
∆NDVIpki

)
= (NDVIp −NDVIk)× N =

(
ap ×NDVI′ p − ak ×NDVI′k + bp − bk

)
× N (k = m, n). (6)

To obtain each fine-resolution pixel’s NDVI change between tm (or tn) and tp, a disaggregation
weighting system can be adopted to describe the contribution of each pixel to the total NDVI changes
calculated from the coarse-resolution pixels within the moving window. Then, the NDVI for each pixel
can be obtained from the image acquired at tm or the image acquired at tn by adding the predicted
NDVI change of each fine-resolution pixel (Equation (7)):

NDVIpki = NDVIki + Wki ×
N

∑
i=1

(
∆NDVIpki

)
(k = m, n). (7)

Theoretically, the NDVI at tp can be predicted using the fine-resolution NDVI at tm or tn.
In heterogeneous regions, local land cover changes may cause large inaccuracies if only one fine-resolution
image is used as the base image. To reduce the inaccuracy caused by local land cover changes, the two
estimations based on the two fine-resolution images can be combined according to the local similarity
between the two coarse-resolution images to obtain a more robust result.

NDVIpi = Slpm ×NDVIpmi + Slpn ×NDVIpni. (8)

where Slpm and Slpn represent the local similarity weights, Slpm + Slpn = 1. The calculation of Slpm
and Slpn will be given in Section 2.3.

2.2. Weighting System

To predict fine-resolution NDVI at tp, the accurate calculation of weights, which aim to
disaggregate the total NDVI change to each fine-resolution pixel within a moving window, is an
important part of this algorithm. The traditional approach to calculate the NDVI change is to solve a
system of linear mixture equations based on a prior classification map. However, this process is time
consuming and the results ignored the difference of growth status in the same land cover type. Another
approach is to calculate the change rate using the two fine-resolution images, which is adopted in
the ESTARFM method [18]. The ESTARFM assumes that the change rate is stable during the period
between tm and tn. This assumption is reasonable if the period between tm and tn is short enough
(e.g., a few days), but, if the period is not short enough (e.g., 20 days), the change rate will vary
during this period. In this study, we attempt to estimate the NDVI change based on the two acquired
fine-resolution images by addressing the variations of NDVI change rate at spatial and temporal scale.
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According to the NDVI time series profile of pure vegetation pixels generated from MODIS NDVI
time series data acquired in a growing season shown in previous studies [30,31] or the simulated
NDVI time-series profile modeled by a double logistic function [44], the NDVI change rate increases
with the increase of NDVI at the beginning of the growing stage, then reaches a maximum, and then
decreases at the growing stage. The same trend is shown at the senescent stage. Theoretically, at the
early growing stage, the growth rate, which is related to the NDVI change rate of healthy vegetation,
is low due to the limited photosynthesis process caused by many factors such as temperature and
chlorophyll content [45]. Then, the growth rate increases due to the optimal temperature, increasing
chlorophyll content and other factors. At the later growing stage, the growth rate decreases due to
the deficiency of nitrogen, water, and the change of temperature, etc. [45]. For heterogeneous regions,
the NDVI change rates of different pixels may vary within a moving window. This variation may be
caused by the difference of vegetation types or the difference in growth stages of the same vegetation
type. Therefore, the spatial variation of fine-resolution NDVI change (spatial weight) varies with
the prediction time tp. For better understanding the variation of NDVI change rate at the temporal
scale and spatial scale, we simulated the NDVI time series profiles for three pure crop pixels within a
moving window according to the NDVI time series profile of vegetation pixel generated from MODIS
NDVI time series data in previous studies [30,31] (Figure 1).
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Figure 1. Diagram of simulated Normalized Difference Vegetation Index (NDVI) profiles for different
crop pixels.

When image acquired at tm is used as the base image, if ∆tnp (tn − tp) is short enough, the spatial
variation of NDVI change from tm to tp can be determined by the spatial variation of the fine-resolution
NDVI change from tm to tn. If ∆tmp (tp − tm) is short enough (e.g., one day), the spatial variation
of NDVI change from tm to tp cannot be accurately calculated using the spatial variation of the
fine-resolution NDVI change from tm to tn due to the spatial and temporal variations of NDVI change
rate. However, the spatial variation of fine-resolution NDVI change from tm to tp is closely related
to the spatial variation of NDVI change rate at tm. When tp moves from tm to tn, the NDVI change
between tm and tp becomes more and more related to the NDVI change between tm and tn. The idea is
the same when image acquired at tn is used as the base image. Thus, for any time tp between tm and tn,
we propose to calculate the final spatial weight for NDVI changes by combining the NDVI change rate
calculated from the image acquired at tm or tn, and the temporal NDVI change between tm and tn using
a temporal weight. Since two estimations can be calculated from the two base images, and there may
be abrupt changes, a more robust final prediction can be achieved by combining the two predictions
using a local similarity weight (Equation (8)). However, if there are peaks (growing stage to senescence
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stage) or valleys (senescence stage to growing stage) for the vegetation NDVI profile between tm and
tn, and tp is neither close to tm nor to tn, large inaccuracy would be produced. The detailed idea of the
weighting system is illustrated in Sections 2.2.1–2.2.3.

2.2.1. Weight Calculation Based on Temporal NDVI Change

As mentioned above, if tp is very close to tn, the variation of NDVI change from tm to tp can be
determined by the variation of the fine-resolution NDVI change from tm to tn (Equation (9)).

D = NDVIn −NDVIm. (9)

In heterogeneous regions, for example when increasing NDVI pixels may be mixed with
decreasing NDVI pixels caused by harvesting, flooding or re-planting areas and unchanged NDVI
pixels such as bare soil within the moving window, the weight calculation based on temporal NDVI
change is complex. To keep the same sign of the weight calculated from temporal NDVI change,
the three types of pixels should be processed separately. The land covers were classified into three
categories according to the NDVI change from tm to tn (Equation (10)). Even though it is an unvegetated
area such as bare soil, the NDVI may have minor temporal changes due to the slight variation of its
spectral characteristics over time. Therefore, ±0.1 are selected as the thresholds for the classification.
The selection of the thresholds is also supported by the finding that the NDVI threshold for bare soil
was 0.1 [46]. The weight of each pixel within the moving window was calculated separately according
to their categories.

