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Abstract: Indian agriculture relies on monsoon rainfall and irrigation from surface and groundwater.
The interannual variability of monsoon rainfalls is high, which forces South Indian farmers to
adapt their irrigated areas to local water availability. In this study, we have developed and tested a
methodology for monitoring these spatiotemporal variations using Sentinel-1 and -2 observations
over the Kudaliar catchment, Telangana State (~1000 km2). These free radar and optical data have
been acquired since 2015 on a weekly basis over continental areas, at a high spatial resolution
(10–20 m) that is well adapted to the small areas of South Indian field crops. A machine learning
algorithm, the Random Forest method, was used over three growing seasons (January to March and
July to November 2016 and January to March 2017) to classify small patches of inundated rice paddy,
maize, and other irrigated crops, as well as surface water stored in the small reservoirs scattered across
the landscape. The crop production comprises only irrigated crops (less than 20% of the areas) during
the dry season (Rabi, December to March), to which rain-fed cotton is added to reach 60% of the
areas during the monsoon season (Kharif, June to November). Sentinel-1 radar backscatter provides
useful observations during the cloudy monsoon season. The lowest irrigated area totals were found
during Rabi 2016 and Kharif 2016, accounting for 3.5 and 5% with moderate classification confusion.
This confusion decreases with increasing areas of irrigated crops during Rabi 2017. During this
season, 16% of rice and 6% of irrigated crops were detected after the exceptional rainfalls observed in
September. Surface water in small surface reservoirs reached 3% of the total area, which corresponds
to a high value. The use of both Sentinel datasets improves the method accuracy and strengthens our
confidence in the resulting maps. This methodology shows the potential of automatically monitoring,
in near real time, the high short term variability of irrigated area totals in South India, as a proxy for
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estimating irrigated water and groundwater needs. These are estimated over the study period to
range from 49.5 ± 0.78 mm (1.5% uncertainty) in Rabi 2016, and 44.9 ± 2.9 mm (6.5% uncertainty) in
the Kharif season, to 226.2 ± 5.8 mm (2.5% uncertainty) in Rabi 2017. This variation must be related
to groundwater recharge estimates that range from 10 mm to 160 mm·yr−1 in the Hyderabad region.
These dynamic agro-hydrological variables estimated from Sentinel remote sensing data are crucial
in calibrating runoff, aquifer recharge, water use and evapotranspiration for the spatially distributed
agro-hydrological models employed to quantify the impacts of agriculture on water resources.

Keywords: crop cover mapping; random forest; Sentinel-1; Sentinel-2; radar and optical synergy;
agro-hydrology; rice irrigation; groundwater shortage monitoring

1. Introduction

With one of the largest populations in the world, mainly composed of rural inhabitants who
depend on agriculture as their principal income source, the competition for land and water throughout
India is huge and expanding. Indian agriculture is a striking example of the long-term land use
changes that have taken place in South Asia during recent decades: irrigation practices have been in
general use for more than 50 years, supported by the Green Revolution [1]. Yield improvements due
to the increase in irrigated areas have been sustained by the construction of surface water tanks and
the increase in the number of drilled irrigation wells from 0.15 to 20 million between 1960 and 2000 [2].
Currently, Indian agriculture consumes more than 80% of the water used in the country [3]—for
instance, 89% in 2000 [4], of which 65% is provided by groundwater [5]. This estimate fell to 39% in
2000 according to [4]. Indeed, these amounts vary widely from year to year. Investigations based on
the Gravity Recovery and Climate Experiment mission (GRACE satellite) data estimated a decline of
the groundwater stock in the Ganges basin in north India of 4.0 ± 1.0 cm yr−1 equivalent height of
water (17.7 ± 4.5 km3 yr−1) [6], 54 ± 9 km3 yr−1 [7] for the 2000s, or more recently only 2 cm yr−1

during the 2002 to 2015 period [8]. On the other hand, no clear trend appears in South India [9,10].
These two contrasted results are mainly driven by the size of the groundwater resources: the presence
in the north of the highest-yielding deep aquifers known in the world [11], contrasts with the southern
aquifers, which consist of shallow to moderately shallow fractured hard rocks with low porosity
and storage capacities [12]. Whereas in the north water extraction for irrigation purposes leads to
a continuous decline in groundwater stocks, South Indian farmers experience recurring shortages,
as shallow aquifers are temporarily emptied during periods of overexploitation when extraction is
higher than recharge, and are partially refilled after heavy monsoon rainfalls. In this context, no overall
declining trends were recorded by the GRACE mission [10].

Apart from these long-term agricultural land cover and water use trends, land cover and water
resources are highly correlated and variable particularly within a short-term range. Indeed, Indian
monsoon precipitations are highly variable in both space and time, with magnitudes apparently linked
to El Niño events [13], their variations in the North being covariant with Indian ocean warming [8,14].
These variations have a direct impact on the fluctuations of surface water through river-drained runoff
captured in surface reservoirs equipped with large and small dams, but also cause groundwater
fluctuations through aquifer recharge from the infiltration of non-evaporated water. Groundwater
fluctuations are also strongly impacted locally by water extraction for agriculture. The best water
extraction proxy is the extent of seasonal irrigated areas located around wells [15].

In many parts of South India, the groundwater contribution to irrigated water has risen by 90%,
encouraged by subsidized electricity for farmers. This financial support changed the status of this
water resource from an emergency supply, in case of surface water scarcity, to the main water source
for irrigated crops [16]. To cope with the recurrent groundwater shortages associated with deficient
monsoon rainfalls and overexploitation, farmers modulate their consumption by limiting the extent of
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irrigated areas. In Telangana State, Hyderabad region, the areas of inundated rice fields vary widely
with the crop seasons (government statistics and National Remote Sensing Center estimates published
on the Bhuvan web portal). Eighty percent of groundwater abstraction is dedicated to rice [15,17]. The
growing period is short (three months) and the rice areas represent a small proportion of the total.
For instance, they have been evaluated at around 10% and 7%, respectively, for the monsoon season
(Kharif) 2009 and the dry season (Rabi) 2010 [17,18].

The quantification of irrigated and inundated areas from optical high resolution spatial remote
sensing (SPOT, from French spatial agency CNES; ResourceSat from Indian Space Agency ISRO) in
2009–2010 provided spatial estimates of seasonal groundwater extraction for irrigation, using the daily
irrigation practices associated with each seasonal crop type [15,19]. The agro-hydrological model SWAT
(Soil Water Assessment Tool [20]) was adapted to simulate this daily extraction over several years,
together with the aquifer recharge and runoff derived from the climate forcing variables [15,17]. This
methodology, based on an agricultural land use assumed to be fixed, derived from a set of two seasonal
land covers (2009–2010) and allowed the simulation of groundwater fluctuations over a decade. It
spatially assessed the groundwater availability and quantified theoretical groundwater shortages,
i.e., when the crop water demand based on the satellite monitoring exceeded the groundwater
storage [15,17]. These studies quantified the contribution to aquifer recharge of the small surface
reservoirs spread along the non-perennial river network that constitutes a rainwater harvesting system
maintained by farmers. The main limitation of these studies is that they rely on fixed land use and
thus do not represent the short-term modulations of irrigated crop areas implemented by farmers to
cope with water shortages.

The recently launched Sentinel satellites are especially of interest for their acquisition strategies.
Sentinel-1 (satellite S1A, launched in 2014; and S1B in 2016) and Sentinel-2 (S2A launched in 2015 and
S2B in 2017) are the first generation of operational satellite EO missions for both optical multi-spectral
and radar C-band detection of continental surfaces at a global scale, with high spatial and temporal
resolutions (10 to 20 m; five to 10 days revisit interval), under a free access license.

In India, high-resolution satellite missions (56 m spatial resolution) have been used to measure
seasonal land cover. In 2016, the National Information System for Climate and Environment Studies
(NICES) project released a national database of seasonal net sown areas (http://bhuvan.nrsc.gov.in/
data/download/index.php), which highlights the high spatiotemporal heterogeneity of land cover and
its temporal dynamics. This dataset is published as a fraction of the crop sown at 5 km resolution by the
National Remote Sensing Center (NRSC) laboratory, part of the Indian Space Research Organization
(ISRO). A similar program, called Water Bodies Fraction (WBF) and based on the same data type,
produces the areal fraction of surface water every 15 days since 2012. The short-term variations of sown
areas show a high temporal variation over recent decades in the Hyderabad region, with 41 to 58%
of sown areas in Kharif and 8 to 22% in Rabi between 2005 and 2016. The seasonal restitution of the
areas of inundated rice and other irrigated crops from multi-temporal high resolution satellite remote
sensing is thus a promising method for estimating the surface water and groundwater requirements
for irrigation.

Machine learning approaches are a way to produce land cover maps from remote sensing time
series. More specifically, supervised classification methods, which require a training dataset, are
suitable for exploring these massive amounts of data [21]. Less automated strategies based on
user-defined thresholds to provide more accurate indices can also be envisaged, but they are more
time-consuming. In this agro-hydrological context, a threshold algorithm used to classify inundated
rice shows higher accuracy than supervised random forest classification [22]. However, the addition of
radar images improves this automatic classification tree method. This last method has been found
to be fast and to explore automatically and randomly the different spaces of features, here bands of
satellite images time series [21].

