
remote sensing  

Article

Detection of Informal Settlements from VHR Images
Using Convolutional Neural Networks

Nicholus Mboga, Claudio Persello * ID , John Ray Bergado and Alfred Stein ID

Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente,
7500 AE Enschede, The Netherlands; n.o.mboga@student.utwente.nl (N.M.);
j.r.bergado@utwente.nl (J.R.B.); a.stein@utwente.nl (A.S.)
* Correspondence: c.persello@utwente.nl; Tel.: +31-534874343

Received: 30 September 2017; Accepted: 25 October 2017; Published: 30 October 2017

Abstract: Information about the location and extent of informal settlements is necessary to guide
decision making and resource allocation for their upgrading. Very high resolution (VHR) satellite
images can provide this useful information, however, different urban settlement types are hard to
be automatically discriminated and extracted from VHR imagery, because of their abstract semantic
class definition. State-of-the-art classification techniques rely on hand-engineering spatial-contextual
features to improve the classification results of pixel-based methods. In this paper, we propose
to use convolutional neural networks (CNNs) for learning discriminative spatial features, and
perform automatic detection of informal settlements. The experimental analysis is carried out on a
QuickBird image acquired over Dar es Salaam, Tanzania. The proposed technique is compared against
support vector machines (SVMs) using texture features extracted from grey level co-occurrence matrix
(GLCM) and local binary patterns (LBP), which result in accuracies of 86.65% and 90.48%, respectively.
CNN leads to better classification, resulting in an overall accuracy of 91.71%. A sensitivity analysis
shows that deeper networks result in higher accuracies when large training sets are used. The study
concludes that training CNN in an end-to-end fashion can automatically learn spatial features from
the data that are capable of discriminating complex urban land use classes.

Keywords: image classification; informal settlements; convolutional neural networks; deep learning;
very high resolution satellite imagery

1. Introduction

Rapid urbanization has led to the proliferation of informal settlements in developing countries.
While a clear definition of what constitutes an informal settlement is missing, it usually refers to an
area where the land tenure is not recognized by the public authorities [1], and a neighborhood where
the residents have sub-standard housing and insufficient basic services [2]. Several terms have been
used to allude to informal settlements in urban contexts around the world, for example “squatter
settlements”, “favelas”, “shacks”, “bajos”, “bidonvilles” and “slums” [3]. Informal settlements usually
contain unplanned settlements that are developed disregarding zoning, land use plans and service
allocation [4,5]. There is a shortage of spatial information regarding such informal settlements, which is
necessary for decision making and planning the activities for their improvement. Informal settlements
grow fast, and mostly cover large extents in an urban area, or in some instances form scattered pockets
within formal settlement areas. There is a need for classification methods that are able to provide
spatial information in a timely and accurate way [6].

The availability of very high resolution (VHR) satellite images has provided the capability to
acquire spatial information about informal settlements. The advantage of these images is that they
cover a wide geographical area, and enable characterization of urban settlement types based on

Remote Sens. 2017, 9, 1106; doi:10.3390/rs9111106 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
https://orcid.org/0000-0003-3742-5398
https://orcid.org/0000-0002-9456-1233
http://dx.doi.org/10.3390/rs9111106
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 1106 2 of 18

their morphological characteristics. Informal settlements mostly comprise small, clustered buildings
and little vegetation, whereas formal areas consist of larger buildings arranged in a regular spatial
pattern and vegetation [7]. Two issues are important: (i) a high spatial resolution implies high
within-class variance and low between-class variance and (ii) urban settlement types, such as informal
settlements, are associated with a higher level of semantic abstraction as opposed to land cover classes.
The extraction of spatial-contextual features is thus needed to improve the classification of VHR images
to obtain the desired land use classes [8,9]. While spatial information refers to the spatial arrangement
of spectral information in a scene, contextual information describes the information extracted from a
neighborhood of a particular pixel in the image [10].

Standard methods for extracting spatial-contextual features based on hand-engineering have
been used for the detection of informal settlements from VHR images. These include morphological
profiles [11], GLCM features [12] and lacunarity [13]. Moreover, a comparison of various texture
features such as local binary patterns (LBPs), histogram of oriented gradients (HOGs) and line support
regions (LSRs), among others, is done in [14,15]. A limitation is that extraction of a specific feature
depends on the particular technique used and that their performance on the data is not known
beforehand. In addition, they have free parameters that need to be optimized by a user through trial
and error [16]. In this work, we propose to use CNNs to automate the extraction of spatial-contextual
features by learning them directly from the data [17].

CNNs are artificial neural networks that learn spatial-contextual features in several hierarchical
nonlinear layers [17]. They have been studied widely for computer vision and speech recognition
tasks [18]. CNNs have performed well in multimedia image classification, such as in the ImageNet
LSVRC-2010 contest [19] and in computer vision benchmarks [20]. In recent times, there have been
some applications in land cover classification from satellite imagery [9,21–25], as well as in land use
classification [26–29]. Land use classes, such as informal settlements, are more complex because they
can contain more than one type of land cover, at different scales and orientations.

The aim of this work is to investigate deep CNNs to detect informal settlements from VHR
satellite imagery. Using a QuickBird image acquired over Dar es Salaam, Tanzania, the CNN was
trained in an end-to-end way and its performance of using learned spatial-contextual features was
analyzed. The results were then compared with the performance of state-of-the-art classifier relying
on hand-engineered features. The remainder of the paper is organized as follows: Section 2 describes
the adopted methods, Section 3 describes the experimental set up, Section 4 the results and analysis,
Section 5 the discussion and Section 6, the conclusion.

2. Method

2.1. CNN Building Blocks

We developed and optimized a dedicated CNN based on the general architecture shown
in Figure 1. The architecture consists of g convolutional layers responsible for learning the
spatial-contextual features from the image, and t fully connected layers that derive the discriminative
function using softmax activations. During the training phase, patches with a fixed size are used as
input to the CNN to learn the information class of the central pixel of the patch [19]. At inference
time, a sliding window produces a pixel-wise classification map [9]. The size of the sliding window is
determined by the size of the input patches used during the training.

CNNs make use of convolutions in at least one of their layers. A convolutional layer contains k
filters of size h× h× b, where h is the height and width of the filter and b is the number of input bands.
The first convolutional layer performs a convolution over the 3-D input volume of dimension m×m× b,
where m defines the spatial dimension of the patch. The output of the convolutional layer has a
dimension of m−k+2z

s × m−k+2z
s × k, where z is the number of zeros used to pad the input, k is the

dimension of the response activations, and s is the stride of the convolution, i.e., the number of steps
by which the filter is shifted during the convolution.



Remote Sens. 2017, 9, 1106 3 of 18
Remote Sens. 2017, 9, 1106  3 of 18 

 

 

Figure 1. Overview of a patch-based convolutional neural networks (CNN) architecture. 

Zero padding consists adding a number of rows and columns of zeros to the border of the input 
image patch to control the size of the obtained feature map. In the convolutional layers, using a filter 
with a size less than the input reduces the number of connections, hence the number of parameters 
when determining the output. Moreover, the same set of weights is learned for each location in the 
input image for a particular convolutional layer, resulting in parameter sharing [30]. 