Di > 0.1 Category 1, growing vegetation
Di < −0.1 Category 2, senescent vegetation/ disturbance

−0.1 ≤ Di ≤ 0.1 Category 3, unchanged area/short term changes
. (10)

where Di is the NDVI difference of the ith pixel in the moving window. If Di is greater than 0.1
(Di > 0.1), the ith pixels is marked as growing vegetation. If Di is less than −0.1 (Di < −0.1), it is
marked as a disturbance or senescent vegetation. If Di is less than or equal to −0.1 and greater than or
equal to 0.1 (−0.1 ≤ Di ≤ 0.1), it is regarded as unchanged area or short-term changes that were not
recorded in the two fine-resolution images. For Categories 1 and 2, the weight related to the temporal
NDVI change between tm and tn for each pixel can be obtained by and Equation (11).

wtji = Di/ ∑
Nj
i=1 Di (j = 1, 2). (11)

where wtji is the weight calculated from temporal NDVI change for the ith pixel that belongs to the jth
category. Nj is the number of the pixels that belong to category j within the moving window. However,
for areas where there is no temporal NDVI change between tm and tp (Category 3), this calculation is
not applicable.

2.2.2. Weight Calculation Based on NDVI Change Rate

If ∆tmp (tp − tm) is short enough (e.g., 1 day), the variation of fine-resolution NDVI change from tm

to tp is closely related to the variation of NDVI change rate at tm. Under this circumstance, we believe
that the NDVI value of the fine-resolution image acquired at any time is related to the NDVI change
rate at that time according to Figure 1 and the physiological characteristics of plants described in [45].
For heterogeneous regions, the spatial variation of NDVI values at tm causes the spatial variation of the
NDVI change rate, and accordingly the NDVI change between tm and tp. From the simulated NDVI
profile shown in Figure 1 or the NDVI profile generated from remote sensing time series images [30,31],
it can be assumed that for different types of vegetation or the same type of vegetation with different
growth stages, the pixels with low or high NDVI values have lower NDVI change rate and the pixels
with median NDVI values should have higher change rate at that time. The spatial variation of the
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NDVI change rate can be interpreted using a change rate index (CRI) calculated by an exponential
function (Equation (12)) based on one acquired fine-resolution NDVI image.

CRIk = e−
(NDVIk−d)2

σ2 (k = m, n). (12)

where σ2 determines the variance of the transformed values, and d represents the NDVI value where
the change rate is maximum. Since the theoretical NDVI values for vegetation pixels range from 0 to 1,
the median value 0.5 was selected as the value of d in this study. σ2 was set to 0.1 to obtain the change
rate index with a dynamic range from 0 to 1.

The weight calculated from the NDVI change rate for the ith pixel that belongs to category j at tm

(wmji) or tn (wnji) can be calculated by Equation (13).

wkji =
CRIki

∑
Nj
i=1 CRIki

(k = m, n; j = 1, 2, 3). (13)

2.2.3. Final Weight Calculation

For heterogeneous vegetated areas, the more similar the land cover on the base date (tm or tn) is
to the land cover on the prediction date, the more accurate is the predicted image. The time interval
can be an indicator for the similarity of land cover but there are exceptions. For example, in Figure 1,
the NDVI change is larger from tn to t1 than from t1 to t2 for pixel 2 even though t1 − tn is less than
t2 − t1. To avoid the manual input of dates for the acquired images, and the circumstance that the
NDVI change is larger in a shorter period, the correlation coefficient (rw) (Equation (14)) between
two coarse-resolution images for the whole region is selected to calculate the temporal weight (T)
(Equation (15)). Compared with other statistical indices, the correlation coefficient is more suitable for
indicating land cover similarity in heterogeneous regions as it reflects the similarity in the trend of
differences associated with each pixel.

rwpk =
∑N

i=1

(
NDVI′ki −NDVI′k

)(
NDVI′pi −NDVI′p

)
√

∑N
i=1

(
NDVI′ki −NDVI′k

)2
×
√

∑N
i=1

(
NDVI′pi −NDVI′p

)2
(k = m, n) (14)

Tpk =
rwpk

2

rwpm2 + rwpn2 (k = m, n) (15)

where rwpk is the correlation coefficient of the whole image at tp and tk (k = m, n). N is the number of
pixels in the whole region. Tpk represents the temporal weight between image tp and tk (k = m, n).

For any prediction time between tm and tn, the final weight for vegetated areas (Category 1,2) can
be calculated using the temporal weighted average of the weight calculated from the spatial NDVI
variation and the temporal NDVI change (Equation (16)).{

Wmji = Tpm × wmji + Tpn × wtji
Wnji = Tpn × wnji + Tpn × wtji

(j = 1, 2) (16)

where Wmji or Wnji is the final weight for the ith pixel calculated based on the fine-resolution image
acquired at tm or tn for the jth category. For areas where there is no temporal NDVI change (Category 3)
between tm and tp, the final weight is the same as the weight calculated based on the NDVI change
rate (Equation (17)). {

Wmji = wmji
Wnji = wnji

(j = 3) (17)
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2.3. Implementation of the STVIFM

The STVIFM requires two pairs of fine- and coarse-resolution images acquired on the same
date and one coarse-resolution image on the prediction date. All of the input images need to be
preprocessed (re-projection, geometric correction, and NDVI calculation). A moving window is
adopted for implementing the STVIFM. The step of the moving window is one fine-resolution pixel
and each step calculates the NDVI of the center pixel in the moving window.

The flowchart for the STVIFM algorithm is shown in Figure 2. There are four main steps for
the STVIFM implementation. The first step is to detect NDVI changes according to the two input
fine-resolution NDVI images and classify the land cover into three categories. The second step is to
calculate the correlation coefficient between the coarse-resolution images for the whole region and
within the moving window, and then the weights. The third step is to determine the coefficients a and b
through a linear regression between the two fine-resolution and coarse-resolution image pairs. The last
step is to calculate the final weight and the NDVI value of the center pixel on the prediction date for its
category. As the weight calculations have been introduced in Section 2.2, this section mainly illustrates
the last two steps.Remote Sens. 2017, 9, 1124  9 of 28 
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Figure 2. Flowchart of the spatio-temporal vegetation index image fusion model (STVIFM) algorithm.
The steps are shaded by different colors (blue: satellite data preprocessing; green: NDVI change
detection; orange: weight calculation; purple: coefficients determination; yellow: NDVI prediction).