The aim of this study is to evaluate methodologies, based on new observations from the Sentinel-1
and Sentinel-2 satellites, for monitoring the essential agro-hydrological variables of this setting. These
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essential variables are (1) the seasonal areas of inundated rice, (2) the areas of irrigated crops, and
(3) the dynamics of surface water areas within the water harvesting system. These three variables
involve only a few percent of the total area and vary rapidly. This study considers two spatial
resolutions, 10 and 20 m, to identify the value of preserving spatial rather than spectral resolution in
this agro-system context. It explores the benefit of the synergy between Sentinel-1’s radar backscatter
advantages (not sensitive to the persistent cloud cover during the Kharif season, highly impacted by
crop growth and surface water) and the Sentinel-2’s multi-spectral detection, both at an appropriate
spatial resolution (10 to 20 m). The estimates of surface water area will be compared to existing datasets
from ISRO-NRSC, to discuss their interest for better understanding the contribution to aquifer recharge
of the thousands of small surface reservoirs that constitute the water harvesting system. We have
chosen the Random Forest algorithm (RF) provided with the Orfeo ToolBox (OTB) because it is a fast,
open-source processor of high-resolution optical, multispectral and radar images at the terabyte scale.
Highly appropriate for building a processing chain, it seems suitable for automatically producing
agro-hydrological variables at a large scale [23]. The seasonal land covers produced in this study
have been used to estimate the seasonal Irrigated Water Demand (IWD), based on irrigation practices
observed in previous studies [15,17,18,24].

2. Materials and Methods

2.1. Study Area

The Kudaliar river catchment (983 km2) is shown in Figure 1. It is located in Telangana State, South
India, and is the youngest state in India, formed after the Andhra Pradesh State 2014 Reorganisation
Act. Figure 1 shows the fraction crop cover in India for two seasons, Kharif 2015 (Figure 1a) and
Rabi 2016 (Figure 1b). The catchment is 50 km north of Hyderabad (Figure 1c). This catchment is
an upstream watershed unconnected to the perennial regional rivers and is representative of the
northern part of the Deccan plateau region in terms of irrigated agriculture, climatic variability and
hydrogeological settings. It is characterized by a flat topography (from 430 to 640 m above sea level)
and an absence of perennial streams. The region has a semi-arid climate controlled by the periodicity
of the Southwest monsoon: a rainy “Kharif” (local name) season from June to November and a dry
“Rabi” (local name) season from December to March. In contrast with these two seasons, the summer
season (April and May) is mainly free of cultivation. Annual precipitation (1980–2000) ranges from
540 mm to 1300 mm with a mean of 879 mm according to the Indian Meteorological Department [25];
88% of the rain falls during the monsoon season. The annual mean temperature is 26 ◦C, although in
summer (April to May) the maximum temperature may reach 45 ◦C.

The catchment is mainly rural and densely populated (300,000 inhabitants in 983 km2), with
only one small town (Gajwel, 30,000 inhabitants), located in its southwestern portion (see Figure 1c,
purple area). Approximately 60% of the watershed is covered by semi-arid natural vegetation (bush).
Rain-fed crops (mainly maize and cotton) are sown only during the monsoon period (Kharif, Figure 1a).
The irrigated area varies widely with climatic and hydrological conditions since irrigation mainly
depends on groundwater availability. Daily rice and vegetable irrigation rates were estimated from
field surveys (measurements of instant well discharges, irrigated field areas, and monitoring of daily
pumping durations). Daily irrigation rates for rice are 12 mm/day and 9 mm/day for Rabi and Kharif,
respectively [19]. A Water Harvesting System (WHS) consisting of many small dams in a mound of soil
materials along the drainage network is maintained by the farmers. They are generally non-permanent
lakes: they can be refilled by heavy monsoon rainfall and dry out in a few months through evaporation,
infiltration, and use for irrigation [26].
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Figure 1. Location of the study area in Telangana State, South India. The Kudaliar watershed area is 
embedded in two Sentinel-2 tiles (orange outline). (a) Fraction crop cover in wet Kharif season 2015 
(July to November); (b) fraction crop cover in dry Rabi season 2016 (December 2015 to March 2016); 
(c) fraction crop cover for the study area in Rabi 2016. This product is provided at 5 km resolution 
from optical remote sensing at 56 m resolution 

2.2. Sentinel-1 and 2 Datasets 

Sentinel-1 and 2 acquisitions over India began at the end of 2015. Three crop cover successions 
over three seasons were monitored using the existing images. Table 1 lists the acquisition dates of 
the Sentinel images used to quantify the irrigated areas for the three growing seasons. The study 
area is embedded in two Sentinel-2 tiles (44QKE and 44QKF) located north of Hyderabad (Figure 1, 
orange).  
  

Figure 1. Location of the study area in Telangana State, South India. The Kudaliar watershed area is
embedded in two Sentinel-2 tiles (orange outline). (a) Fraction crop cover in wet Kharif season 2015
(July to November); (b) fraction crop cover in dry Rabi season 2016 (December 2015 to March 2016);
(c) fraction crop cover for the study area in Rabi 2016. This product is provided at 5 km resolution from
optical remote sensing at 56 m resolution

2.2. Sentinel-1 and 2 Datasets

Sentinel-1 and 2 acquisitions over India began at the end of 2015. Three crop cover successions
over three seasons were monitored using the existing images. Table 1 lists the acquisition dates of the
Sentinel images used to quantify the irrigated areas for the three growing seasons. The study area is
embedded in two Sentinel-2 tiles (44QKE and 44QKF) located north of Hyderabad (Figure 1, orange).
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Table 1. List of acquisition dates of Sentinel images used for each growing season.

Rabi 2016 Kharif 2016 Rabi 2017

S1 S2 Cloud-Free S1 S2 Cloud-Free S1 S2 Cloud-Free

23/12/2015 31/12/2015 08/06/2016 28/07/2016 17/12/2017 05/12/2016
04/01/2016 26/01/2016 02/07/2016 26/10/2016 29/12/2017 15/12/2016
16/01/2016 30/01/2016 14/07/2016 25/11/2016 10/01/2017 25/12/2016
09/02/2016 09/02/2016 26/07/2016 05/12/2016 22/01/2017 24/01/2017
21/02/2016 19/02/2016 07/08/2016 03/02/2017 03/02/2017
04/03/2016 10/03/2016 19/08/2016 23/02/2017

09/04/2016 31/08/2016 05/03/2017
19/04/2016 12/09/2016
29/04/2016 24/09/2016

06/10/2016
18/10/2016
30/10/2016
11/11/2016
23/11/2016

2.2.1. Sentinel-1 and 2 Pre-Processing

The Sentinel-2 dataset downloaded in this study is the standard Level-1C product, which includes
ortho-rectification and spatial registration on a global reference system with sub-pixel accuracy. The
Sentinel-2 Level-1C product is composed of 110 km × 110 km tiles in the UTM/WGS84 projection
and provides the Top-Of-Atmosphere (TOA) reflectance. We produced Sentinel-2 Level-2A using the
Sen2Cor software (2.3.1 released by European Spatial Agency-ESA), which performs the atmospheric,
terrain, and cirrus correction of TOA input data. In this semi-arid Indian area, the correction is
important for cloud-free images as the seasonal variations of aerosol concentrations in the form of dry
dust is high [27] and alters the reflectance.

The Sentinel-1 dataset comprises Level-1 Ground Range Detected (GRD) data in Interferometric
Wide swath mode (IW) consisting of focused SAR data that has been multi-looked and projected to
ground range using the WGS84 Earth ellipsoid model. The resulting images in dual polarization (VH
and VV) have a dimension of 270 × 270 km and a resolution of 10 m. The terrain correction was then
applied to geocode the images by correcting SAR geometric distortions (foreshortening, layover and
shadow) using the digital elevation model from the Shuttle Radar Topography Mission, producing
ground-projected images. To do this, the Orfeo ToolBox (OTB) was used. Each image was cropped
and superposed on the Sentinel-2 tiles. A multi-temporal speckle filter [28] was preferred to the more
classical spatial filter in order to preserve spatial resolution and the fine structure of Sentinel-1 images.
As shown previously in [29,30], this method produces images with reduced speckle effects from the
whole sentinel-1 acquisition time series (30 dates since February 2015) and multi-polarized (VH and
VV) images. The speckle filter is expressed as follows:

Jk(υ) =
〈Ik(υ)〉

N

N

∑
i=1

Ii(υ)

〈Ii(υ)〉
with k = 1 . . . N, (1)

where Jk(υ) is the radar intensity of the output image k at pixel position υ, Ii(υ) is the radar intensity of
the input image i, <Ii(υ)> is the local average intensity of the input image k (window size of 5 × 5) and
N is the number of images (N = 30 dates and two polarizations). The resulting theoretical number of
looks is 71.