The response activations from a convolutional layer are linear in nature. They are passed 
through a nonlinear activation function, resulting in a nonlinear transformation. Saturating 
nonlinearities such as the hyperbolic tangent, ݂(ݔ) = tanh(ݔ) and the sigmoidal function, ݂(ݔ) =(1 + ݁ି௫) suffer from the vanishing gradient problem [31,32]. This means that during training, the 
gradient of the output of the network with respect to its parameters tend to remain extremely small 
even if inputs with a large magnitude are used, thereby the learning algorithm lacks the guide to 
update the parameters. Un-saturating nonlinear activations such as the rectified linear unit (RELU) 
are robust to this problem [32]. RELU is given as ݂(ݔ) = max	(0,  and is useful in optimizing models (ݔ
that are gradient based because they remain mostly linear. Faster training of networks is observed if 
RELU nonlinearity is used as compared to saturating units such as the hyperbolic tangent and the 
sigmoidal function [33]. 

Pooling is the use of summary statistics of adjacent outputs in a feature map to determine the 
activations to be propagated to the subsequent layer. It results in rotationally and translationally 
invariant features [34]. For a window of size 	݌ ×  average pooling returns the arithmetic mean of ,݌
signals in the window whereas maxpooling returns the dominant signal in that window. The stride 
of a pooling layer refers to the number of steps between two subsequent pooling windows. Pooling 
with a stride 	ݏ ൐ 1 results into downsampling with a factor	ݏ. Pooling with downsampling reduces 
the spatial dimension of the output [35]. Effectively, the computation cost decreases. Also, the 
receptive field of the subsequent convolutional layers increases as more convolutional layers with 
down-sampling are used. 

The output of the final convolutional layer is flattened to a vector containing the extracted 
features and fed into the fully connected layer with ݈ neurons. The output of the last fully connected 
layer is normalized using a softmax activation function. It has ܿ units, representing the number of 
classes and gives the class distribution scores for each label ݕ௜ expressed as: ݌(ݕ௜|ݔ௜) = exp(ݔ௜)∑ exp൫ݔ௝൯௖௝ୀଵ  (1) 

where ݔ௜ is an input vector representing the un-normalized scores for the sample 	݅ for ݅ = 1…ܿ. 
The parameters of the network are determined by means of supervised training by minimizing the 
negative log likelihood over the training data. The loss function is equal to: 

Figure 1. Overview of a patch-based convolutional neural networks (CNN) architecture.

Zero padding consists adding a number of rows and columns of zeros to the border of the input
image patch to control the size of the obtained feature map. In the convolutional layers, using a filter
with a size less than the input reduces the number of connections, hence the number of parameters
when determining the output. Moreover, the same set of weights is learned for each location in the
input image for a particular convolutional layer, resulting in parameter sharing [30].

The response activations from a convolutional layer are linear in nature. They are passed through
a nonlinear activation function, resulting in a nonlinear transformation. Saturating nonlinearities such
as the hyperbolic tangent, f (x) = tan h(x) and the sigmoidal function, f (x) = (1 + e−x) suffer
from the vanishing gradient problem [31,32]. This means that during training, the gradient of
the output of the network with respect to its parameters tend to remain extremely small even if
inputs with a large magnitude are used, thereby the learning algorithm lacks the guide to update the
parameters. Un-saturating nonlinear activations such as the rectified linear unit (RELU) are robust
to this problem [32]. RELU is given as f (x) = max(0, x) and is useful in optimizing models that
are gradient based because they remain mostly linear. Faster training of networks is observed if
RELU nonlinearity is used as compared to saturating units such as the hyperbolic tangent and the
sigmoidal function [33].

Pooling is the use of summary statistics of adjacent outputs in a feature map to determine the
activations to be propagated to the subsequent layer. It results in rotationally and translationally
invariant features [34]. For a window of size p× p, average pooling returns the arithmetic mean of
signals in the window whereas maxpooling returns the dominant signal in that window. The stride of a
pooling layer refers to the number of steps between two subsequent pooling windows. Pooling with a
stride s > 1 results into downsampling with a factor s. Pooling with downsampling reduces the spatial
dimension of the output [35]. Effectively, the computation cost decreases. Also, the receptive field
of the subsequent convolutional layers increases as more convolutional layers with down-sampling
are used.

The output of the final convolutional layer is flattened to a vector containing the extracted features
and fed into the fully connected layer with l neurons. The output of the last fully connected layer is
normalized using a softmax activation function. It has c units, representing the number of classes and
gives the class distribution scores for each label yi expressed as:

p(yi|xi) =
exp(xi)

∑c
j=1 exp

(
xj
) (1)



Remote Sens. 2017, 9, 1106 4 of 18

where xi is an input vector representing the un-normalized scores for the sample i for i = 1 . . . c.
The parameters of the network are determined by means of supervised training by minimizing the
negative log likelihood over the training data. The loss function is equal to:

L(w) = − 1
N

N

∑
n=1

C

∑
c=1

ync log(ŷnc) (2)

where w represents the weights (i.e., the parameters of the network), ync is the vector of the true
labels and ŷnc is the vector of the predicted labels for a training set comprising of N samples. The loss
function quantifies the misclassification by comparing ync and ŷnc for N training samples. The CNN
is trained using stochastic gradient descent (SGD) with momentum α and learning rate ε from a
small subset of training data called a mini-batch [36]. The decay learning rate, εd is used to model
the random noise introduced by the SGD that is present even after the loss function is minimized.
These parameters influence the ability of the SGD to minimize the loss function [31]. The parameters of
the network, w are learned using backpropagation with SGD. The weights are updated in Equation (3)
while the learning rate is updated using Equation (4):

∆w(τ) = −ε(τ)
∂Lτ

∂w
+ α∆w(τ − 1) (3)

ε(τ) =
ε0

1 + εdτ
(4)

where ∆w are the weight updates, ∂Lτ
∂w are the partial derivatives, and ε0 is the initial learning rate.

τ and τ − 1 represent the current and previous epochs of the training phase [9,37].
During training, the CNN is likely to overfit because of limited training data. One way to mitigate

this is by means of dropout, where a percentage dr of the neurons and their connections is turned
off [38]. A second way is to use early stopping: the algorithm is run until the error on the validation
set does not improve for a given number of epochs, en. A third way is to penalize the parameters
deviating from zero. The resulting cost function after adding `2-norm regularization is given as:

L1(w) = L(w) + λ ‖ w ‖2
2 (5)

where λ is the regularization parameter, and ‖ w ‖2 is the `2-norm of the weight vector.

2.2. Adopted Architecture

Our proposed network comprises convolutional layers, fully connected layers and a softmax
classification layer. In each convolutional layer, a series of operations is performed on the input:
(i) a 2-D convolution, (ii) point-wise nonlinear transformation using RELU and (iii) maxpooling with
subsampling. A schematic overview of a convolutional layer of the proposed CNN architecture is
shown in Figure 2.