2.3.1. Determination of Coefficients between the Fine- and Coarse-Resolution Images

Due to differences in remote sensor systems, systematic biases exist between different sensor
imagery. In addition, directional effects and weather conditions can also lead to biases between
different sensor images on different dates. In this study, the coefficients between the fine-resolution
and coarse-resolution images on different dates were acquired through regression analyses. For the
two pairs of fine-resolution and coarse-resolution images, a moving window was used to calculate the
mean NDVI of the fine- and coarse-resolution images within this window, then the linear regression
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with the mean NDVI values was conducted to obtain the coefficients am, bm and an, bn. The window
size should be the odd number which is near to the integer multiple of the ratio between the coarse
resolution and fine resolution to accommodate the original coarse-resolution pixel. The step of
the moving window is the same as the window size (rather than one-pixel step) so as to avoid
self-correlation with the mean values of the NDVI. For example, if the window size is 9 by 9, the step
will be 9. It is difficult to determine ap and bp due to the unavailability of the fine-resolution image
at tp. The coefficients ap and bp were calculated by the temporal weighted average of am, an and
bm, bn respectively (Equations (18) and (19)), with the assumption that the more similar the two
coarse-resolution images, the greater the weight:

ap = Tpm × am + Tpn × an. (18)

bp = Tpm × bm + Tpn × bn. (19)

2.3.2. Local Similarity Weight Calculation and NDVI Prediction for the Central Pixel

There may be local land cover changes caused by harvesting or flooding for heterogeneous regions
such as croplands with crops growing in different seasons. The correlation coefficient of the local area
within the moving window (rl) is used to calculate the local similarity weight (Sl), which is mentioned
in Section 2.1 for local heterogeneous area, whereas the mean absolute difference within the moving
window (MADl) (Equation (20)) is used to calculate local similarity weight for local homogeneous area
(Equation (21)).

MADlpk =
1

Nl

Nl

∑
i=1

abs
(

NDVI′ki −NDVI′pi

)
(k = m, n) (20)

Slpk =
rlpk

2

rlpm
2+rlpn

2 (k = m, n) heterogeneous area

Slpm =
MADlpn

MADlpm+MADlpn
homogeneous area

Slpn =
MADlpm

MADlpm+MADlpn
homogeneous area

(21)

where MADlpk is the local mean absolute difference between course-resolution image at tk (k = m, n)
and tp. Nl is the number of pixels within the local moving window. Slpk is the local similarity weight
between course-resolution image at tk (k = m, n) and tp. If MADlpm = MADlpn = 0, Slpm = Slpn = 0.5.

To determine the heterogeneous area and homogeneous area, the standard deviation (SD)
was calculated for all three coarse-resolution images (Equation (22)). If the SD for the three
images satisfies Equation (23), the area within the moving window is determined as homogeneous,
otherwise heterogeneous.

SDk =

√√√√∑Nl
i=1

(
NDVI′ki −NDVI′k

)2

Nl − 1
(k = m, n, p) (22)

SDm < 0.002×NDVI′maxm and SDn < 0.002×NDVI′maxn and SDp < 0.002×NDVI′maxp (23)

where Nl is the number of pixels in the local moving window, and NDVI′maxk means the maximum
NDVI of the whole coarse image acquired on date k (k = m, n, p). NDVI′ki and NDVI′k represent NDVI
of the ith pixel and mean NDVI within the moving window on the coarse-resolution image acquired
on date k (k = m, n, p) respectively.

In the moving window, the weight was calculated within each category (Equations (16) and (17)),
and the final NDVI for the central pixel on the prediction date can be predicted by Equations (7) and (8)
using the pixels which have the same category as the central pixel.

3. Results of Data Fusion

3.1. Test Sites and Data

Three test sites of distinct geographic locations and climate zones were chosen to test the STVIFM
algorithm. The first site (42◦53′N 81◦35′W, 12 km× 12 km) is located in the Mixedwood Plains Ecozone
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in southwestern Ontario, Canada, near the city of London. This area is constantly contaminated by
cloud cover during the growing season. For example, from April to October, about 57% of Landsat-8
images contain cloud cover greater than 35%. The dominant crops are winter wheat, corn, and soybean.
The winter wheat is generally seeded in October in the previous year and harvested in late July,
whereas the corn and soybean are generally seeded in May and harvested in September or October.
The second site (37◦01′N 99◦07′W, 24 km × 24 km) is located near Dodge City in Kansas, United States.
This study site contains a large area of grassland as well as crops such as winter wheat. This area
receives around 532 mm of rainfall with annual average temperature of 13.3 ◦C, and altitude between
700 and 800 m above sea level. The third site (44◦13′N 87◦53′E, 45 km × 45 km) is situated in the
south of the Junggar Basin in Xinjiang, China, bordered by the Gurbantunggut Desert in the north.
The dominant crop types in this area are cotton, corn, and winter wheat. The cotton and corn are
planted in April and harvested in September, whereas wheat is generally seeded in October in the
previous year and harvested in May. This area receives scarce rainfall and has long and cold winters
with short and hot summer with sharp contrast between daytime and night temperature [47].

Landsat-8 OLI data and Moderate Resolution Imaging Spectroradiometer (MODIS) surface
reflectance products (MOD09GQ and MOD09Q1) were obtained. The Landsat-8 images, with 9 spectral
bands, 16-day temporal frequency, and 30 m spatial resolution, were downloaded from the United
States Geological Survey (USGS) (http://landsat.usgs.gov/landsat8.php). MOD09GQ is daily
reflectance product and MOD09Q1 is a level-3 eight-day composite product of MOD09GQ, which
provides surface reflectance of Band 1 and Band 2 at 250 m resolution. Each MOD09Q1 pixel represents
the best observation during an eight-day period [48]. The eight-day MODIS reflectance products
(MOD09Q1) were downloaded from the National Aeronautics and Space Administration (NASA)
Reverb portal (http://reverb.echo.nasa.gov/reverb/) for Ontario site due to the frequent cloud
contamination of the daily reflectance products. The daily MODIS reflectance products MOD09GQ
were downloaded for Kansas and Xinjiang sites. The MODIS data were re-projected and mosaicked
using the MODIS re-projection tool (MRT). They were then resampled to 30 m resolution using the
nearest neighbor method and geo-rectified to the corresponding Landsat images. To avoid the influence
of clouds, the MODIS and Landsat-8 images were then clipped to the areas where there was no cloud
presence. Finally, the NDVI was calculated.

The dates of cloud-free Landsat-8 OLI and the corresponding MODIS images acquired near the
dates of the Landsat acquisitions are shown in Table 1. The two pairs of MODIS and Landsat-8 NDVI
images acquired before and after the prediction date, and one MODIS NDVI image acquired on the
prediction date were used to predict the synthetic Landsat-like NDVI image. The Landsat-8 images
acquired on the prediction date at each study site were used to validate the synthetic Landsat-like
NDVI images.