Figure 2 shows the effects of this processing compared to the more traditionally used spatial
speckle filter, as proposed by Lee [31]. This correction was of importance in preserving the high spatial
resolution of 10 or 20 m, equivalent to the Sentinel-2 band resolution, since the crop field areas are
small in this agricultural setting (a few acres).
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Figure 2. Multi-temporal speckle filter effect compared to spatial filter and raw Sentinel-1 data. (a) 
Enlargement of a part of the catchment as seen by Sentinel-2 visible bands (Red, Green, Blue color 
composite) on 26 October 2016. Green colors correspond to well-developed crops; brown areas 
correspond to bare soils. Roads, surface water and dams are visible at 10 m resolution; (b) raw 
Sentinel-1 L1C GRD VV band image from 30 October 2016, at 10 m resolution delivered by ESA; (c) 
Same Sentinel-1 VV band after use of spatial Lee filter [31]; (d) same Sentinel-1 VV band after use of 
multi-temporal filter. The roads are highly visible, and a clear distinction is made between bare 
ground (dark) and well-developed crop covers (light). The surface water area is closer to the one 
detected from optical images. Both raw and spatially filtered images have fewer contrasts between 
backscatters from crop-covered areas and bare-ground areas, even though the speckle is reduced 
with the Lee filter. 

2.2.2. Sentinel Bands and Derived Indexes 

The Normalized Difference Vegetation Index (NDVI) obtained from optical images has been 
extensively used to monitor vegetation dynamics, since it is a robust integrator of crop development. 
The NDVI also has some drawbacks: for example it is soil dependent at lower values and saturates at 
higher values. For these reasons other indicators have been proposed, such as the Soil Adjusted 
Vegetation Index (SAVI) or Enhanced Vegetation Index (EVI) [32]. The Normalized Difference 

Figure 2. Multi-temporal speckle filter effect compared to spatial filter and raw Sentinel-1 data.
(a) Enlargement of a part of the catchment as seen by Sentinel-2 visible bands (Red, Green, Blue
color composite) on 26 October 2016. Green colors correspond to well-developed crops; brown areas
correspond to bare soils. Roads, surface water and dams are visible at 10 m resolution; (b) raw
Sentinel-1 L1C GRD VV band image from 30 October 2016, at 10 m resolution delivered by ESA;
(c) Same Sentinel-1 VV band after use of spatial Lee filter [31]; (d) same Sentinel-1 VV band after use of
multi-temporal filter. The roads are highly visible, and a clear distinction is made between bare ground
(dark) and well-developed crop covers (light). The surface water area is closer to the one detected from
optical images. Both raw and spatially filtered images have fewer contrasts between backscatters from
crop-covered areas and bare-ground areas, even though the speckle is reduced with the Lee filter.

2.2.2. Sentinel Bands and Derived Indexes

The Normalized Difference Vegetation Index (NDVI) obtained from optical images has been
extensively used to monitor vegetation dynamics, since it is a robust integrator of crop development.
The NDVI also has some drawbacks: for example it is soil dependent at lower values and saturates
at higher values. For these reasons other indicators have been proposed, such as the Soil Adjusted
Vegetation Index (SAVI) or Enhanced Vegetation Index (EVI) [32]. The Normalized Difference Wetness
Index (NDWI, [33]), has been used either for detecting water or well-watered areas. Because irrigated
soils are generally wetter than non-irrigated soils, especially in a semi-arid climate, the NDWI can
be a good indicator of irrigation if the observation frequency is sufficient. It has been successfully
used previously in the identification of irrigated areas [34]. Two spatial resolutions (10 and 20 m)
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over three seasons were prepared from all the Sentinel-1 filtered and cloud-free Sentinel-2 L2A image
time series. We selected Sentinel-2 bands at 10 m: the blue (B2 = 490 nm), green (B3 = 560 nm), red
(B4 = 665 nm), and near infra-red (B8 = 842 nm) bands, and at 20 m: the 2, 3, 4, 5, 6, 7, 8, 8a, 11 and
12 bands. The short-wave infrared (B11 = 1610 nm) bands were used to compute the NDWI. The NDVI
(Equation (2)) was computed at 10 m resolution; the NDWI (Equation (3)) was calculated using the
short-wave infrared wavelength bands (SWIR) B11 at 20 m resolution.

NDVI10m =
B8 − B4

B8 + B4
(2)

NDWI20m =
B3 − B11

B3 + B11
(3)

VV/VH10m =
VV
VH

(4)

VV and VH backscatters from Sentinel-1 and the ratio based on VV and VH (Equation (4)) were
computed at 10 m resolution and also re-sampled to 20 m. We have used the Sentinel-1 time series
only, the Sentinel-2 time series only, and both Sentinel-1 and 2 together to perform the crop and water
area restitutions over the study site for all three seasons. The sizes of these stacks of data obviously
vary with the number of images in a season and the resolution.

2.3. Field Data from Land Cover Surveys in 2016 and 2017

Three seasonal surveys of land cover were carried out in February 2016, November 2016, and
February 2017, corresponding to 428 plots of non-irrigated areas: bare ground or natural vegetation
cover, rainfed and tree plantations (eucalyptus and teak), 286 irrigated areas: orchards (mainly mango
trees), maize crops and vegetables (beans, lentils), and 192 flooded rice crop areas. The dataset was
especially scrutinized for rice as the main water-consuming crop. A USB GPS receiver (G-STAR IV)
was connected to GIS software (QGIS) on a laptop to position the operator in the landscape. The
operator used the latest Sentinel-2 acquisition to delineate polygons containing both homogeneous
land cover and reflectance observed in the field and on the Sentinel-2 image.

The dataset created from the field surveys was used to create three seasonal datasets: perennial
land cover such as orchard, forest, and natural land use are preserved across the three datasets together
with the irrigated, flooded, and rain-fed crop fields observed during one season. These reference
data comprise nine land cover classes: inundated rice, irrigated vegetables, irrigated maize, orchards,
forested area, bare ground and natural bushes, urban areas, surface water, and rain-fed cotton (only in
Kharif). Each seasonal dataset is then split into two separate training and validation sets of polygons.

2.4. Irrigated Crop Classification Methods and Strategy

2.4.1. Random Forest Supervised Classification

The Random Forest (RF) algorithm is a supervised classification method based on ensemble
learning theory [35]. It has been widely used to identify land cover using one or more satellite
images [23]. The algorithm builds binary decision trees that are decorrelated by using bootstrap
samples. The split process also decorrelates the various trees by first randomly selecting at each node a
subset of input variables (also called features), and by then performing a variable value test based on
the Gini impurity criterion or entropy loss. Ideally, this process is repeated recursively on each derived
subset until the node contains very similar samples, or when the splitting no longer adds value to the
predictions. During the decision phase, each tree classifies the input data. Then, a majority vote is
performed to output the class label.

The RF algorithm requires two main parameters to tune: (1) the number of trees K, and (2) the
number of variables randomly selected to split a node mtry. In this study, classical parameter values
are used: K = 100; mtry = 25.
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2.4.2. Training and Validation Dataset

All the pixels located in the training and validation polygons are used to respectively train the RF
learning algorithm and to assess the accuracy of the resulting land-cover maps. The unit of assessment
is therefore the pixel for the validation procedure, the number varying with the land-cover classes
and spatial resolution considered, from tens to thousands of pixels. Non-agricultural areas cover 60 to
70% of these rural areas and are sampled using large polygons, implying thousands of learning and
validation pixels, whereas rice and irrigated areas consist of hundreds of small polygons with limited
numbers of pixels in each (Table 2).

Table 2. Number of training and validation samples derived from the field data in Rabi 2016 (December
to March 2016), Kharif 2016 (July to November 2016), and Rabi 2017, at 10-m resolution. This number
is divided by four at 20-m resolution.

Class Rabi 2016 Kharif 2016 Rabi 2017

Rice 1281 113 3191
Vegetables 937 24 262

Maize 720 76 617
Orchards 3615 2534 525
Forested 12,829 9583 8992

Bare ground 30,960 618 2819
Urban 2688 8008 9091
Water 79 385 841
Cotton 1905

2.4.3. Evaluation of Land-Cover Data

The accuracy of the land cover map produced is evaluated with the precision, recall, and F-score
of the targeted irrigated and inundated crop class from the confusion matrices. F-score is the harmonic
mean of the user’s accuracies and the producer’s accuracies. The best value of the F-score is 1, and the
worst 0. We use the inundated and irrigated area estimates to compare the methods and seasons. The
overall land-cover accuracy is given by the Kappa index for all classes. The size of each satellite time
series dataset analyzed is also given, to assess both the impact of resolutions on detection accuracies
and on irrigated surface area estimates.

2.4.4. Estimation of Irrigated Water Demand (IWD)

The water demand corresponding to the inundated and irrigated area extents is estimated from
previous estimates of daily irrigation practices associated with each crop over the studied area [24,36],
which were used in the agro-hydrological modeling study [17]. The IWD will be expressed in
mm/season as a water thickness divided by the watershed area, the same unit used for rainfall
and aquifer recharge.