Remote Sens. 2017, 9, 1106  4 of 18 

 

(ݓ)ܮ = − 1ܰ ෍෍ݕ௡௖log(ݕො௡௖)஼
௖ୀଵ

ே
௡ୀଵ  (2) 

where ݓ represents the weights (i.e., the parameters of the network), ݕ௡௖	 is the vector of the true 
labels and ݕො௡௖ is the vector of the predicted labels for a training set comprising of ܰ samples. The 
loss function quantifies the misclassification by comparing ݕ௡௖	 and ݕො௡௖ for ܰ training samples. The 
CNN is trained using stochastic gradient descent (SGD) with momentum	ߙ and learning rate ߳ from 
a small subset of training data called a mini-batch [36]. The decay learning rate, ߳ௗ is used to model 
the random noise introduced by the SGD that is present even after the loss function is minimized. 
These parameters influence the ability of the SGD to minimize the loss function [31]. The parameters 
of the network, ݓ	  are learned using backpropagation with SGD. The weights are updated in 
Equation (3) while the learning rate is updated using Equation (4): ∆ݓ(߬) = −߳(߬) ݓఛ߲ܮ߲ + ߬)w∆ߙ − 1) (3) 

߳(߬) = ߳଴1 + ߳ௗ߬ (4) 

where ∆ݓ are the weight updates, డ௅ഓడ௪  are the partial derivatives, and ߳଴ is the initial learning rate. ߬ and ߬ − 1 represent the current and previous epochs of the training phase [9,37]. 
During training, the CNN is likely to overfit because of limited training data. One way to 

mitigate this is by means of dropout, where a percentage ݀௥ of the neurons and their connections is 
turned off [38]. A second way is to use early stopping: the algorithm is run until the error on the 
validation set does not improve for a given number of epochs,	݁௡. A third way is to penalize the 
parameters deviating from zero. The resulting cost function after adding ℓଶ-norm regularization is 
given as: ܮଵ(ݓ) = (ݓ)ܮ + ߣ ∥ ݓ ∥ଶଶ (5) 

where ߣ is the regularization parameter, and ∥ ݓ ∥ଶ	is the ℓଶ-norm of the weight vector. 

2.2. Adopted Architecture 

Our proposed network comprises convolutional layers, fully connected layers and a softmax 
classification layer. In each convolutional layer, a series of operations is performed on the input: (i) a 
2-D convolution, (ii) point-wise nonlinear transformation using RELU and (iii) maxpooling with 
subsampling. A schematic overview of a convolutional layer of the proposed CNN architecture is 
shown in Figure 2. 

 
Figure 2. An illustration of the convolutional layer of the proposed architecture. The receptive fields 
have a dimension of h × h. Figure 2. An illustration of the convolutional layer of the proposed architecture. The receptive fields

have a dimension of h × h.



Remote Sens. 2017, 9, 1106 5 of 18

The fully connected layers summarize the learned features and the softmax activation gives the
distribution of scores for each class. We carried out experiments varying the structure of the network.
An overview of the hyperparameters is presented in Table 1. The training hyperparameters are kept
constant while different values of the spatial feature learning hyperparameters are tried.

Table 1. Overview of CNN hyperparameters.

Training Hyperparameters Spatial Feature Learning Hyperparameters

Learning rate, ε Patch size, m
Momentum, α Convolutional layers, g

Learning rate decay, εd Fully connected layers, t
Early stopping patience, Number of filters, k

Maximum number of epochs, en Filter size, h
Weight decay, λ
Dropout rate, dr

3. Experimental Set-Up

3.1. Data

We use a QuickBird image acquired over Dar es Salaam, Tanzania, acquired in 2007 (Figure 3)
for the experiments. The city of Dar es Salaam is considered because about 80% of its buildings are
located in informal areas, and 80% of the residents of Dar es Salaam live in informal areas [1].

Remote Sens. 2017, 9, 1106  5 of 18 

 

The fully connected layers summarize the learned features and the softmax activation gives the 
distribution of scores for each class. We carried out experiments varying the structure of the network. 
An overview of the hyperparameters is presented in Table 1. The training hyperparameters are kept 
constant while different values of the spatial feature learning hyperparameters are tried. 

Table 1. Overview of CNN hyperparameters. 

Training Hyperparameters Spatial Feature Learning Hyperparameters 
Learning rate, ߳ Patch size, ݉ 
Momentum, ߙ Convolutional layers, ݃ 

Learning rate decay, ߳ௗ Fully connected layers, ݐ 
Early stopping patience, Number of filters, ݇ 

Maximum number of epochs, ݁௡  Filter size, ℎ 
Weight decay, ߣ  
Dropout rate, ݀௥   

3. Experimental Set-Up 

3.1. Data 

We use a QuickBird image acquired over Dar es Salaam, Tanzania, acquired in 2007 (Figure 3) 
for the experiments. The city of Dar es Salaam is considered because about 80% of its buildings are 
located in informal areas, and 80% of the residents of Dar es Salaam live in informal areas [1]. 

 
Figure 3. A map showing location of the tiles used for the experiments i.e., Tile 1, Tile 2 and Tile 3. Figure 3. A map showing location of the tiles used for the experiments i.e., Tile 1, Tile 2 and Tile 3.



Remote Sens. 2017, 9, 1106 6 of 18

The multispectral image is pan-sharpened with a spatial resolution of 0.60 m. It has four bands,
namely, blue, green, red and near infrared. A reference land use vector map prepared in 2004 is
available [39,40], and has four classes: “informal”, “formal”, “other urban” and “agricultural”. It was
used, together with visual image interpretation, to prepare the reference data to be used in the
experiments. To carry out a binary classification, a class “other” was created by combining the last
three classes, while maintaining the “informal” class. This was done to evaluate the ability of the
classifier to distinguish the “informal” settlement class from all other urban classes. Three tiles of
2000 × 2000 pixels, covering an area of 1.2 × 1.2 km on the ground were used. The raw image tiles
and the corresponding reference data are presented in Figure 4.

Remote Sens. 2017, 9, 1106  6 of 18 

 

The multispectral image is pan-sharpened with a spatial resolution of 0.60 m. It has four bands, 
namely, blue, green, red and near infrared. A reference land use vector map prepared in 2004 is 
available [39,40], and has four classes: “informal”, “formal”, “other urban” and “agricultural”. It was 
used, together with visual image interpretation, to prepare the reference data to be used in the 
experiments. To carry out a binary classification, a class “other” was created by combining the last 
three classes, while maintaining the “informal” class. This was done to evaluate the ability of the 
classifier to distinguish the “informal” settlement class from all other urban classes. Three tiles of 
2000 × 2000 pixels, covering an area of 1.2 × 1.2 km on the ground were used. The raw image tiles and 
the corresponding reference data are presented in Figure 4. 

 Tile 1 Tile 2 Tile 3 

Raw image 

 

Reference 
image 

 

Legend    

Figure 4. Raw QuickBird images of Dar es Salaam, Tanzania, and the corresponding reference data 
for Tile 1, Tile 2 and Tile 3 prepared by means of visual image interpretation. Each tile covers an area 
of 1.2 × 1.2 km on the ground. 

The Theano deep learning framework and the Keras library were used for designing the CNN, 
Python language for programming and R for extracting GLCM features [41–43]. 

3.2. Training Hyperparameters 

The rate at which the SGD converges, and whether it is at an optimal solution is influenced by 
the training hyperparameters. Preliminary experiments using a subset of 500 × 500 pixels showed a 
stable classification accuracy upon varying these hyperparameters. The hyperparameter values kept 
constant during the CNN experiments are: ߳ = 0.001, 0.9 = ߙ, ߳ௗ  = 0.001, ݁௡ = 50, 0.0001 = ߣ. A 
dropout rate, ݀௥ = 0.5 is used in the fully connected layers. The CNN configuration is shown in Table 2. 

Table 2. CNN configuration. 

Parameters Values
Layers 1 I − (C – A – P − D1) × ݃ − (F−D2) × ݐ − O 

Nonlinearity used in A and F RELU 
Nonlinearity used in O softmax 

Pooling size 2 
Width of F 128 

1 Layer Notation: I = input, C = convolutional layer, A = Activation function, P = pooling, F = fully 
connected layer and O = output. The convolutional stride is 1. 

Figure 4. Raw QuickBird images of Dar es Salaam, Tanzania, and the corresponding reference data for
Tile 1, Tile 2 and Tile 3 prepared by means of visual image interpretation. Each tile covers an area of
1.2 × 1.2 km on the ground.