Table 1. Dates of MODIS and Landsat-8 OLI images.

Composite Period (Date) of Obtained MODIS Images Date of Obtained Landsat OLI Images

Ontario, Canada
15 April 2014–22 April 2014 (DOY: 105–112) 20 April 2014 (DOY: 110)

1 May 2014–8 May 2014 (DOY: 121–128) 6 May 2014 (DOY: 126) (validation)
2 June 2014–9 June 2014 (DOY: 153–160) 7 June 2014 (DOY: 158)

Kansas, U.S.
3 May 2014 (DOY: 123) 3 May 2014 (DOY: 123)
19 May 2014 (DOY: 139) 19 May 2014 (DOY: 139) (validation)
20 June 2014 (DOY: 171) 20 June 2014 (DOY: 171)

Xinjiang, China
27 May 2014 (DOY: 147) 27 May 2014 (DOY: 147)
12 June 2014 (DOY: 163) 12 June 2014 (DOY: 163) (validation)
28 June 2014 (DOY: 179) 28 June 2014 (DOY: 179)

Figures 3–5 show the NDVI images obtained on three dates over three study sites. The sub-images
(30 m resolution, 400 × 400 pixels) at the upper rows are Landsat-8 NDVI images (fine-resolution,
30 m) and lower rows are MODIS NDVI images (coarse-resolution, 250 m resampled to 30 m).

http://landsat.usgs.gov/landsat8.php
http://reverb.echo.nasa.gov/reverb/
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Figure 5. Landsat (upper row); and MODIS (lower row) NDVI images from three dates in 2014 over a
cropland area in Xinjiang, China.

To assess the application of the proposed algorithm on time series data, a total of 18 cloud-free
MODIS MOD09Q1 data and six Landsat-8 OLI data were acquired over London, Ontario throughout
the growing season in 2014 (Figure 6). Figure 7 shows the six cloud-free NDVI images and
corresponding MODIS NDVI images. The sub-images at the upper row are Landsat-8 NDVI images
(fine-resolution, 30 m). The sub-images at the lower row are the eight-day MODIS NDVI images.
From 6 May to 7 June, as the winter wheat grew, the NDVI increased greatly. On 10 August, the winter
wheat had been harvested, and most of the land was covered by corn and soybean. Thus, there were
great land cover changes from 7 June to 10 August. From 10 August to 26 August, a few winter wheat
fields were covered by alfalfa, and the NDVI increased again. On 27 September, most corn and soybean
were senescent and the NDVI decreased.

Remote Sens. 2017, 9, 1124  13 of 28 

 

 
Figure 5. Landsat (upper row)1 and MODIS (lower row) NDVI images from three dates in 2014 over 
a cropland area in Xinjiang, China. 

To assess the application of the proposed algorithm on time series data, a total of 18 cloud-free 
MODIS MOD09Q1 data and six Landsat-8 OLI data were acquired over London, Ontario 
throughout the growing season in 2014 (Figure 6). Figure 7 shows the six cloud-free NDVI images 
and corresponding MODIS NDVI images. The sub-images at the upper row are Landsat-8 NDVI 
images (fine-resolution, 30 m). The sub-images at the lower row are the eight-day MODIS NDVI 
images. From 6 May to 7 June, as the winter wheat grew, the NDVI increased greatly. On 10 August, 
the winter wheat had been harvested, and most of the land was covered by corn and soybean. Thus, 
there were great land cover changes from 7 June to 10 August. From 10 August to 26 August, a few 
winter wheat fields were covered by alfalfa, and the NDVI increased again. On 27 September, most 
corn and soybean were senescent and the NDVI decreased. 

 
Figure 6. The dates for the available cloud free Landsat imagery and the MODIS time series data. Figure 6. The dates for the available cloud free Landsat imagery and the MODIS time series data.



Remote Sens. 2017, 9, 1125 14 of 28
Remote Sens. 2017, 9, 1124  14 of 28 

 

 
Figure 7. The Landsat and MODIS NDVI image pairs acquired throughout the growing season in 
Ontario, Canada. 

3.2. Selection of Window Size for Deriving the Coefficients 

Linear regression analysis was conducted between the fine- and coarse-resolution image pairs 
(Section 2.3.1) for different study sites using different sizes of moving window. The variations of the 
coefficient of determination (R2), a and b with the increasing window size are shown in Figure 8. It 
was illustrated that when 9 (the approximate size of one course-resolution pixel) was adopted as the 
window size, the correlation was much lower than for other choices. The reason for this is likely that 
there are errors introduced by rounding and the geometric correction process between 
fine-resolution and coarse-resolution images. In this way, the fine-resolution pixels may not be the 
pixels that are supposed to be within the original coarse-resolution pixel. With the increase of 
window size, the R2 values increased for most image pairs and plateaued when the window size is 
17, which contains 4 MODIS pixels. This should be impacted by the MODIS point spread function 
(SPF) [49]. The value of a ranges from 0.9 to 1.5 for different study sites, and b ranges from −0.15 to 
0.05 for different study sites. Even for the same study site, a and b vary on different dates. With the 
increase of the window size, the variations of a and b are slight and smooth. It can be believed that 
both a and b are not sensitive to the change of window size. However, with a larger window, the 
increase rate of R2 becomes smaller, the sample points become less, and the significance of the 
correlation will be reduced. Accordingly, a 33 × 33 moving window (4 × 4 coarse-resolution pixels) 
was used to obtain the coefficients. 

 
Figure 8. The variations of: R2 (a); a (b); and b (c) with the increasing window size for fine- and 
coarse-resolution NDVI pairs over different study sites. 

Figure 7. The Landsat and MODIS NDVI image pairs acquired throughout the growing season in
Ontario, Canada.