2.5. Surface Water from Sentinel-1 Time Series

The Sentinel-1 radar is highly sensitive to surface water which highly vary from a season to
another (Figure 3) as the backscattered energy is low if acquisition angles are not close to the nadir,
as no backscatters are received from smooth surface [37]. Using a threshold method, surface water
areas can be quantified for large region (see Figure 4). However, this method requires setting the
threshold for each image and is not automatic. We have built a training dataset of permanent surface
water areas observed in the 14 images such as permanent lakes (e.g., Hussain Sagar Lake in the
center of Hyderabad) to perform a RF classification for each image. An average of surface water
extent is computed for the Kudaliar watershed area, and compared with external source of data from
NRSC-ISRO, at 1 km resolution available on the web platform Bhuvan.
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Figure 3. Sentinel-2 false color (infrared, red, and green color composite) (a) on 10 March 2016 (Rabi
2016) and (b) on 5 March 2017 (Rabi 2017). Red colors correspond to well-developed inundated rice,
irrigated maize and vegetables. The black line represents the limits of the Kudaliar watershed. An
enlarged view of the area located in the black square is shown at upper left. In Rabi 2017, small surface
water areas (black) are visible, due to the water harvesting system’s refill during the exceptional high
rainfall events of the previous 2016 monsoon (mainly September rainfall).
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monsoon rainfall in September 2016. The background represents the VV backscatter of the October
acquisition. The Kudaliar catchment is outlined by the darker gray area.
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3. Results

3.1. Hydro-Climatic Context during the Three Studied Growing Seasons

Extreme dry hydrological conditions were found during the Rabi 2016: aquifer water levels were
low (around 30 m depth) since the previous monsoon rainfalls were limited (600 and 700 mm for 2014
and 2015, respectively). No surface water was visible (Figure 3) and the inundated rice extent were
estimated to be around 2–3% of the total area from a preliminary land cover classification work [22].
The 2016 monsoon was late so July and August were still dry, but there was extremely heavy rainfall in
September 2016. Hyderabad received 425.2 mm of rain compared with its monthly mean of 132.9 mm,
surpassing the decade’s highest rainfall of 266.6 mm, which occurred in September 2007.

Figure 3 compares the Sentinel-2 L2A images of March 2016 and March 2017 to show the contrast
between the two Rabi seasons of those years: one (a) with severe groundwater and surface water
shortages and the other (b) with abundant water for irrigation. The red areas in the second image
mainly correspond to irrigated and inundated crops (maize and rice respectively). Small dark blue
areas are surface water stored in the Water Harvesting System (WHS). These dams were empty in
March 2016. At a regional level, Figure 4 shows the area of surface water detected by the Sentinel-1
time series before the monsoon in March 2016 (blue) and afterwards in October 2016 (red).

The filling of the WHS with runoff water is simultaneous with the rise in groundwater level
with high recharge. This replenishment of both surface and groundwater resources has a strong
impact on farmers’ agricultural practices across the study area. Indeed, an important expansion of the
irrigated areas is observed in Rabi 2017 (Figure 3, red areas), resulting from the abundance of water
that followed the 2016 Kharif. This exceptional monsoon also replenished the surface water stored in
the big reservoirs around Hyderabad that are the main source of drinking water for this urban area,
which has more than nine million inhabitants (Figure 4).

Sentinel acquisition time series enable the identification of surface changes that occur over several
months. Figure 5 shows an example of Sentinel-2 acquisitions at 10 m resolution (infra-red, red, green)
over a cropland area in the study site with a one-month shift. In February 2017 (Figure 5a), red pixels
are irrigated maize or to a lesser extent vegetables; the brown to grey areas are flooded rice paddies at
an early stage. These areas become red one month later with the growth of rice biomass (Figure 5b).
Black areas correspond to the water filling “tanks.” These areas are decreasing slowly with water use
for irrigation, direct evaporation from the water surface and the ground infiltration that recharges
the aquifer.

3.2. Random Forest Crop Detection Accuracy

3.2.1. Precision of Irrigated Crop Detection

The scores of the classification are presented in Table 3. Overall, the best detection scores (F-score)
are found for rice, maize, and cotton, which are the dominant crops. As expected, rice detection using
Sentinel-2 during Rabi (cloud-free period) yields high F-scores (from 0.82 to 0.98): high precision and
recall, which means low confusion between these classes and the others. The addition of Sentinel-1
time series slightly improves the lowest results (F-score from 0.82 to 0.86 at 10 m resolution).

The accuracy decreases in the monsoon period since there are both fewer cloud-free images and
much confusion between rice and well-developed natural vegetation. Here again, Sentinel-1 does not
help to improve rice detection. The F-score from Sentinel-1 detection is around 0.33 and 0.45 for 20 and
10 m, respectively, versus around 0.6 with Sentinel-2 or both satellite images. The classification results
are worse for other irrigated crops (vegetables), which are not even detected. Too much confusion with
the natural vegetation cover decreases the detection capacity. On the other hand, cotton areas are well
identified using Sentinel-1 only, with high F-scores of 0.95 and 0.94 for 10 and 20 m, respectively, a
higher accuracy than obtained with Sentinel-2 (0.73 and 0.78) and even Sentinel-1 and 2.
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As for crop detection, the best scores were obtained for Rabi 2017. This is mainly due to having
more extended irrigated and flooded crop areas to detect. Table 4 shows the areas estimated for
each classification. Rice areas are estimated at 16–26% in Rabi 2017 for optical and radar detection,
respectively, against 2–6% and 1.5–3.5% for the previous Kharif and Rabi 2016, respectively. In the
Rabi 2017 highly-irrigated context, Sentinel-1 detection alone gives a high F-Score for rice at 20 m,
an accuracy comparable to Sentinel-2 detection (0.98). At 10 m, the precision of Sentinel-1 is lower,
explained by greater confusion (low precision).

Around 26% of rice areas are detected using Sentinel-1 alone, versus about 16% with Sentinel-2
and Sentinel-1 and 2. Greater confidence is assigned to this last value, since the combination of both
sensors yields similar results to Sentinel-2 alone. The overdetection of Sentinel-1 arises from high
confusion between heterogeneous natural bush and rice area backscatter, this lack of precision is
ignored in the validation statistics at 20 m. The addition of the four Sentinel-2 images brings these
estimates to 17%, which represents a correction of the confusion made by using Sentinel-1 only, even
with so few Sentinel-2 images. This result illustrates the potential of the optical and radar synergy,
which brings a robustness to the automatic rice area restitution process regardless of the season: the
use of both optical and radar images increases the amount of data but decreases the uncertainty of the
results, and removes a data preparation step: the selection of the images to be processed.Remote Sens. 2017, 9, 1119  12 of 22 
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Figure 5. Crop identification using optical Sentinel-2 time series. An image in infrared-red-green
display settings acquired in February 2017; (a) shows the mature growth stage of irrigated maize fields
in red, and the early growth stage of flooded rice in brown. In March the developed rice is seen as red
areas (b). Areas of surface water, in black, slowly decrease over time.
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Table 3. Results of Random Forest classification using multi-temporal Sentinel-1 and 2 imagery at 10 or 20 m, for three contrasted growing seasons: Rabi 2016
(December to March 2016), Kharif 2016 (July to November 2016), and Rabi 2017 (December to March 2017). Precision and recall respectively stand for the predicted
fraction of pixels classified as the appropriate class and the fraction of validation pixels that have been correctly classified. The F-score is the harmonic mean of both
metrics and evaluates the relevance of the classifier. The Kappa index is an estimation of this relevance for all nine crop classes considered: rice, vegetable, maize,
forest, orchard, bare ground dry areas or bush, urban area, water, and cotton (if any). Technical details on the size of images stacks are detailed.

Sensor Sentinel-1 Sentinel-2 Sentinel-1&2

Resolution 10 20 10 20 10 20

Class Season Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Flooded Rice Precision 0.81 1 0.89 0.81 1 0.99 0.86 0.94 0.99 0.91 1 0.99 0.87 1 0.99 0.9 1 0.99
Recall 0.5 0.29 0.95 0.44 0.2 0.97 0.79 0.46 0.96 0.82 0.46 0.96 0.84 0.38 0.96 0.83 0.43 0.97
F-score 0.62 0.45 0.92 0.57 0.33 0.98 0.82 0.62 0.97 0.86 0.63 0.98 0.86 0.56 0.98 0.87 0.6 0.98

Irrigated Precision 0.24 0 0.15 0.36 0 0.82 0.14 0 0.88 0.33 0 0.79 0.19 0 0.83 0.3 0 0.82
Maize Recall 0.03 0 0.12 0.04 0 0.93 0.018 0 0.26 0.03 0 0.97 0.23 0 0.86 0.03 0 0.93
Vegetables F-score 0.06 0 0.13 0.07 0 0.87 0.03 0 0.4 0.06 0 0.87 0.04 0 0.85 0.05 0 0.87
Rainfed Precision - 0.98 - - 0.97 - - 0.79 - - 0.84 - - 0.97 - - 0.93 -
Cotton Recall - 0.92 - - 0.91 - - 0.68 - - 0.73 - - 0.86 - - 0.91 -

F-score - 0.95 - - 0.94 - - 0.73 - - 0.78 - - 0.91 - - 0.92 -
Overall Kappa 0.3 0.5 0.39 0.29 0.49 0.76 0.36 0.79 0.68 0.42 0.86 0.78 0.41 0.85 0.59 0.42 0.91 0.76
Technical Nb dates 6 14 5 6 14 5 9 4 7 9 4 7 15 18 12 15 18 12
Details Nb bands 18 42 15 18 42 15 45 20 35 99 88 77 63 62 50 117 130 92

Size Go 16.6 38.7 13.8 4.1 9.5 3.5 41.5 18.4 32.2 22.8 57 17.7 58 57.1 46.1 26.9 66.5 21.2

Table 4. Areas of irrigated and flooded crops and corresponding Irrigated Water Demand (IWD). Crop areas are expressed both in % of the total watershed area and in
ha. IWD are expressed in mm/season, the corresponding water total over the watershed area. This total should be compared to rainfall, runoff, and amount of aquifer
recharge, also expressed in mm.