The Theano deep learning framework and the Keras library were used for designing the CNN,
Python language for programming and R for extracting GLCM features [41–43].

3.2. Training Hyperparameters

The rate at which the SGD converges, and whether it is at an optimal solution is influenced by
the training hyperparameters. Preliminary experiments using a subset of 500 × 500 pixels showed a
stable classification accuracy upon varying these hyperparameters. The hyperparameter values kept
constant during the CNN experiments are: ε = 0.001, α = 0.9, εd = 0.001, en = 50, λ = 0.0001. A dropout
rate, dr = 0.5 is used in the fully connected layers. The CNN configuration is shown in Table 2.

Table 2. CNN configuration.

Parameters Values

Layers 1 I − (C – A – P − D1) × g − (F−D2) × t − O
Nonlinearity used in A and F RELU

Nonlinearity used in O softmax
Pooling size 2
Width of F 128

1 Layer Notation: I = input, C = convolutional layer, A = Activation function, P = pooling, F = fully connected layer
and O = output. The convolutional stride is 1.



Remote Sens. 2017, 9, 1106 7 of 18

A mini-batch size of 128 is used. Weights are initialized using normalized initialization [32].
We exclude m

2 − 1 border pixels from all sides of the tile when selecting samples during training and
testing, where m is the patch size in pixels. This is to avoid likely misclassification resulting from
padding the border pixels with zeros when selecting the samples.

3.3. Spatial Feature Learning Hyperparameters

We investigate spatial feature learning hyperparameter values for an optimally designed CNN.
They include the patch size, m = [65, 99, 129, 165], the number of convolutional layers, g = [2, 3, 4]
the number of the fully connected layers, t = [1, 2, 3], the number of the filters, k = [8, 16, 32, 64] and
the kernel dimension, h = [7, 17, 25]. We keep the patch size constant at m = 99 while optimizing the
hyperparameters in order to keep a low computational cost. The network is trained using SGD over a
sample set of size 2160. The accuracy is calculated using an independent test set drawn from the three
tiles. A summary of the experimental values is presented in Table 3.

Table 3. A summary of the values used in CNN hyperparameter optimization. The columns represent
the experiment carried out. The main diagonal shows the values tried.

Parameters Patch Size m Convolutional Layers g Fully Connected t Number of Filters k Filter Size h

Patch size m (65,99,129,165) 99 99 99 99

Convolutional layers g 2 (2,3,4) 2 2 2

Fully connected 1 1 (1,2,3) 1 1

Number of filters k 8 8 8 (8,16,32,64) 8

Filter size h 7 7 7 7 (7,17,25)

Spatial feature learning hyperparameters affect the quality of the spatial-contextual features
that are automatically extracted during training. The patch size defines the size of area from which
contextual information is derived and influences the assigned label [44]. The number of kernels
(filters) denotes the variety of spatial patterns that can be learned to distinguish the land use classes.
The dimension of the kernel defines the size of the patterns considered when distinguishing between
classes of interest. Fully connected layers make use of all the features in the previous convolutional
layers to derive the final classification rule [9].

3.4. Baseline Method: SVM with GLCM Features and LBP Features

As a comparison, we use SVM with RBF kernel making use of GLCM features. Spatial contextual
features are extracted from the GLCM and used in the classification [10]. GLCM variance was shown
to be useful in the detection of informal settlements in [12] and is obtained as:

f = ∑
i

∑
j
(i− µ)2 p(i, j) (6)

where p(i, j) is the (i, j)th entry in a normalized gray-tone spatial dependence matrix, i and j are gray
tones of neighboring pixels. The average of GLCM variance extracted over four directions is used
for window size, ws = [65, 99, 129, 165]. SVM classifiers maximize the margin between the classes
while minimizing the training error. It is characterized by high generalization ability (i.e., smaller error
on the independent test set) and high classification accuracy [45]. For training the SVM, we use hold
out cross validation to determine the regularization parameter C from 1 to 103 and the spread of the
RBF kernel Υ from 10−4 to 1 which are logarithmically spaced. The number of border pixels excluded
from an image tile is given by ws

2 − 1 where ws is the window size in pixels. During GLCM extraction,
the border pixels are padded with zeros, likely resulting to misclassification.

LBP features [46] are extracted and used for comparison, since it was demonstrated in [14] that
they could lead to a high accuracy in the classification of urban settlements. Let us define a set of



Remote Sens. 2017, 9, 1106 8 of 18

interpolation points (pixels) P, lying on a circle of radius R. The gray levels of these points is gp,
while that of the center of the circle is gc. Binary LBP codes are calculated by obtaining the difference
between the gray level of the points on the circle and the gray level of the point at its center. A value
of 1 is assigned when the difference is positive and 0 when the difference is negative giving a binary
sequence illustrated as:

T = t(s(g0 − gc), s(g1 − gc), . . . , (gP−1 − gc)) (7)

where

s(x) =

{
1, x ≥ 0
0, x < 0

(8)

By assigning a binomial factor 2p for each sign s
(

gp − gc
)
, a unique LBPP,R number is obtained

that characterizes the local image texture and is defined as:

LBPP,R =
P−1

∑
p=0

s
(

gp − gc
)
2p (9)

A histogram of uniform features is computed over a local window of rotation invariant features
and is defined in [47] as:

LBPriu2
P,R =


P−1
∑

P=0
s
(

gp − gc
)
, U(LBPP,R) ≤ 2

P + 1 , otherwise
(10)

where

U(LBPP,R) =
∣∣s(gp−1 − gc

)
− s(g0 − gc)

∣∣+ P−1

∑
p=1
ds
(

gp − gc
)
− s
(

gp−1 − gc
)
e (11)

The histogram of features is used as the final feature vector. For more information about
LBP, we refer the readers to [47]. In this work, LBP features are extracted using R = 3, and P = 8.
The histogram of uniform features is computed from the LBP codes using a window of 165× 165 pixels.

3.5. Size of the Training and Test Set

The size of the training set affects optimal determination of the CNN parameters. Three different
training sets of size 1080, 2160 and 3060 were obtained through stratified random sampling based on
the frequency of the classes. A patch of size 165 was used because it facilitated the testing of a deep
CNN. The convolutional layers were varied between two and six and each had eight kernels with a
dimension of 7 × 7. Each training sets is drawn from the three reference maps by stratified random
sampling based on the frequency of the two classes. The test set is obtained from the reference maps
by excluding training pixels. The resulting number of test pixels used to compute the classification
accuracy is equal to 10,116,974. Visual quality assessment of the classified maps is also carried out.

4. Results and Analysis

4.1. Spatial Feature Learning Hyperparameters

In Figure 5a, the analysis of the effect of the patch size shows that high classification accuracy is
achieved when a large contextual window is used. Using m = 129 results to an accuracy of 83.29%.
This is according to the expectations, because a large contextual neighborhood is needed to discriminate
the two abstract land use classes. A decrease in accuracy to 82.87% for m = 165 is because of the limiting
factor of using a fixed training sample set of 2160, while the number of parameters grows. It is observed
from Figure 5b that using more convolutional layers increases the classification accuracy. Using more
layers increases the level of abstraction of the features learned from simple to more complex features.



Remote Sens. 2017, 9, 1106 9 of 18
Remote Sens. 2017, 9, 1106  9 of 18 

 

   

(a) (b) (c) 

  

 

(d) (e)  

Figure 5. Results of the spatial feature learning hyperparameter optimization for (a) patch size, (b) 
convolutional layers, (c) fully connected layers, (d) number of kernels and (e) dimension of kernels. 