3.2. Selection of Window Size for Deriving the Coefficients

Linear regression analysis was conducted between the fine- and coarse-resolution image pairs
(Section 2.3.1) for different study sites using different sizes of moving window. The variations of
the coefficient of determination (R2), a and b with the increasing window size are shown in Figure 8.
It was illustrated that when 9 (the approximate size of one course-resolution pixel) was adopted as the
window size, the correlation was much lower than for other choices. The reason for this is likely that
there are errors introduced by rounding and the geometric correction process between fine-resolution
and coarse-resolution images. In this way, the fine-resolution pixels may not be the pixels that are
supposed to be within the original coarse-resolution pixel. With the increase of window size, the R2

values increased for most image pairs and plateaued when the window size is 17, which contains
4 MODIS pixels. This should be impacted by the MODIS point spread function (SPF) [49]. The value of
a ranges from 0.9 to 1.5 for different study sites, and b ranges from−0.15 to 0.05 for different study sites.
Even for the same study site, a and b vary on different dates. With the increase of the window size,
the variations of a and b are slight and smooth. It can be believed that both a and b are not sensitive to
the change of window size. However, with a larger window, the increase rate of R2 becomes smaller,
the sample points become less, and the significance of the correlation will be reduced. Accordingly,
a 33 × 33 moving window (4 × 4 coarse-resolution pixels) was used to obtain the coefficients.
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Besides the proposed method, the STARFM, ESTARFM and FSDAF methods were also used for
comparison purpose. To select a reasonable window size for the algorithm implementation, the data
fusion was conducted with different window sizes based on the STARFM, ESTARFM, FSDAF and
STVIFM methods. Take the Ontario site as an example (Table 2). For the STVIFM, the accuracy is the
highest when the window size is 25, and the computation time increases with the increase of window
size. For the ESTARFM, the accuracy is the highest when the window size is 33. For the STARFM and
the FSDAF, the larger window size gives higher accuracy (higher R2 and lower RMSE), but the increase
of accuracy is very small. Therefore, we chose 33 as the window size (the same as the window size used
in coefficients calculation) for the fusion models, after analyzing the R2, RMSE, and computational
efficiency of these algorithms using different window sizes.

Table 2. Regression results between Landsat-8 NDVI image and correspondent synthetic NDVI image
based on different algorithm using different window size at the Ontario site.

Window
Size

STARFM ESTARFM FSDAF STVIFM

R2 RMSE Time (s) R2 RMSE Time (s) R2 RMSE Time (s) R2 RMSE Time (s)

9 0.668 0.099 2.08 0.673 0.120 34.67 0.782 0.081 52.04 0.739 0.099 13.6
17 0.661 0.098 4.07 0.704 0.116 40.57 0.804 0.077 55.56 0.824 0.071 20.69
25 0.659 0.096 7.21 0.717 0.113 46.71 0.816 0.076 58.68 0.83 0.070 31.5
33 0.659 0.096 11.52 0.723 0.112 52.2 0.824 0.075 68.6 0.826 0.071 46.4
41 0.659 0.095 16.31 0.722 0.112 62.01 0.828 0.075 67.45 0.818 0.074 64.18
49 0.659 0.094 22.8 0.721 0.113 73.59 0.832 0.074 78.7 0.811 0.076 87.08

p < 0.01.

3.3. Algorithm Tests in Regions with Different Landscapes

As the FSDAF only needs one pair of fine- and coarse-resolution images, the pair of images
acquired on the date before and after the prediction date were used, respectively, for all three sites,
and FSDAF_m and FSDAF_n were used to represent the two predictions hereafter. The performances
of the four algorithms were assessed by visual comparison and regression analyses. The coefficient of
determination, Mean Absolute Difference (MAD) and Mean Difference (MD) between the observed
NDVI and predicted NDVI images were also calculated to assess the accuracies of the four algorithms.

Figures 9–14 show the original Landsat-8 OLI NDVI image and the synthetic NDVI images
predicted by the four algorithms, and the scatter plots between the synthetic and the original NDVI
values of Landsat OLI image acquired at tp at the three study sites. Table 3 shows the R2, RMSE,
MAD, MD and computation time of the four algorithms at different test sites. The performance of
the STVIFM is better than the STARFM and ESTARFM methods, and similar with the best prediction
of the FSDAF at all the three study sites according to R2, RMSE, and MAD. In addition, the STVIFM
is more computationally efficient than the ESTARFM and FSDAF when a window of 33 × 33 pixels
was adopted.

The Ontario site has many small-area croplands (the width of the fields is less than 250 m), which
resulted in many mixed pixels in the coarse-resolution image. Figure 10 shows that the predicted NDVI
images generated by the FSDAF_m and STVIFM are more similar to the original image. However,
the small-area land cover changes shown in the red boxes in Figure 10 were not accurately predicted
by the FSDAF. Actually, the predicted NDVI image obtained by the FSDAF is more similar to the input
fine-resolution image. As there are less land cover changes between 20 April and 6 May than between
6 May and 7 June at this site, the predicted result using the FSDAF (FSDAF_m) is more similar to the
observed NDVI. The STARFM, ESTARFM, and STVIFM are all able to predict the land cover change
by making use of two image pairs, whereas the ESTARFM overestimated the NDVI.
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Figure 9. Comparison of the observed Landsat image (a); and the synthetic images based on: spatial
and temporal adaptive reflectance fusion model (STARFM) (b); enhanced spatial and temporal
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Table 3. Statistical parameters of the linear regression analysis between synthetic and original Landsat
NDVI image.

Study Site Image Size Methods R2 RMSE MAD MD Time

Ontario, Canada
400 × 400

(12 km × 12 km)

STARFM 0.659 0.096 0.066 0.020 12 s
ESTARFM 0.723 0.112 0.075 0.052 52 s
FSDAF_m 0.824 0.075 0.061 0.026 69 s
FSDAF_n 0.594 0.151 0.109 0.072 65 s
STVIFM 0.826 0.071 0.052 0.026 46 s

Kansas, United States
800 × 800

(24 km × 24 km)

STARFM 0.343 0.113 0.073 0.005 40 s
ESTARFM 0.67 0.077 0.057 0.031 3 min 25 s
FSDAF_m 0.69 0.075 0.056 0.032 9 min 21 s
FSDAF_n 0.271 0.133 0.102 0.059 9 min
STVIFM 0.711 0.076 0.055 0.028 3 min 9 s

Xinjiang, China 1500 × 1500
(45 km × 45 km)

STARFM 0.656 0.115 0.072 −0.02 2 min 42 s
ESTARFM 0.82 0.082 0.048 0 12 min 29 s
FSDAF_m 0.812 0.085 0.060 0.010 41 min 57 s
FSDAF_n 0.593 0.128 0.095 0.001 40 min 16 s
STVIFM 0.891 0.065 0.045 0.006 11 min 15 s

p < 0.01.

As indicated by the scatter plots shown in Figure 11 and the assessment indices shown in Table 3,
the accuracy of the predicted NDVI image using the STVIFM is the best (R2: 0.826, RMSE: 0.071) and
slightly better than the accuracy of the predicted NDVI image using FSDAF_m (R2: 0.824, RMSE:
0.075). The STARFM performed better than the ESTARFM and FSDAF_n in terms of the RMSE and
MAD. Most NDVI values were overestimated by the ESTARFM and FSDAF_n. From the perspective of
computational efficiency, the STVIFM consumed less time than the ESTARFM and the FSDAF. For the
sub-image of 400 × 400 pixels, the ESTARFM and FSDAF consumed 52 s and 69 s, respectively, and the
STVIFM consumed about 46 s.