Sensor Sentinel-1 Sentinel-2 Sentinel-1&2

Resolution 10 20 10 20 10 20

Class Season Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016

Rabi
2017

Rabi
2016

Kharif
2016 Rabi 2017 Rabi

2016
Kharif
2016 Rabi 2017

Flooded
(%-ha) 1.77–1739 2.3–2261 26.05–

25,607 1.55–1523 2.37–2329 26.16–
25,715 3.43–3371 5.13–5042 16.3–

16,022 3.42–3361 6.1–5996 16.25–
15,973 3.52–3460 4.49–4413 17.11–

16,819 3.52–3460 5.06–4974 16.06–
15,787

Agro-
Hydrological

Irrigated
(%-ha) 0.65–639 0.24–236 2.11–2074 0.4–393 0.01–9.83 1.43–1405 2.77–2722 0.76–747 6.3–6192 2.13–2093 0.52–511 6.74–6625 1.74–1710 0.58–570 6.4–6291 1.9–1867 0.05–49.15 6.93–6812

variables Cotton (%-ha) 20.7–20,348 21.02–
20,662 16.17–15,895 21.76–

21,390
19.5–

19,168
20.73–
20,377

Water
Demand

(Rice-others)
mm

23–1.44 21.4–0.52 337.6–4.42 20.2–0.9 22–0.03 338.8–3 44.54–5.99 47.6–1.7 212–13.39 44.38–4.29 56.5–1.13 210.5–14.1 45.6–3.75 41.6–1.25 222–13.48 45.7–4.1 46.9–0.12 208–14.5
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3.2.2. Detection of Non-Irrigated Areas

The spatial and spectral resolution has an impact on F-scores for non-rice land covers and thus
on the overall Kappa index using Sentinel-1 only or Sentinel-2 only, especially for Rabi 2017. The
improvement of F-score at 20-m resolution is not observed with the Sentinel-1 and 2 dataset. The
additional Sentinel-2 variables NDWI and SWIR, and a decrease in radar speckle, could explain these
improvements between 10 and 20 m spatial resolutions.

3.3. Retrieval of Agro-Hydrological Variables

3.3.1. Estimation of Irrigated Areas and the Uncertainty of Water Demand Quantification

The extent of irrigated and flooded crops and the corresponding Irrigated Water Demand (IWD)
for the watershed are presented in Table 4. Estimates of rice areas range from 1.55 to 3.52% but are
more likely around 3.42 or 3.52% when detected by Sentinel-2 only and Sentinel-1 and 2, since with
Sentinel-1 alone detection accuracy is low (F-score 0.6). The preliminary results using thresholding
and the RF algorithm were of the same magnitude (2.04 to 3.7 in [22]). Irrigated crop (maize and
vegetables) areas range from 0.4 to 2.77% but the classification accuracy is low for the whole dataset.

Figure 6 shows the annual variability of areas of seasonally sown crops, derived from the
ISRO-NRSC data base and averaged for the Kudaliar catchment. The sown fraction estimates (all
irrigated crops in Rabi and irrigated crop plus cotton areas in Kharif) from Sentinel remote sensing
data are similar to that produced by ISRO-NRSC for Rabi 2016 (5.5%). It corresponds to a minimum
observed in Rabi for the last 10 years. The Kharif 2016 sown fraction derived from Sentinel time series
also corresponds to a minimum observed during the Kharif season over the last 10 years. In contrast, a
maximum of sown fraction for the last 10 years is observed during for Rabi 2017, concomitant with the
surface and groundwater replenishment.Remote Sens. 2017, 9, x FOR PEER REVIEW  15 of 22 

 

 
Figure 6. Rabi (red dots) and Kharif (blue dots) fractions of surface sown within the Kudaliar 
watershed since 2005. The black line data are published by the ISRO-NRSC in the framework of the 
NICES programs. The seasonal extents estimates from our study are in red crosses. They correspond 
to the addition of irrigated and non-irrigated crops areas. 
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Figure 6. Rabi (red dots) and Kharif (blue dots) fractions of surface sown within the Kudaliar
watershed since 2005. The black line data are published by the ISRO-NRSC in the framework of the
NICES programs. The seasonal extents estimates from our study are in red crosses. They correspond to
the addition of irrigated and non-irrigated crops areas.

The Kharif cotton areas seem to be well detected by S1 only: their areas remain similar (around
20%) after introducing S2 images (only four cloud-free images during the Kharif). This estimate of 20%
appears to be highly realistic: a similar figure was obtained in Kharif 2009 over the study site [17,18].
The seasonal land cover from the Sentinel-1 and 2 datasets is illustrated in Figure 7. From a season to
another, the rice and irrigated crops are located in the same agricultural areas, but their areas increase
greatly with water availability.
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Figure 7. Seasonal land cover derived from Sentinel-1 and 2 datasets at 20 m over the Kudaliar
watershed. The dataset is especially consistent for rice and irrigated crops. High confusion remains
between bare ground, bush, and urban land covers. Surface water appears during the monsoon season
(Kharif 2016) and its extent starts to decrease during the following dry season (Rabi 2017).

3.3.2. The Uncertainty of Irrigated Water Demand Quantification

The classification accuracies for each land-use class discussed earlier have contrasting impacts
on IWD estimates. A high level of confusion in classifications regarding small crop areas and/or low
irrigation requirements affects only limited amounts of water that can be neglected when compared to
much larger hydrological fluxes. For instance, the high uncertainty of irrigated maize and vegetable
areas lead to IWD estimates ranging from 0.9 to 5.9 mm for Rabi 2016, a water depth to be related to the
whole catchment area. These figures represent small amounts of water when compared to the aquifer
recharge or the rice water demand for the same period: from 20.2 to 45.7 mm and more likely around
45 mm with the Sentinel-2 or Sentinel-1 and 2 datasets. We have computed the average and standard
deviation of IWD estimated using both S2 and Sentinel-1 and 2 datasets in the Rabi seasons and only
the Sentinel-1 and 2 datasets in the Kharif season (since only four cloud-free Sentinel-2 images were
available). The irrigated water demand estimates based on the Decision Support Tool Ground Water
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(DST-GW) model [24] were 49.5 ± 0.78 mm (1.5% of uncertainty) in Rabi 2016, 44.9 ± 2.9 mm (6.5% of
uncertainty) in the Kharif season, and 226.2 ± 5.8 mm (2.5% of uncertainty) in Rabi 2017.

3.4. Surface Water Area Dynamics Using the S1 Dataset

The 18 Sentinel-1 images acquired between the end of June 2016 and February 2017 were used to
classify surface water areas, using two classes: water and non-water. Figure 8 shows the surface water
temporal dynamic detected from S1 backscatter using the RF algorithm over the Kudaliar watershed.
This automatic classification strategy is preferred to the threshold method used in Figure 4 by the
Google Earth Engine platform, which requires selection of an appropriate threshold for each image.
Very good F-scores (>0.98 for each image) were obtained from this classification using the permanent
surface water training dataset. Both resolutions of Sentinel-1 (10 and 20 m) are considered in this
work and give similar results. More than 200 small reservoirs were detected and monitored over
the 1000 km2. This detection shows fast dynamics of surface water areas impacted by rainfall and
runoff collected within the reservoir, evaporation from surface water, soil infiltration and pumping for
irrigation. The Water Body Fractions extracted from the Indian national database were compared with
the surface water areas found with Sentinel-1. Each fraction is provided for 15 days from ResourceSat
optical remote sensing at 56-m resolution (Figure 8, bold black line). The lower resolution of the Indian
optical satellite (56 m versus 10–20 m) underestimates the water bodies’ areal extents: boundary pixels
not fully covered by water are not classified as water, leading to an erosion of the detected water
surface areas.
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datasets in the Rabi seasons and only the Sentinel-1 and 2 datasets in the Kharif season (since only 
four cloud-free Sentinel-2 images were available). The irrigated water demand estimates based on 
the Decision Support Tool Ground Water (DST-GW) model [24] were 49.5 ± 0.78 mm (1.5% of 
uncertainty) in Rabi 2016, 44.9 ± 2.9 mm (6.5% of uncertainty) in the Kharif season, and 226.2 ± 5.8 
mm (2.5% of uncertainty) in Rabi 2017. 