The designed CNN has a pooling layer with subsampling with a factor of two. The spatial 
resolution of the feature maps is reduced by two after each convolutional layer. This results in fewer 
parameters because the number of connections in the fully connected layers is effectively reduced. 
As seen in Figure 5c, varying the number of fully connected layers has a less significant impact on 
the classification accuracy. 

In Figure 5d, there is a slight decrease in the classification accuracy that is attributed to an 
increase in the number of parameters as the number of kernels increases. The slight drop is because 
a larger variety of informative features which contribute to better discrimination of the classes are 
learnt. A large kernel implies a large receptive field. Consequently, the number of parameters to be 
optimized by the model during training increases. We observe in Figure 5e that increasing h causes a 
decrease of 2.5% in accuracy. This is due to an increase in the number of parameters if a large filter 
dimension is used. 

The number of the convolutional layers and the patch size were the most sensitive 
hyperparameters in our experiments. We also observed that the size of the training set was a limiting 
factor. Therefore, an experiment to determine the relationship between varying the number of 
convolutional layers against a training sample was carried out. 

4.2. Size of the Training Set 

In Figure 6, it is observed that the accuracy increases when more convolutional layers are used. 
When the number of training samples is small, the classification accuracy saturates at a lower number 
of convolutional layers. This can be attributed to overfitting of the model as its capacity becomes 
large. The highest classification accuracy is attained when five convolutional layers are used and with 
a corresponding training set of 3060. A deeper network can reach higher accuracy by learning 
discriminative features when trained with large training sets. However, a large training sample is 
accompanied by more training time [31]. 

Figure 5. Results of the spatial feature learning hyperparameter optimization for (a) patch size,
(b) convolutional layers, (c) fully connected layers, (d) number of kernels and (e) dimension of kernels.

The designed CNN has a pooling layer with subsampling with a factor of two. The spatial
resolution of the feature maps is reduced by two after each convolutional layer. This results in fewer
parameters because the number of connections in the fully connected layers is effectively reduced.
As seen in Figure 5c, varying the number of fully connected layers has a less significant impact on the
classification accuracy.

In Figure 5d, there is a slight decrease in the classification accuracy that is attributed to an increase
in the number of parameters as the number of kernels increases. The slight drop is because a larger
variety of informative features which contribute to better discrimination of the classes are learnt.
A large kernel implies a large receptive field. Consequently, the number of parameters to be optimized
by the model during training increases. We observe in Figure 5e that increasing h causes a decrease of
2.5% in accuracy. This is due to an increase in the number of parameters if a large filter dimension
is used.

The number of the convolutional layers and the patch size were the most sensitive
hyperparameters in our experiments. We also observed that the size of the training set was a
limiting factor. Therefore, an experiment to determine the relationship between varying the number of
convolutional layers against a training sample was carried out.

4.2. Size of the Training Set

In Figure 6, it is observed that the accuracy increases when more convolutional layers are used.
When the number of training samples is small, the classification accuracy saturates at a lower number
of convolutional layers. This can be attributed to overfitting of the model as its capacity becomes
large. The highest classification accuracy is attained when five convolutional layers are used and
with a corresponding training set of 3060. A deeper network can reach higher accuracy by learning
discriminative features when trained with large training sets. However, a large training sample is
accompanied by more training time [31].



Remote Sens. 2017, 9, 1106 10 of 18Remote Sens. 2017, 9, 1106  10 of 18 

 

 
Figure 6. Effect of varying number of convolutional layers while varying the training sample size. 

4.3. Classification Results 

The classification results from SVM, SVM + GLCM, SVM + LBP and CNN (for g = 2, 3, 4, 5, 6) 
using a training sample size of 3060 are compared in Table 4. GLCM features extracted using a 
window size of 165 provided the highest classification accuracy with SVM. Classification relying on 
spectral features alone results in a low classification accuracy. Addition of spatial-contextual features 
causes an increase in classification accuracy as seen in SVM + GLCM, SVM + LBP and CNN. 
Performance of the CNN increases with each addition of a convolutional layer, with the highest 
classification accuracy being provided by CNN-5. We note that CNN-2 has a lower accuracy than 
SVM + GLCM. Adding one layer, CNN-3 results in a higher classification accuracy for Tile 2 and Tile 
3 only. For g = 4, 5 or 6, CNN outperforms SVM + GLCM. When g = 6, there is a slight drop in the 
overall accuracy in Tile 1 and Tile 2 of 0.32% and 0.47% respectively, whereas the classification 
accuracy of Tile 3 increases by 0.26%. CNN-5 results in more than 10% gain over SVM + GLCM in 
overall accuracy for Tile 3. The classification accuracy of CNN is consistent across the three tiles as 
opposed to SVM + GLCM. SVM + LBP performs better in Tile 1, Tile 2 and Tile 3 as compared to SVM 
+ GLCM. In addition, it has a high classification accuracy as close to CNN-4, CNN-5 and CNN-6. 

Table 4. Comparison of classification accuracies of Support Vector Machines (SVM), SVM + Grey 
Level Co-Occurrence Matrix (SVM + GLCM), SVM + Local Binary Patterns (SVM + LBP) and 
Convolutional Neural Networks (CNN). Overall Accuracy (OA) computed across the three tiles is 
also provided. 

Tile ID SVM SVM +  
GLCM 

SVM 
+ LBP 

CNN-2 CNN-3 CNN-4 CNN-5 CNN-6 

Tile 1 59.48 91.99 90.77 88.06 89.60 92.48 93.05 92.73 
Tile 2 78.61 88.40 90.49 88.33 90.11 91.28 92.24 91.77 
Tile 3 68.45 79.40 90.18 82.57 87.20 87.78 89.85 90.11 
OA 68.84 86.60 90.48 86.32 88.97 90.51 91.71 91.53 

Figure 7 presents the classified maps for SVM, SVM + GLCM, SVM + LBP and CNN. Results for 
CNN-2 and CNN-5 are shown. The columns represent Tiles 1, 2 and 3. The first row shows the ground 
reference maps while the subsequent rows show the results of SVM using spectral features, SVM 
with GLCM, SVM with LBP, CNN-2 and CNN-5. 

  

Figure 6. Effect of varying number of convolutional layers while varying the training sample size.

4.3. Classification Results

The classification results from SVM, SVM + GLCM, SVM + LBP and CNN (for g = 2, 3, 4, 5, 6)
using a training sample size of 3060 are compared in Table 4. GLCM features extracted using a window
size of 165 provided the highest classification accuracy with SVM. Classification relying on spectral
features alone results in a low classification accuracy. Addition of spatial-contextual features causes an
increase in classification accuracy as seen in SVM + GLCM, SVM + LBP and CNN. Performance of the
CNN increases with each addition of a convolutional layer, with the highest classification accuracy
being provided by CNN-5. We note that CNN-2 has a lower accuracy than SVM + GLCM. Adding
one layer, CNN-3 results in a higher classification accuracy for Tile 2 and Tile 3 only. For g = 4, 5
or 6, CNN outperforms SVM + GLCM. When g = 6, there is a slight drop in the overall accuracy in
Tile 1 and Tile 2 of 0.32% and 0.47% respectively, whereas the classification accuracy of Tile 3 increases
by 0.26%. CNN-5 results in more than 10% gain over SVM + GLCM in overall accuracy for Tile 3.
The classification accuracy of CNN is consistent across the three tiles as opposed to SVM + GLCM.
SVM + LBP performs better in Tile 1, Tile 2 and Tile 3 as compared to SVM + GLCM. In addition, it has
a high classification accuracy as close to CNN-4, CNN-5 and CNN-6.