The Kansas site is mostly covered by grassland and it is more homogeneous than the other
two sites. The overall accuracy using the proposed STVIFM method (R2: 0.711, RMSE: 0.076) is the
best when compared with the STARFM and ESTARFM. The RMSE and MAD of the result produced
by the STVIFM are comparable with that of the result produced by the FSDAF_m, but the R2 of
the former result is higher than the later one. Figure 12 reveals that the ESTARFM, FSDAF_m,
and STVIFM performed better in the cropland area shown in the red box, while all the methods seem
to overestimate the NDVI in the grassland area. The RMSEs for these three methods are similar (RMSE:
0.077 vs. 0.075 vs. 0.076) but the R2 for the STVIFM is the highest (R2: 0.711). As the land cover for
most areas barely changed from the date of the first image pair (3 May 2014) to the prediction date
(19 May 2014), the NDVI predicted by the FSDAF_m shows higher accuracy than the NDVI predicted
by the FSDAF_n. In terms of computational efficiency, the ESTARFM and FSDAF consumed 3 min 29 s
and 9 min, respectively, whereas the STVIFM consumed 3 min 9 s for an image of 800 × 800 pixels.

At the Xinjiang site, the predicted NDVI image produced by the STVIFM shows good agreement
with the observed NDVI (R2: 0.891, RMSE: 0.065). Most of the fields were in the growing stage during
this period and a few fields were in the senescent stage. The accuracy of the synthetic NDVI images
produced by the ESTARFM and FSDAF_m are comparable but lower than that of the STVIFM (R2: 0.820
vs. 0.812, RMSE: 0.082 vs. 0.085). As shown in the zoom-in area in the black box, the predicted NDVI
image obtained by the STARFM shows “blurred” field boundaries, and the overall accuracy is much
lower than the ESTARFM. The temporal NDVI changes of the senescent fields shown in the red box in
Figure 14 were more accurately captured using the STVIFM when compared with the STARFM and
ESTARFM. For the FSDAF, the predicted NDVI image is more accurate using the image pair acquired
on 27 May than using the image pair acquired on 28 June. Even though the time intervals between the
prediction date (12 June 2014) and dates of the two base image pairs were the same, the land cover
changed significantly from 12 June to 28 June. Therefore, the NDVI prediction using the image pair
acquired on 27 May is more accurate than using the image pair acquired on 28 June. In terms of the
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computational efficiency, the ESTARFM and FSDAF consumed about 12 min and 40 min respectively
for an image of 1500 × 1500 pixels, whereas the STVIFM consumed about 11 min.

When we compare the accuracies for the three study sites, it is obvious that both the Ontario
site and Xinjiang site are more heterogeneous than the Kansas site and there are many crop fields
with small areas. This is possibly the reason that the STARFM and ESTARFM performed better at
Kansas site than Ontario site and Xinjiang site in terms of the RMSE and MAD. However, the STVIFM
performed better for Ontario site and Xinjiang site than Kansas site. Therefore, it can be concluded
that the STVIFM performs better than the STARFM and ESTARFM not only in homogeneous regions
but also in heterogeneous regions.

3.4. Tests with Time Series Data

In this test, all six available Landsat NDVI images and the corresponding MODIS NDVI images
acquired throughout the whole growing season over Ontario site were tested using the four methods
for the four predictions shown in Table 4. For the FSDAF, both the image pairs before and after the
prediction date were used to implement this method. (a1)–(a6) and (b1)–(b6) are the images shown
in Figure 7.

Table 4. Images used for the four methods in the four experiments.

Prediction Date (DOY) Input Images Images for Validation

121

FSDAF_m: b1, a1, b2

a2
FSDAF_n: b3, a3, b2

STARFM: b1, a1, b3, a3, b2
ESTARFM: b1, a1, b3, a3, b2
STVIFM: b1, a1, b3, a3, b2

158

FSDAF_m: b2, a2, b3

a3
FSDAF_n: b4, a4, b3

STARFM: b2, a3, b4, a4, b3
ESTARFM: b2, a3, b4, a4, b3
STVIFM: b2, a3, b4, a4, b3

222

FSDAF_m: b3, a3, b4

a4
FSDAF_n: b5, a5, b4

STARFM: b3, a3, b5, a5, b4
ESTARFM: b3, a3, b5, a5, b4
STVIFM: b3, a3, b5, a5, b4

238

FSDAF_m: b4, a4, b5

a5
FSDAF_n: b6, a6, b5

STARFM: a4, b4, a6, b6, a5
ESTARFM: a4, b4, a6, b6, a5
STVIFM: a4, b4, a6, b6, a5

The results were validated with the original Landsat NDVI images, and the assessment indices
including R2, RMSE, MAD, and AD for different methods were shown in Figure 15. For the first
prediction, the two Landsat images were acquired on 20 April and 7 June. The main crop was winter
wheat, which was growing steadily during this period. There were some small-area land cover changes
in images acquired on 6 May and 7 June (Figure 7 (a3)). As presented in Section 3.3 (Ontario site),
the STVIFM performed the best when compared with the other three methods during this period.
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For the second prediction, the two Landsat images were acquired on 6 May and 10 August and
the prediction date was 7 June. From 6 May to 7 June, corn and soybeans were planted, then wheat was
harvested and alfalfa was planted in the harvested wheat fields from 7 June to 10 August. The STVIFM
performed better than the STARFM and ESTAFM (RMSE: 0.184 vs. 0.195 vs. 187). The predicted
NDVI image generated by the FSDAF using the image pair acquired on 6 May shows much higher
accuracy than using the image acquired on 10 August and the predicted NDVI generated by the other
two methods.

For the third prediction, the two Landsat images were acquired on 6 June and 26 August and the
prediction date was 10 August. As mentioned above, the wheat fields changed greatly from 6 June to
10 August, whereas the land cover seldom changed from 10 August to 26 August. The correlation of
determination of the predicted NDVI using the STVIFM is higher than the STARFM and ESTARFM
(R2: 0.579 vs. 0.550 vs. 0.552), whereas the RMSE is higher than the STARFM and ESTARFM (RMSE:
0.158 vs. 0.151 vs. 0.156). This may be because of the large land cover changes for wheat fields from
6 June to 26 August, and the NDVI for wheat field is near the valley of the NDVI profile on 10 August.
As mentioned earlier, larger inaccuracy would be produced by the STVIFM if the peak or valley in
the NDVI profile between the two dates of acquired Landsat images needs to be predicted, and the
NDVI change is not captured by the NDVI difference of the two Landsat images. This inaccuracy can
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be reduced if more fine-resolution images can be acquired during this period. The prediction of the
FSDAF using the image pair acquired on 26 August shows a higher accuracy than using the image
pair acquired on the 6 June.