3.4. Surface Water Area Dynamics Using the S1 Dataset 

The 18 Sentinel-1 images acquired between the end of June 2016 and February 2017 were used 
to classify surface water areas, using two classes: water and non-water. Figure 8 shows the surface 
water temporal dynamic detected from S1 backscatter using the RF algorithm over the Kudaliar 
watershed. This automatic classification strategy is preferred to the threshold method used in Figure 
4 by the Google Earth Engine platform, which requires selection of an appropriate threshold for each 
image. Very good F-scores (>0.98 for each image) were obtained from this classification using the 
permanent surface water training dataset. Both resolutions of Sentinel-1 (10 and 20 m) are 
considered in this work and give similar results. More than 200 small reservoirs were detected and 
monitored over the 1000 km2. This detection shows fast dynamics of surface water areas impacted by 
rainfall and runoff collected within the reservoir, evaporation from surface water, soil infiltration 
and pumping for irrigation. The Water Body Fractions extracted from the Indian national database 
were compared with the surface water areas found with Sentinel-1. Each fraction is provided for 15 
days from ResourceSat optical remote sensing at 56-m resolution (Figure 8, bold black line). The 
lower resolution of the Indian optical satellite (56 m versus 10–20 m) underestimates the water 
bodies’ areal extents: boundary pixels not fully covered by water are not classified as water, leading 
to an erosion of the detected water surface areas.  
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Figure 8. Water Body Fraction estimates in Kudaliar experimental watershed, from the classification of
each of the 18 Sentinel-1 acquisitions at 10 and 20 m spatial resolution over the Kudaliar watershed,
using the RF classifier. This dataset is compared to the national Water Body Fraction database, which
contains the Water Body Fraction at 5 km resolution based on optical remote sensing at 56 m resolution
(source: ISRO-Bhuvan web service).

4. Discussion

4.1. Accuracy of Essential Variable Restitution Methods

4.1.1. Irrigated Water Demand Restitution

The uncertainty of IWD estimates (a few mm) is low compared to the IWD’s seasonal variation
and the variability of seasonal aquifer recharge: 10 to 160 mm/year in those aquifers—[24,36,38]. The
IWD was estimated to be 88.1 mm in Kharif 2009 and 120.6 in Rabi 2010, using similar estimations
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based on crop cover remote sensing with high spatial resolution satellite imagery [18] (ResourceSat
and Spot-4).

This high IWD variability shows why it is a crucial variable in (1) quantifying the impact of
agriculture on aquifer depletion; (2) analyzing the farmers’ strategies for adaptation to climatic and
hydrological variability; and (3) predicting groundwater storage dynamics to better manage aquifer
systems in this semi-arid context. High-resolution Earth Observation monitoring would greatly
improve our capacity for early detection of water shortages.

4.1.2. Surface Water Area Dynamics

Surface water is easily detected and classified using optical and radar remote sensing. In the
present context of impermanent lakes composing the WHS, the main refilling period occurs during the
monsoon, when cloud cover is thick and permanent. Sentinel-1 was preferred for its ability to detect
surface roughness through cloud cover. The temporal dataset is automatically used to extract surface
water areas for each acquisition. The areas estimated for each surface reservoir are a crucial variable
in estimating the role of evaporation and infiltration fluxes taking place below the WHS. This is a
first step in quantifying the potential contribution of WHS to regional aquifer recharge by capturing
monsoon runoff [15,26,39].

4.1.3. Effect of Spatial Resolution

The 10-m spatial resolution did not dramatically improve the classification scores but doubled the
size of the dataset (58 and 26 Gb for Sentinel-1 and 2, respectively, at 10 and 20 m in Rabi 2016, Table 3).
For larger areas, we find the 20-m resolution more appropriate since it provides similar area estimates
for rice, more robust results for irrigated crops, and smaller datasets.

4.2. Farmers’ Adaptation and Vulnerability to Climate Variability

4.2.1. Short-Term Variations in Climate and IWD

The highest area of flooded rice was observed during Rabi 2017: around 16 to 17% of the watershed.
It was found to be extremely low (3.5%) in the previous Rabi, in 2016, during which extremely dry
hydrological conditions prevailed. In the more similar Kharif 2009 and Rabi 2010 seasons, it was
estimated to be 10.2 and 7.2%, respectively [17,18]. Farmers’ decisions to massively sow flooded rice
and drip-irrigated corn for the Rabi of 2017 are explained by the abundance of surface and groundwater
after the extreme rainfall events in September, as well as their capacity to mobilize this excess water
through free electricity and subsidized drip-irrigation equipment.

The dry situation in July 2016 forced farmers to keep their rice areas to a minimum, matched to
the low availability of water, and lacking foreknowledge of the heavy rains that fell the following
September. This temporality is fundamental in farmers’ decisions regarding the use of irrigated water.

Although not estimated in this study, the aquifer recharge mainly caused by the September
rainfalls could approach the maximum observed in this region (around 200 mm). This leads to a major
rise in the groundwater table, especially because the IWD remained below 50 mm for the Kharif season.
This fast and exceptional aquifer replenishment is threatened by the subsequent growing season, in
which the IWD reaches the same magnitude as the recharge (226.2 ± 5.8 mm).

As indicated in [18], IWD computed from high-resolution remote sensing can be transformed into
a net groundwater extraction at 1250 m resolution so as to spatially evaluate the aquifer’s vulnerability
to overpumping. Pumping rates vary widely in space along with groundwater storage capacity,
defined by the specific yields of fractured rocks and aquifer thickness. This multi-temporal restitution
of IWD is a first step towards the generalized aquifer mapping proposed by [18].
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4.2.2. The Indian Agriculture, Groundwater, and Energy Nexus

Previous studies have shown the complex interaction of groundwater depletion and energy
subsidies in India, since groundwater extraction relies heavily on electric pumping and free electricity
for farmers [16]. In northwestern India, agricultural pumping leads to the long-term fall of water tables
in deep alluvial aquifers [6–8], but the annual groundwater abstraction rate seems to be constrained
by shortages of energy rather than groundwater [40]. In contrast, South Indian aquifers are shallow,
water tables, by definition, cannot keep declining, and are rapidly recharged by abundant rainfall.
Agriculture is constrained by water shortages. In Telangana State, the new government has recently
extended the electricity distribution period from 6 to 9 h a day, and government programs have
equipped farmers over the last decade with subsidized drip-irrigation equipment to reduce the water
consumption of vegetable and corn irrigation. Both parameters explain the ability of farmers to increase
their IWD to the 220 mm estimated in this study for a single Rabi season. The over-exploitation of
these shallow aquifers leads to an increase in interannual variability in agriculture production and
groundwater fluctuation.

4.3. The Adaptation of Farmers’ Irrigation Reasoning and Practices to Climatic Variability

Monitoring the irrigation practices and surface water at the continental scale from Sentinel
missions provides an opportunity for studying the short-term socio-geographical rules behind farmers’
decisions, observed in near-real time. Agricultural policies, irrigation equipment and energy prices,
together with water shortages, are factors influencing agricultural practices. A realistic evaluation of
the future of these sites demands that we go beyond a linear narrative: the past actions of farmers
facing droughts and/or changes in crop prices, rainfall, and other variations and shocks, must be
differentiated according to types of farming families. The large increase in rice areas between Rabi
2016 and Rabi 2017 shows the farmers’ powerful ability to take advantage of the abundance of surface
and groundwater. Studying the actions behind these newly quantified observations, obtained from
systematic satellite acquisitions, demands a consideration of the reasoning of these families, the
inherent and very specific covariance between each family’s agro-environmental and socioeconomic
assets and constraints, in order to assess the potential for the emergence of sudden, behavioral changes
among the population [41].

Such a disruptive emergence in farmers’ practices may be conceptualized via a promising new
methodology, i.e., spatially-explicit agent-based modeling (SEABMs [42,43]. SEABMs are models
based on connected entities describing resources and physical constraints (roads, elevation and slopes,
presence of lakes or aquifer capacity), but also agents, representing for instance human individuals or
families, all described with various attributes (size, property size, location, etc.) [44]. An Agent-Based
Module (ABM) can be used either as an independent model, to be compared, calibrated, or validated
using the seasonal land-cover datasets produced by the methodology presented in this study, or as an
add-on for improving the analyses of short-term variations of agricultural land cover in South India.

5. Conclusions

Flooded rice areas and surface water dynamics are essential variables in predicting groundwater
usage in a small South Indian watershed. The first Sentinel-1 and -2 time series are used to estimate
the accuracy of retrieval of irrigated and flooded sown crop areas for three contrasted season: the dry
Rabi 2016 (R2016, December 2015 to March 2016), the monsoon season, known as Kharif 2016 (K2016,
July to November 2016) and the next Rabi season in 2017 (R2017, December 2016 to March 2017). The
spatial resolution at 10 or 20 m and the types of sensors are combined into six datasets to explore the
retrieval accuracy of each variable.

Small irrigated areas are detected during the dry conditions of R2016 and K2016, as 3.5% and
5%, respectively, of the irrigated areas, with moderate classification confusion. A large increase of
irrigated areas (16% of rice and 6% of irrigated crops) is estimated with low classification confusion in
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R2017. This is explained by the replenishment of water resources during the 2016 monsoon. This high
seasonal variability represents the direct impact of the farmers’ strategy of adaptation to water storage.