Table 4. Comparison of classification accuracies of Support Vector Machines (SVM), SVM + Grey Level
Co-Occurrence Matrix (SVM + GLCM), SVM + Local Binary Patterns (SVM + LBP) and Convolutional
Neural Networks (CNN). Overall Accuracy (OA) computed across the three tiles is also provided.

Tile ID SVM SVM + GLCM SVM + LBP CNN-2 CNN-3 CNN-4 CNN-5 CNN-6

Tile 1 59.48 91.99 90.77 88.06 89.60 92.48 93.05 92.73
Tile 2 78.61 88.40 90.49 88.33 90.11 91.28 92.24 91.77
Tile 3 68.45 79.40 90.18 82.57 87.20 87.78 89.85 90.11
OA 68.84 86.60 90.48 86.32 88.97 90.51 91.71 91.53

Figure 7 presents the classified maps for SVM, SVM + GLCM, SVM + LBP and CNN. Results for
CNN-2 and CNN-5 are shown. The columns represent Tiles 1, 2 and 3. The first row shows the ground
reference maps while the subsequent rows show the results of SVM using spectral features, SVM with
GLCM, SVM with LBP, CNN-2 and CNN-5.



Remote Sens. 2017, 9, 1106 11 of 18
Remote Sens. 2017, 9, 1106  11 of 18 

 

 Tile 1 Tile 2 Tile 3 

Ground 
reference 

 

SVM 

   

SVM+GLCM 

   

SVM+LBP 

   

CNN-2 

   

CNN-5 

Legend    

Figure 7. Classification maps from SVM, SVM relying on GLCM features, SVM relying on LBP 
features and CNN for Tile 1, Tile 2 and Tile 3. 

From Figure 7, we observe that maps of SVM using spectral features alone cannot reliably 
distinguish the two abstract land use classes. The maps where spatial-contextual features have been 
used have a higher accuracy. The boundary definition is much smoother in CNN-5 as compared to 
CNN-2. Furthermore, CNN-5 has less noisy classified maps than CNN-2 and some of the 
misclassification in the northwestern corner of Tile 3 is reduced. From Tile 3, it is evident that the 
extent of the informal settlement is better captured by CNN approach as opposed to SVM + GLCM 

Figure 7. Classification maps from SVM, SVM relying on GLCM features, SVM relying on LBP features
and CNN for Tile 1, Tile 2 and Tile 3.

From Figure 7, we observe that maps of SVM using spectral features alone cannot reliably
distinguish the two abstract land use classes. The maps where spatial-contextual features have been
used have a higher accuracy. The boundary definition is much smoother in CNN-5 as compared
to CNN-2. Furthermore, CNN-5 has less noisy classified maps than CNN-2 and some of the
misclassification in the northwestern corner of Tile 3 is reduced. From Tile 3, it is evident that the extent
of the informal settlement is better captured by CNN approach as opposed to SVM + GLCM approach.
We observe that spatial-contextual features that are learned by CNN are capable of discriminating
informal settlements from other urban settlement types.



Remote Sens. 2017, 9, 1106 12 of 18

In Figure 8, the northeastern corners of both Tiles 2 and 3 are highlighted. In the input images,
these areas are open fields lying within areas of informal settlements. The pixels have been classified
as “formal”, whereas their corresponding label in the reference image is “informal”. This has an effect
on the accuracy assessment.

Remote Sens. 2017, 9, 1106  12 of 18 

 

approach. We observe that spatial-contextual features that are learned by CNN are capable of 
discriminating informal settlements from other urban settlement types. 

In Figure 8, the northeastern corners of both Tiles 2 and 3 are highlighted. In the input images, 
these areas are open fields lying within areas of informal settlements. The pixels have been classified 
as “formal”, whereas their corresponding label in the reference image is “informal”. This has an effect 
on the accuracy assessment. 

 Image Tile Reference image Classified map 

Tile 2 

 

Tile 3 

Legend    

Figure 8. Red boxes highlight the northeastern part of tiles 1 and 2 where misclassification occur. 

Table 5 reports user’s accuracy (UA) and producer’s accuracy (PA) [48] computed from the 
combined confusion matrices of tile 1, tile 2 and tile 3. We observe that CNN-5 has higher accuracy 
for both “informal” and “other” classes. In the “informal” class, CNN-5 has a PA of 91.40% and a UA 
of 88.22%, whereas SVM + GLCM has a PA of 90.44% and a UA of 75.63%, and SVM + LBP has a PA 
of 92.37% and a UA of 83.87%. 

Training CNN from scratch using a patch size of ݉ = 165 takes an average time of four hours 
when training, and spatial feature learning hyperparameters are kept constant using an NVDIA 
Quadro K2200 4GB GPU. The extraction of LBP and GLCM features takes an average time of two 
hours. While CNN is computationally intensive compared to SVM + GLCM or SVM + LBP, it enables 
the spatial-contextual features to be learned automatically in an end-to-end fashion. 

Table 5. Accuracy assessment for the methods SVM, SVM + GLCM and CNN computed by combining 
the confusion matrix of Tile 1, Tile 2 and Tile 3. 

Approach Overall 
Accuracy (%) 

Class 
Accuracy (%) Error (%) 

User Producer Commission  Omission 

SVM 68.84 
Informal 40.61 71.60 59.39 28.40 

Other 88.68 68.00 11.32 32.00 

SVM + GLCM 86.60 
Informal 75.63 90.44 24.37 9.56 

Other 94.39 84.65 5.61 15.35 

SVM + LBP 90.48 
Informal 83.87 92.37 16.13 7.63 

Other 95.13 89.35 4.87 10.65 

CNN-2 86.32 
Informal 84.71 84.71 15.29 15.29 

Other 87.38 87.37 12.62 12.63 

Figure 8. Red boxes highlight the northeastern part of tiles 1 and 2 where misclassification occur.

Table 5 reports user’s accuracy (UA) and producer’s accuracy (PA) [48] computed from the
combined confusion matrices of tile 1, tile 2 and tile 3. We observe that CNN-5 has higher accuracy for
both “informal” and “other” classes. In the “informal” class, CNN-5 has a PA of 91.40% and a UA of
88.22%, whereas SVM + GLCM has a PA of 90.44% and a UA of 75.63%, and SVM + LBP has a PA of
92.37% and a UA of 83.87%.

Training CNN from scratch using a patch size of m = 165 takes an average time of four hours when
training, and spatial feature learning hyperparameters are kept constant using an NVDIA Quadro
K2200 4GB GPU. The extraction of LBP and GLCM features takes an average time of two hours.
While CNN is computationally intensive compared to SVM + GLCM or SVM + LBP, it enables the
spatial-contextual features to be learned automatically in an end-to-end fashion.

Table 5. Accuracy assessment for the methods SVM, SVM + GLCM and CNN computed by combining
the confusion matrix of Tile 1, Tile 2 and Tile 3.

Approach Overall Accuracy (%) Class
Accuracy (%) Error (%)

User Producer Commission Omission

SVM 68.84
Informal 40.61 71.60 59.39 28.40

Other 88.68 68.00 11.32 32.00

SVM + GLCM 86.60
Informal 75.63 90.44 24.37 9.56

Other 94.39 84.65 5.61 15.35

SVM + LBP 90.48
Informal 83.87 92.37 16.13 7.63

Other 95.13 89.35 4.87 10.65

CNN-2 86.32
Informal 84.71 84.71 15.29 15.29

Other 87.38 87.37 12.62 12.63

CNN-3 88.97
Informal 81.56 91.38 18.44 8.62

Other 89.66 87.58 10.34 12.42



Remote Sens. 2017, 9, 1106 13 of 18

Table 5. Cont.