For the fourth prediction, the two Landsat images were acquired on 10 August and 27 September,
and the prediction date was 26 August. Corn and soybeans were senescent during this period.
The STVIFM performed better than the STARFM and ESTARFM (RMSE: 0.116 vs. 0.133 vs. 0.137).
The accuracy of the image predicted by the FSDAF using image acquired on 27 September is higher
than the accuracy of the NDVI predicted by the FSDAF using image acquired on 10 August in terms of
the RMSE and MAD.

In addition, a total of 12 Landsat-like NDVI images were predicted using the six acquired Landsat
and MODIS image pairs. By using more Landsat images, the prediction accuracy would be improved.
However, there was no more available Landsat image to assess the prediction results. The NDVI
time series were assessed by analyzing the temporal variations over the cornfield and winter wheat
field and compare with the phenology information and photos collected in the field work. For the
STARFM, ESTARFM and STVIFM, two temporally closest Landsat and MODIS NDVI image pairs and
one MODIS NDVI image acquired between the two dates were used to predict the Landsat-like NDVI
image each time. For the FSDAF, the MODIS NDVI image on the prediction date and one Landsat and
MODIS NDVI image pair acquired closer to the prediction date was used to predict the Landsat-like
NDVI image each time.

Figure 16 shows the temporal profiles of the average NDVI of an area (360 m × 360 m) from a
healthy cornfield and an area (360 m× 360 m) from a healthy winter wheat field between DOY 113 and
DOY 249, which were generated by the STARFM, ESTARFM, FSDAF, and the STVIFM. These two fields
were surrounded by different crop types; therefore, the MODIS pixels contain mixed Landsat pixels.
The average NDVI extracted from the original MODIS NDVI time series images and five Landsat-8
NDVI images are also presented as comparisons.
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Figure 16. Time series of the average NDVI of: the cornfield (a); and the wheat field (b), generated by
the STARFM, ESTARFM, FSDAF, and STVIFM algorithms. The predictions shown in the black box
(DOY 185) present large difference between the FSDAF and STVIFM. The pictures were collected two
days before that date (DOY 183).

The corn and winter wheat show two distinct temporal patterns due to the difference of their
growing seasons. The corn was generally seeded in May and harvested in October. The winter wheat
was generally seeded in October of the previous year, started to ripen from the beginning of July and
was harvested by the end of July, then alfalfa was planted. Before the emergence of corn, the MODIS
NDVI shows higher and fluctuated values in the cornfield due to the influence of neighboring wheat
fields. All the methods can generate reasonable predictions during this period. Between 7 June
and 10 August, only two Landsat images were acquired, and the predictions of the STVIFM and
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FSDAF show large difference on 4 July (DOY 185). As the image pair closer to the prediction date was
always used, the profile generated by the FSDAF shows peak and valley, but large inaccuracy was
still produced on some dates when the land cover changed greatly. During this period, corn was in its
growing stage whereas winter wheat was harvested and alfalfa was planted. From the general survey
pictures collected in 2014, corn had reached to the stem elongation stage (BBCH-scale 33) and most
fields were covered by corn leaves, whereas the color of wheat started to turn yellow (BBCH-scale 79).
Therefore, the STVIFM seems to generate more reasonable temporal profiles for corn and winter
wheat. The ESTARFM also shows reasonable temporal profiles for the two types of crops, however,
the prediction of the land cover change for the wheat field is less accurate than the prediction produced
by the STVIFM when compared with the nearby Landsat NDVI values.

4. Discussion

4.1. Advantages of the STVIFM

The algorithm tests at three study sites illustrated that the STVIFM algorithm performed better
than the STARFM, ESTARFM and FSDAF at the three study sites. According to the results of the above
tests, the performance of the FSDAF greatly depends on the degree of land cover change between the
two dates of the input data as it uses only one pair of fine- and coarse-resolution images as input, which
agrees with the findings stated in [31]. It performs better than other methods which use one image
pair [22] and it is flexible when only one fine-resolution image can be acquired. However, it is less
robust than methods using two fine-resolution images as inputs in the land cover change prediction.
Even though the FSDAF can predict NDVI with higher accuracy when the time interval between the
two dates of the input images are close enough or land covers are similar enough, the STVIFM still
performs better than the FSDAF during the growing stage or senescent stage. In addition, the STVIFM
is more computationally efficient and performs about three times faster than the FSDAF at Kansas site
and Xinjiang site, where the sizes are 24 km × 24 km and 45 km × 45 km, respectively.

Since the inputs of the STVIFM are same as the inputs of the STARFM and ESTARFM,
the theoretical comparisons are made between the three methods. Compared with the STARFM
and ESTARFM algorithm, the STVIFM has made several improvements. Firstly, the STVIFM builds
a relationship between the mean NDVI change of fine-resolution pixels and mean NDVI change of
coarse-resolution pixels within a moving window. It attempts to detect the mean fine-resolution
NDVI change calculated from the coarse-resolution NDVI images and to seek each fine-resolution
pixel’s contribution to the total NDVI change by calculating the weight of each fine-resolution pixel.
In contrast, the STARFM and ESTARFM build a relationship between the NDVI change of single
fine-resolution pixels and single coarse-resolution pixels, therefore accurate geometric correction
between the fine- and coarse-resolution images is required in order to achieve more accurate results [36].

Secondly, the ESTARFM assumes that the relationships between the fine-resolution and
coarse-resolution image pairs are the same on all dates. However, due to the difference of
weather conditions, the relationship between the two images may be different on different dates.
The STVIFM attempts to obtain the coefficients between the fine-resolution and coarse-resolution
image pairs on different dates using linear regression analyses. However, it is difficult to obtain the
coefficients between the images on the prediction date, due to the unavailability of the fine-resolution
image. The STVIFM adopts the weights calculated from the correlation coefficients between the
coarse-resolution images to obtain the coefficients between the fine- and coarse-resolution images on
the prediction date.