In Rabi 2017, Sentinel-1 only, Sentinel-2 only and Sentinel-1 and 2 datasets show good classification
accuracy (F-score for rice above 0.90) although Sentinel-1 used alone leads to a 10% overestimation
of the rice areas (lower precision at 10-m resolution). In contrast the Kharif cotton areas seem to
be accurately detected by Sentinel-1 only; their estimated extent remains similar (around 20%) after
introducing Sentinel-2 (only four cloud-free images during the Kharif). The value of 20% appears
highly realistic, as a similar area was found for Kharif 2009 [17,18].

Sentinel-1 and 2 in Kharif and both Sentinel-1 and 2 and Sentinel-2 alone in Rabi seem to give
the best estimates. We combined the results from these two datasets at both 10 and 20 m resolution to
compute the water demand uncertainty for each season: 49.5 ± 0.78 mm (1.5% uncertainty) in Rabi
2016, 44.9 ± 2.9 mm (6.5% uncertainty) in the Kharif season and 226.2 ± 5.8 mm (2.5% uncertainty) in
Rabi 2017. These amounts should be compared to seasonal aquifer recharge variation over the past
decade (10 to 160 mm/year). The confusion over detection of irrigated crops in small areas in Rabi
2016 leads to a small uncertainty in water requirement estimates.

The 20-m resolution should be selected when scaling this methodology up to larger areas. The
synergistic use of S1 and S2 increases the confidence level regarding the retrieval of irrigated areas.

The automatic detection of surface water dynamics is highly accurate with both Sentinel-1 and
Sentinel-2 cloud-free images. Sentinel-1 is preferred, since it does not require any filtering step in the
presence of clouds. The sizes of each surface reservoir are small within the study site, and account
for 3% of the total area: the high resolution of Sentinel-1 allows for the detection of smaller areas; the
surface water fraction found is then bigger than that estimated by the lower resolution of ResourceSat.
Furthermore, surface water dynamics were monitored at the revisit periodicity of Sentinel-1 during
July and August, which is not possible with optical remote sensing. This essential variable is important
for calibrating runoff in spatially distributed agro-hydrological models, as well as for estimating the
amount of infiltration from the bottom of the rainwater harvesting system back into the aquifer.

Acknowledgments: This work was carried out in the context of the project “Agro-hydrology from Space,”
co-funded by the Living Planet fellowship program of the European Spatial Agency (ESA) and the research
program BAG’AGES funded by the Agence de l’Eau Adour-Garonne (AEAG). The study was directed by
Sylvain Ferrant thanks to the collaboration of the Indo-French Center for Groundwater Research (IFCGR). The
authors would like to thank the IFCGR field team, especially Wajiduddin, and Pierre Pottin and Bianca Hoersch,
respectively Sentinel-1 and 2 mission managers from European Space Agency for their help at the beginning and
throughout the project. We would like to thank JohnV. Guy-Bray for the English revision.

Author Contributions: Sylvain Ferrant designed this experiment, analyzed the data, and wrote the manuscript.
Adrien Selles and Michel Le Page designed the field data protocol; Adrien Selles and Sylvain Ferrant carried
out the field surveys. Valuable methodological support related to the Random Forest algorithm’s efficiency was
provided by Charlotte Pelletier and Pierre-Alexis Herrault; Stéphane Mermoz and Alexandre Bouvet prepared
the filtered Sentinel-1 dataset. Benoit Dewandel, Simon Gascoin, Yvan Caballero and Jean-Christophe Maréchal.
participated in the discussion of the results regarding the Indian hydrogeological context. Shakeel Ahmed
provided a substantial support to field data acquisitions. Ahmad Al Bitar and Mehdi Saqalli provided some inputs
during the discussion of this study. Yann Kerr provided scientific coordination and expertise.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hazell, P.B.R. The Green Revolution Reconsidered; International Food Policy Research Institute: Washington,
DC, USA, 1991.

2. Shah, T. Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res.
Lett. 2009, 4, 035005. [CrossRef]

3. Mall, R.K.; Gupta, A.; Singh, R.; Singh, R.S.; Rathore, L.S. Water resources and climate change: An Indian
perspective. Curr. Sci. 2006, 90, 1610–1626.

4. Wada, Y.; Van Beek, L.P.H.; Bierkens, M.F.P. Nonsustainable groundwater sustaining irrigation: A global
assessment. Water Ressour. Res. 2012, 48. [CrossRef]

http://dx.doi.org/10.1088/1748-9326/4/3/035005
http://dx.doi.org/10.1029/2011WR010562


Remote Sens. 2017, 9, 1119 20 of 21

5. Siebert, S.; Burke, J.; Faures, J.M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for
irrigation—A global inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. [CrossRef]

6. Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature
2009, 460, 999–1002. [CrossRef] [PubMed]

7. Tiwari, V.M.; Wahr, J.; Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity
observations. Geophys. Res. Lett. 2009, 36, L18401. [CrossRef]

8. Asoka, A.; Gleeson, T.; Wada, Y.; Mishra, V. Relative contribution of monsoon precipitation and pumping to
changes in groundwater storage in India. Nat. Geosci. 2017, 10, 109–117. [CrossRef]

9. Sishodia, R.P.; Shukla, S.; Graham, W.D.; Wani, S.P.; Garg, K.K. Bi-decadal groundwater level trends in
a semi-arid south indian region: Declines, causes and management. J. Hydrol. Reg. Stud. 2016, 8, 43–58.
[CrossRef]

10. Tiwari, V.M.; Wahr, J.M.; Swenson, S.; Singh, B. Land water storage variation over Southern India from space
gravimetry. Curr. Sci. 2011, 101, 536–540.

11. Bonsor, H.C.; MacDonald, A.M.; Ahmed, K.M.; Burgess, W.G.; Basharat, M.; Calow, R.C.; Dixit, A.;
Foster, S.S.D.; Gopal, K.; Lapworth, D.J.; et al. Hydrogeological typologies of the Indo-Gangetic basin
alluvial aquifer, South Asia. Hydrogeol. J. 2017, 25, 1–30. [CrossRef]

12. Mukherjee, A.; Saha, D.; Harvey, C.F.; Taylor, R.G.; Ahmed, K.M.; Bhanja, S.N. Groundwater systems of the
Indian Sub-Continent. J. Hydrol. Reg. Stud. 2015, 4, 1–14. [CrossRef]

13. Kumar, K.K.; Rajagopalan, B.; Hoerling, M.; Bates, G.; Cane, M. Unraveling the mystery of Indian monsoon
failure during El Niño. Science 2016, 314, 115–119. [CrossRef] [PubMed]

14. Pervez, M.S.; Henebry, G.M. Differential heating in the Indian Ocean differentially modulates precipitation
in the Ganges and Brahmaputra Basins. Remote Sens. 2016, 8, 901. [CrossRef]

15. Perrin, J.; Ferrant, S.; Massuel, S.; Dewandel, B.; Maréchal, J.C.; Aulong, S.; Ahmed, S. Assessing water
availability in a semi-arid watershed of southern India using a semi-distributed model. J. Hydrol. 2012,
460–461, 143–155. [CrossRef]

16. Shah, T.; Giordano, M.; Mukherji, A. Political economy of the energy-groundwater nexus in India: Exploring
issues and assessing policy options. Hydrogeol. J. 2012, 20, 995–1006. [CrossRef]

17. Ferrant, S.; Caballero, Y.; Perrin, J.; Gascoin, S.; Dewandel, B.; Aulong, S.; Dazin, F.; Ahmed, S.; Maréchal, J.C.
Projected impacts of climate change on farmers’ extraction of groundwater from crystalline aquifers in South
India. Sci. Rep. 2014, 4, 1377–1406. [CrossRef] [PubMed]

18. Dewandel, B.; Caballero, Y.; Perrin, J.; Boisson, A.; Dazin, F.; Ferrant, S.; Chandra, S.; Maréchal, J.C. A
methodology for regionalizing 3-D effective porosity at watershed scale in crystalline aquifers. Hydrol. Process.
2017, 31, 2277–2295. [CrossRef]

19. Massuel, S.; Perrin, J.; Wajid, M.; Mascre, C.; Dewandel, B. A simple low-cost method to monitor duration of
ground water pumping. Ground Water 2008, 47, 141–145. [CrossRef] [PubMed]

20. Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large-area hydrologic modeling and assessment:
Part I. Model development. J. Am. Water Ressour. Assoc. 1998, 34, 73–89. [CrossRef]

21. Inglada, J.; Vincent, A.; Arias, M.; Marais-Sicre, C. Improved early crop type identification by joint use of
high temporal resolution SAR and optical image time series. Remote Sens. 2016, 8, 362. [CrossRef]

22. Sylvain, F.; Yann, K.; Ahmad, A.B.; Michel, L.P.; Adrien, S.; Stephane, M.; Alexandre, B.; Jean-Christophe, M.;
Sat, T.; Muddu, S.; et al. Synergetic use of Sentinel-1 and 2 to improve agro-hydrological modeling
preliminary results on rice paddy detection in South-India. In Proceedings of the ESA Living Planet
Symposium, Prague, Czech Republic, 9–13 May 2016.