Approach Overall Accuracy (%) Class
Accuracy (%) Error (%)

User Producer Commission Omission

CNN-4 90.51
Informal 85.29 91.14 14.71 8.86

Other 94.17 90.11 5.83 9.89

CNN-5 91.71
Informal 88.22 91.40 11.78 8.60

Other 94.17 91.92 5.83 8.08

CNN-6 91.53
Informal 87.70 91.43 12.30 8.57

Other 94.22 91.60 5.78 8.40

4.4. Visualization of Feature Maps

Figure 9 visualizes the feature maps extracted by the CNN to explain why the CNN performs
better. The visualization demonstrates that the lower layers detect basic features such as edges,
whereas the higher layers evolve to detect more complex features. The CNN feature maps indicate
regions and patterns of the input image that produce activations in the network. A feature map is
generated when a filter with learned weights is applied to the input image. Higher values in the
feature maps correspond to regions of strong activations in the input image [49,50]. The displayed
feature maps were generated by upsampling the actual feature maps, using bilinear resampling,
to the original size of the input image to enhance the visualization process. We visualize the features
from CNN-5 when tile 1 is used as an input. The rows indicate the eight feature maps that are
generated after each of the convolutional layers (represented by the columns). In the 1st and 2nd
layers, edges are more prominent (see Row 2, Column 1; Row 2, Column 2; Row 4, Column 1).
In the higher layers, the feature maps are class specific and regions with informal settlements can be
observed for example in (Row 3, Column 4; Row 3, Column 5; Row 5, Column 5). The lower layers
of the CNN detect low level features while the higher layers detect more abstract features related to
the semantic classes. Our experiments demonstrate that deep architecture can learn discriminative
hierarchical spatial features. Intermediate layers distinguish the local information well, whereas the
higher layers better discriminate the semantics classes. Indeed, in the highest layers, we observe
that high values correspond to areas where the network detects the presence of informal settlements,
while low activations corresponds to the class “other”.

Remote Sens. 2017, 9, 1106  13 of 18 

 

CNN-3 88.97 
Informal 81.56 91.38 18.44 8.62 

Other 89.66 87.58 10.34 12.42 

CNN-4 90.51 
Informal 85.29 91.14 14.71 8.86 

Other 94.17 90.11 5.83 9.89 

CNN-5 91.71 
Informal 88.22 91.40 11.78 8.60 

Other 94.17 91.92 5.83 8.08 

CNN-6 91.53 
Informal 87.70 91.43 12.30 8.57 

Other 94.22 91.60 5.78 8.40 

4.4. Visualization of Feature Maps 

Figure 9 visualizes the feature maps extracted by the CNN to explain why the CNN performs 
better. The visualization demonstrates that the lower layers detect basic features such as edges, 
whereas the higher layers evolve to detect more complex features. The CNN feature maps indicate 
regions and patterns of the input image that produce activations in the network. A feature map is 
generated when a filter with learned weights is applied to the input image. Higher values in the 
feature maps correspond to regions of strong activations in the input image [49,50]. The displayed 
feature maps were generated by upsampling the actual feature maps, using bilinear resampling, to 
the original size of the input image to enhance the visualization process. We visualize the features 
from CNN-5 when tile 1 is used as an input. The rows indicate the eight feature maps that are 
generated after each of the convolutional layers (represented by the columns). In the 1st and 2nd 
layers, edges are more prominent (see Row 2, Column 1; Row 2, Column 2; Row 4, Column 1). In the 
higher layers, the feature maps are class specific and regions with informal settlements can be 
observed for example in (Row 3, Column 4; Row 3, Column 5; Row 5, Column 5). The lower layers of 
the CNN detect low level features while the higher layers detect more abstract features related to the 
semantic classes. Our experiments demonstrate that deep architecture can learn discriminative 
hierarchical spatial features. Intermediate layers distinguish the local information well, whereas the 
higher layers better discriminate the semantics classes. Indeed, in the highest layers, we observe that 
high values correspond to areas where the network detects the presence of informal settlements, 
while low activations corresponds to the class “other”. 

 

Feature 
maps 

Convolutional layer 

1 2 3 4 5 

1 

   

2 

  

3 

  

Figure 9. Cont.



Remote Sens. 2017, 9, 1106 14 of 18
Remote Sens. 2017, 9, 1106  14 of 18 

 

4 

     

5 

  

6 

  

7 

  

8 

  

 Legend  

Figure 9. An illustration of eight feature maps for tile 1, derived from a CNN with five layers for each 
of the layers. The feature maps are upsampled through bilinear interpolation to attain a resolution of 
2000 × 2000 pixels for visualization. High values are obtained where there is a strong response in the 
activations as the filter convolves over the input image. 

5. Discussion 

In this research, we investigated the use of CNN for the detection of informal settlements. CNN 
hyperparameter optimization experiments show that the depth of the network and the patch size 
have a significant influence on the network accuracy. A deep network allows for a hierarchy of useful 
spatial-contextual features to be learnt [51]. Deep networks are able to effectively look into a larger 
area of the input image as opposed to shallow networks, because the effective size of the receptive 
field of successive convolutional layers increases as the number of convolutional layers increase [31]. 
A large patch size allowed the extraction of spatial-contextual information from a large window. The 
optimal values of the CNN hyperparameters is guided by the particular classification task. We 
observed the importance of the training set size. Using a large training set is necessary to learn 
complex features and obtaining high generalization ability. In this work, training samples are derived 
from three tiles that contain informal settlements with different characteristics. Accuracy assessment 
across the three tiles showed that CNN is promising with regard to generalisation in the detection of 
informal settlements. Presently, urban settlements have a heterogeneous appearance based on their 
geographical location [12]. It would be desirable to have a method that is transferrable to detect 
informal settlements regardless of their location around cities in rapidly developing countries. 

Visually, the quality of maps classified by CNN appear quite regular as shown in Figure 7. 
Nonetheless, the presence of islands in the classified maps could have been smoothened by using 
simple post-processing. Here, we do not perform post-classification as we aimed to use CNN in an 
end-to-end fashion, from raw pixels to desired classes. We were able to visualize our CNN in order 

Figure 9. An illustration of eight feature maps for tile 1, derived from a CNN with five layers for each
of the layers. The feature maps are upsampled through bilinear interpolation to attain a resolution of
2000 × 2000 pixels for visualization. High values are obtained where there is a strong response in the
activations as the filter convolves over the input image.

5. Discussion

In this research, we investigated the use of CNN for the detection of informal settlements.
CNN hyperparameter optimization experiments show that the depth of the network and the patch
size have a significant influence on the network accuracy. A deep network allows for a hierarchy of
useful spatial-contextual features to be learnt [51]. Deep networks are able to effectively look into
a larger area of the input image as opposed to shallow networks, because the effective size of the
receptive field of successive convolutional layers increases as the number of convolutional layers
increase [31]. A large patch size allowed the extraction of spatial-contextual information from a large
window. The optimal values of the CNN hyperparameters is guided by the particular classification
task. We observed the importance of the training set size. Using a large training set is necessary to learn
complex features and obtaining high generalization ability. In this work, training samples are derived
from three tiles that contain informal settlements with different characteristics. Accuracy assessment
across the three tiles showed that CNN is promising with regard to generalisation in the detection
of informal settlements. Presently, urban settlements have a heterogeneous appearance based on
their geographical location [12]. It would be desirable to have a method that is transferrable to detect
informal settlements regardless of their location around cities in rapidly developing countries.