Thirdly, each of the STVIFM, STARFM and ESTARFM applied a weighting system to calculate the
NDVI of the central pixel, but the meaning of the weighting system for STVIFM and the weighting
system for STARFM and ESTARFM are different. The weight in the STARFM or ESTARFM means the
similarity between the central pixel and the surrounding similar pixels within the moving window,
whereas the weight in the STVIFM means the variation in contributions of fine-resolution pixels to
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the total NDVI change within the moving window. The STVIFM considers the change rate variation
at both spatial scale and temporal scale, which is more reasonable for non-evergreen vegetation.
It attempts to calculate the spatial variation of NDVI change (spatial weight) of each fine-resolution
pixel at any prediction date by incorporating the weights calculated based on one base fine-resolution
image and the temporal NDVI change of the two fine-resolution images. These two elements are
incorporated according to the land cover similarity between the prediction date and the two base
dates. However, the ESTARFM assumes that the change rate is stable during a short period. This
assumption is reasonable if the vegetation is evergreen or if the period between the two input image
pairs is short enough (e.g., one day), but it would be unreasonable if the period is longer (e.g., more
than 10 days) [18].

Lastly, the two predictions obtained from the two base dates are combined using a temporal
weight for the ESTARFM and a similarity weight for the STVIFM. The ESTARFM calculated the
temporal weight using the mean absolute difference between two coarse-resolution pixels within the
moving window [18]. However, this is not the best selection to determine the land cover similarity
in heterogeneous region. For instance, the mean absolute difference may be the same for area where
has large land cover change (NDVI decrease mixed with NDVI increase), and area where has the
same land cover but with NDVI decrease or increase. Therefore, the STVIFM adopts the correlation of
determination for heterogeneous areas and the mean absolute difference for homogeneous areas to
calculate the similarity weight.

Due to the advantages mentioned above, the STVIFM can make more accurate NDVI predictions
in heterogeneous regions than the STARFM and ESTARFM when the land cover or NDVI changes were
captured by the two pairs of fine- and coarse-resolution images. The accuracy improvements of the
STVIFM aremore obvious for Ontario site and Xinjiang site, which are characterized by heterogeneous
cropland areas. Accordingly, the STVIFM can generate more reasonable NDVI time series for winter
wheat and corn, which have different growing season.

4.2. Limitations and Uncertainties of the STVIFM

In addition to the advantages mentioned above, it is worth noting that the STVIFM has its
limitations. The following three aspects are the theoretical limitations of the STVIFM algorithm.
Firstly, the STVIFM algorithm assumes that the NDVI is spatially additive. This linear assumption for
the NDVI may lead to minor inaccuracies since the NDVI is not a linear combination of reflectance.
Secondly, the relationship between the fine-resolution and coarse-resolution images acquired at tp

is calculated from the relationship between the two input image pairs. The result obtained in this
way may be slightly different from the real relationship. Additionally, the STVIFM adopts the same
coefficients for the whole image, but the coefficients may vary at different locations. More efforts
should be made in further work to obtain the coefficients using a more accurate way.

There are some practical limitations with the STVIFM. Firstly, the small-area (width or length
is less than one coarse-resolution pixel) abrupt disturbances that occurred between tm and tp or
between tp and tn, may not be accurately detected because the influence of other land covers in one
coarse-resolution pixel. Secondly, if the dates tm and tn are in the growing and senescent period of the
vegetation, respectively, and the NDVI change at tp is not captured by the images acquired at tm and tn,
the performance of the STVIFM is slightly worse than the other methods since the NDVI change from
tm to tn cannot reflect the NDVI change from tm to tp. In this case, more frequent high spatial resolution
images that can cover the important vegetation phenology will be helpful. Another possible way to
improve the prediction accuracy is to integrate the fusion model with a vegetation growth model for
different types of vegetation.

4.3. Applications of the STVIFM

The STVIFM uses two pairs of Landsat-8 OLI and MODIS images acquired before and after
the prediction date and one coarse-resolution image on the prediction date as inputs, to predict the
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fine-resolution NDVI image on the prediction date. This algorithm can be applied to regions with
different landscapes such as grassland, forest and cropland areas. It can also be applied to other
vegetation indices, but the thresholds may need to be adjusted accordingly. Besides the Landsat-8 OLI
and MODIS data, other high spatial resolution data such as the SPOT, RapidEye, Sentinel-2, and high
temporal frequency data such as AVHRR, MERIS can also be used. There are four parameters that
could be set in the STVIFM, the window size for coefficients deriving and the window size for STVIFM
implementation, the NDVI value for the maximum change rate of vegetation and the variance of the
change rate index. The window size should be the odd rounding value of the integer multiple of
the resolution ratio between the coarse- and fine-resolution images. The suggested window size for
coefficients deriving and algorithm implementation is 25 or 33 for Landsat and MODIS data. However,
for images with different spatial scales, the window size may need to be adjusted. Since the theoretical
NDVI values for vegetation pixels range from 0 to 1, the median value 0.5 is suggested as the value of
d, but the value can be adjusted according to the actual NDVI range of vegetation for special vegetation
cover types. The suggested value for σ2 is 0.1–0.2 to obtain the change rate index with a dynamic range
from 0 to 1. For the NDVI time series generation, different spatio-temporal data fusion methods may
need to be incorporated to improve accuracy.

5. Conclusions

In this study, a spatio-temporal vegetation index image fusion model (STVIFM) was developed
to fuse high spatial resolution and high temporal frequency NDVI images. The STVIFM algorithm
considers the differences between fine-resolution and coarse-resolution pixel values on different dates.
It also considers the variations of change rate at the spatial scale and temporal scale by using a temporal
weight calculated from the correlation coefficients between two temporally adjacent coarse-resolution
images. The STVIFM outperforms in NDVI prediction than the STARFM and ESTARFM when the
land cover or NDVI changes are captured by the two pairs of fine- and coarse-resolution images.
For the results predicted by STVIFM, the R2 varied between 0.711 and 0.891 and the RMSE varied
between 0.065 and 0.76 for three study sites with different landscapes, which shows a higher NDVI
prediction accuracy than the STARFM and ESTARFM. The STVIFM is more robust than the FSDAF
when there are large land cover changes between the prediction date and the date of the image pairs.
In addition, the STVIFM is more computationally efficient than the FSDAF. The STVIFM enhances the
capability for generating both high spatial resolution and high temporal frequency NDVI images in
heterogeneous regions. More efforts are needed in the future for the calculation of coefficients between
different sensor images obtained under different weather conditions and geographic locations, and for
the prediction of land cover changes that are not captured in the two fine-resolution images.
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