23. Pelletier, C.; Valero, S.; Inglada, J.; Champion, N.; Dedieu, G. Assessing the robustness of Random Forests to
map land cover with high resolution satellite image time series over large areas. Remote Sens. Environ. 2016,
187, 156–168. [CrossRef]

24. Dewandel, B.; Perrin, J.; Ahmed, S.; Aulong, S.; Hrkal, Z.; Lachassagne, P.; Samad, M.; Massuel, S.
Development of a tool for managing groundwater resources in semi-arid hard-rock regions. Application to a
rural watershed in South India. Hydrol. Process. 2010, 24, 2784–2797. [CrossRef]

25. Rajeevan, M.; Bhate, J. A high resolution gridded rainfall dataset (1971–2005) for mesoscale meteorological
studies. Curr. Sci. 2009, 4, 558–562.

26. Massuel, S.; Perrin, J.; Mascre, C.; Mohamed, W.; Boisson, A.; Ahmed, S. Managed aquifer recharge in South
India: What to expect from small percolation tanks in hard rock? J. Hydrol. 2014, 512, 157–167. [CrossRef]

http://dx.doi.org/10.5194/hess-14-1863-2010
http://dx.doi.org/10.1038/nature08238
http://www.ncbi.nlm.nih.gov/pubmed/19675570
http://dx.doi.org/10.1029/2009GL039401
http://dx.doi.org/10.1038/ngeo2869
http://dx.doi.org/10.1016/j.ejrh.2016.09.005
http://dx.doi.org/10.1007/s10040-017-1550-z
http://dx.doi.org/10.1016/j.ejrh.2015.03.005
http://dx.doi.org/10.1126/science.1131152
http://www.ncbi.nlm.nih.gov/pubmed/16959975
http://dx.doi.org/10.3390/rs8110901
http://dx.doi.org/10.1016/j.jhydrol.2012.07.002
http://dx.doi.org/10.1007/s10040-011-0816-0
http://dx.doi.org/10.1038/srep03697
http://www.ncbi.nlm.nih.gov/pubmed/24424295
http://dx.doi.org/10.1002/hyp.11187
http://dx.doi.org/10.1111/j.1745-6584.2008.00511.x
http://www.ncbi.nlm.nih.gov/pubmed/19016895
http://dx.doi.org/10.1111/j.1752-1688.1998.tb05961.x
http://dx.doi.org/10.3390/rs8050362
http://dx.doi.org/10.1016/j.rse.2016.10.010
http://dx.doi.org/10.1002/hyp.7696
http://dx.doi.org/10.1016/j.jhydrol.2014.02.062


Remote Sens. 2017, 9, 1119 21 of 21

27. Sivaprasad, P.; Babu, C.A. Seasonal variation and classification of aerosols over an inland station in India.
Meteorol. Appl. 2014, 21, 241–248. [CrossRef]

28. Bruniquel, J.; Lopes, A. Multi-variate optimal speckle reduction in SAR imagery. Int. J. Remote Sens. 1997, 18,
603–627. [CrossRef]

29. Mermoz, S.; le Toan, T. Forest disturbances and regrowth assessment using ALOS PALSAR data from 2007
to 2010 in Vietnam, Cambodia and Lao PDR. Remote Sens. 2016, 8, 217. [CrossRef]

30. Mermoz, S.; Le Toan, T.; Villard, L.; Réjou-Méchain, M.; Seifert-Granzin, J. Biomass assessment in the
Cameroon savanna using ALOS PALSAR data. Remote Sens. Environ. 2014, 155, 109–119. [CrossRef]

31. Lee, J.-S. Speckle suppression and analysis for synthetic aperture radar images. Opt. Eng. 1986, 25, 255636.
[CrossRef]

32. Huete, A.; Miura, T.; Yoshioka, H.; Ratana, P.; Broich, M. Indices of vegetation activity. In Biophysical
Applications of Satellite Remote Sensing; Hanes, J.M., Ed.; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 1–41.

33. Gao, B. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from
space. Remote Sens. Environ. 1996, 58, 257–266. [CrossRef]

34. Alexandridis, T.K.; Zalidis, G.C.; Silleos, N.G. Mapping irrigated area in Mediterranean basins using low
cost satellite Earth Observation. Comput. Electron. Agric. 2008, 64, 93–103. [CrossRef]

35. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
36. Dewandel, B.; Gandolfi, J.M.; Zaidi, F.K.; Ahmed, S.; Subrahmanyam, K. A decision support tool with

variable agro-climatic scenarios for sustainable groundwater management in semi-arid hard rock areas.
Curr. Sci. 2007, 92, 1093–1102.

37. Cazals, C.; Rapinel, S.; Frison, P.L.; Bonis, A.; Mercier, G.; Mallet, C.; Corgne, S.; Rudant, J.P. Mapping and
characterization of hydrological dynamics in a coastal marsh using high temporal resolution Sentinel-1A
images. Remote Sens. 2016, 8, 570. [CrossRef]

38. Maréchal, J.C.; Dewandel, B.; Subrahmanyam, K. Use of hydraulic tests at different scales to characterize
fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour. Res.
2004, 40. [CrossRef]

39. Boisson, A.; Baisset, M.; Alazard, M.; Perrin, J.; Villesseche, D.; Dewandel, B.; Kloppmann, W.; Chandra, S.;
Picot-Colbeaux, G.; Sarah, S.; et al. Comparison of surface and groundwater balance approaches in the
evaluation of managed aquifer recharge structures: Case of a percolation tank in a crystalline aquifer in
India. J. Hydrol. 2014, 519, 1620–1633. [CrossRef]

40. Fishman, R.M.; Siegfried, T.; Raj, P.; Modi, V.; Lall, U. Over-extraction from shallow bedrock versus
deep alluvial aquifers: Reliability versus sustainability considerations for India’s groundwater irrigation.
Water Resour. Res. 2011, 47, W00L05. [CrossRef]

41. Janssen, M.A.; Ostrom, E. Chapter 30 governing social-ecological systems. Handb. Comput. Econ. 2006, 2,
1465–1509.

42. Parker, D.C.; Manson, S.M.; Janssen, M.A.; Hoffmann, M.J.; Deadman, P. Multi-agent systems for the
simulation of land-use and land-cover change: A review. Ann. Assoc. Am. Geogr. 2003, 93, 314–337.
[CrossRef]

43. Bommel, P. Définition d’un Cadre Méthodologique pour la Conception de Modèles Multi-Agents Adaptée à
la Gestion des Ressources Renouvelables. Ph.D. Thesis, Université Montpellier II—Sciences et Techniques
du Languedoc, Montpellier, France, 2009.

44. Saqalli, M.; Bielders, C.L.; Gerard, B.; Defourny, P. Simulating rural environmentally and socio-economically
constrained multi-activity and multi-decision societies in a low-data context: A challenge through empirical
agent-based modeling. J. Artif. Soc. Soc. Simul. 2009, 13, 1. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/met.1319
http://dx.doi.org/10.1080/014311697218962
http://dx.doi.org/10.3390/rs8030217
http://dx.doi.org/10.1016/j.rse.2014.01.029
http://dx.doi.org/10.1117/12.7973877
http://dx.doi.org/10.1016/S0034-4257(96)00067-3
http://dx.doi.org/10.1016/j.compag.2008.04.001
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.3390/rs8070570
http://dx.doi.org/10.1029/2004WR003137
http://dx.doi.org/10.1016/j.jhydrol.2014.09.022
http://dx.doi.org/10.1029/2011WR010617
http://dx.doi.org/10.1111/1467-8306.9302004
http://dx.doi.org/10.18564/jasss.1547
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Study Area 
	Sentinel-1 and 2 Datasets 
	Sentinel-1 and 2 Pre-Processing 
	Sentinel Bands and Derived Indexes 

	Field Data from Land Cover Surveys in 2016 and 2017 
	Irrigated Crop Classification Methods and Strategy 
	Random Forest Supervised Classification 
	Training and Validation Dataset 
	Evaluation of Land-Cover Data 
	Estimation of Irrigated Water Demand (IWD) 

	Surface Water from Sentinel-1 Time Series 

	Results 
	Hydro-Climatic Context during the Three Studied Growing Seasons 
	Random Forest Crop Detection Accuracy 
	Precision of Irrigated Crop Detection 
	Detection of Non-Irrigated Areas 

	Retrieval of Agro-Hydrological Variables 
	Estimation of Irrigated Areas and the Uncertainty of Water Demand Quantification 
	The Uncertainty of Irrigated Water Demand Quantification 

	Surface Water Area Dynamics Using the S1 Dataset 

	Discussion 
	Accuracy of Essential Variable Restitution Methods 
	Irrigated Water Demand Restitution 
	Surface Water Area Dynamics 
	Effect of Spatial Resolution 

	Farmers’ Adaptation and Vulnerability to Climate Variability 
	Short-Term Variations in Climate and IWD 
	The Indian Agriculture, Groundwater, and Energy Nexus 

	The Adaptation of Farmers’ Irrigation Reasoning and Practices to Climatic Variability 

	Conclusions 