Visually, the quality of maps classified by CNN appear quite regular as shown in Figure 7.
Nonetheless, the presence of islands in the classified maps could have been smoothened by using



Remote Sens. 2017, 9, 1106 15 of 18

simple post-processing. Here, we do not perform post-classification as we aimed to use CNN in an
end-to-end fashion, from raw pixels to desired classes. We were able to visualize our CNN in order
to gain an insight of the learned features. While most neurons were able to specialise, there were
examples of some that failed to specialise as seen in (Row 1, Column 2; Row 8, Column 5) in Figure 9.
This is due to the limitation of those RELU units which have zero gradient when inactive, which makes
it impossible to adjust their weights during training [52]. Visualizing a trained CNN is also important
because it can give insight into its design, for example, on the choice of the number of convolutional
layers or dimension of kernel [50].

SVM + GLCM provided competitive results and the utility of GLCM features for the detection of
informal settlements evident as shown in [12]. Similarly, LBP features are also useful for the detection
of informal settlements as described in [14]. CNN showed the capability to learn spatial-contextual
features directly from the input image, rather than hand-engineering. The high classification accuracy
and visual quality of the maps demonstrate that CNNs are useful for the detection of informal
settlements from VHR imagery.

Some uncertainties and inaccuracies in the classified maps were shown in Figure 8. The difficulty
in correctly classifying these areas can be a result of an area having morphological characteristics of
formal settlements, yet occurring within an informal settlement. Some work on evaluating uncertainty
in image interpretation of informal settlements has been done in [53]. Nonetheless, the quantification
of the magnitude and nature of these uncertainties could be evaluated in future studies.

Classified land use maps indicate the location and extent of informal settlements in a study
area. This information is necessary to support decision making, planning and management of urban
areas [54]. For instance, maps of informal settlements could be used to guide government and
municipalities to properly allocate funding and resources for upgrading projects [55]. The upgrading
process aims to improve social, organisational and environmental aspects of an informal settlement [56].
Maps can be used for planning specific interventions such as building new roads and infrastructures
for access to clean water and sanitization [57,58]. In some situations, maps could be used to decide
whether a slum should be eradicated and people moved to a more appropriate part of the city [59].
In addition, the resulting land use maps are useful in evaluating the sustainability in land use, land
cover changes and transition when considered over a time series [60,61].

6. Conclusions

Our experiments showed that classification of VHR images using spectral features alone has a low
accuracy and poor quality of maps. When spatial-contextual features are added, a high classification
accuracy is obtained. SVM relying on GLCM features and LBP features performs well in this regard,
hence well-designed hand-crafted features can exhibit competitive performance in the presence of
classes with a high level of semantic abstraction. Our CNN had a high classification accuracy and
outperformed SVM + GLCM and SVM + LBP, especially if a higher number of convolutional layers
and a large training set were used. A deeper network allowed more discriminative spatial-contextual
features to be learned, which help in separating complex classes. CNNs require an adequate training
set to ensure the optimal determination of the parameters of the network. The methodology outlined
in this paper can be replicated to map informal settlements in other cities. We conclude that CNNs,
trained in an end-to-end fashion, can effectively learn complex, hierarchical and abstract features for
a complex land use classification task, such as detection of informal settlements from VHR images.
Future work may involve investigating transferability of this method for the detection of informal
settlements in other geographical regions.

Acknowledgments: We acknowledge Monica Kuffer, Richard Sliuzas for providing the QuickBird dataset.

Author Contributions: Nicholus Mboga wrote the manuscript, designed and conducted the experiments.
Claudio Persello, Alfred Stein and John Ray Bergado contributed to the conceptual design of the experiments,
reviewed and revised the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2017, 9, 1106 16 of 18

References

1. Kironde, J.M.L. The regulatory framework, unplanned development and urban poverty: Findings from
Dar es Salaam, Tanzania. Land Use Policy 2006, 23, 460–472. [CrossRef]

2. UN-Habitat. The Challenge of Slums—Global Report on Human Settlements; UN-Habitat: Nairobi, Kenya, 2003.
3. UN-Habitat. Habitat. Habitat III Issue Papers 22—Informal Settlements. In United Nations Conference on

Housing and Sustainable Urban Development; UN-Habitat: Nairobi, Kenya, 2015; Volume 2015, pp. 1–8.
4. Owen, K.K.; Wong, D.W. An approach to differentiate informal settlements using spectral, texture,

geomorphology and road accessibility metrics. Appl. Geogr. 2013, 38, 107–118. [CrossRef]
5. Kuffer, M.; Barros, J.; Sliuzas, R.V. The development of a morphological unplanned settlement index using

very-high-resolution (VHR) imagery. Comput. Environ. Urban Syst. 2014, 48, 138–152. [CrossRef]
6. Hofmann, P.; Strobl, J.; Blaschke, T.; Kux, H. Detecting informal settlements from Quickbird data in

Rio de Janeiro using an object based approach. Object-Based Image Anal. 2008, 531–553. [CrossRef]
7. Kuffer, M.; Barros, J. Urban Morphology of Unplanned Settlements: The Use of Spatial Metrics in VHR

Remotely Sensed Images. Procedia Environ. Sci. 2011, 7, 152–157. [CrossRef]
8. Shekhar, S. Detecting slums from Quickbird data in Pune using an object oriented approach. ISPRS—Int.

Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXIX-B8, 519–524. [CrossRef]
9. Bergado, J.R.A.; Persello, C.; Gevaert, C. A deep learning approach to the classification of sub-decimeter

resolution aerial images. In Proceedings of the IEEE International Geoscience and Remote Sensing
Symposium, Beijing, China, 10–15 July 2016; pp. 1516–1519.

10. Haralick, R.; Shanmugan, K.; Dinstein, I. Textural features for image classification. IEEE Trans. Syst. Man Cybern.
1973, 3, 610–621. [CrossRef]

11. Pesaresi, M.; Benediktsson, J.A. A New Approach for the Morphological Segmentation of High-Resolution
Satellite Imagery. IEEE Trans. Geosci. Remote Sens. 2001, 39, 309–320. [CrossRef]

12. Kuffer, M.; Pfeffer, K.; Sliuzas, R.; Baud, I. Extraction of Slum Areas From VHR Imagery Using GLCM
Variance. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 1830–1840. [CrossRef]

13. Kit, O.; Lüdeke, M.; Reckien, D. Texture-based identification of urban slums in Hyderabad, India using
remote sensing data. Appl. Geogr. 2012, 32, 660–667. [CrossRef]

14. Ella, L.P.A.; van den Bergh, F.; van Wyk, B.J.; van Wyk, M.A. A Comparison of Texture Feature Algorithms
for Urban Settlement Classification. In Proceedings of the 2008 IEEE International Geoscience and Remote
Sensing Symposium (IGARSS), Boston, MA, USA, 6–11 July 2008; Volume 3, pp. III-1308–III-1311.

15. Graesser, J.; Cheriyadat, A.; Vatsavai, R.R.; Chandola, V.; Long, J.; Bright, E. Image based characterization of
formal and informal neighborhoods in an urban landscape. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
2012, 5, 1164–1176. [CrossRef]

16. Fauvel, M.; Tarabalka, Y.; Benediktsson, J.A.; Chanussot, J.; Tilton, J.C. Advances in Spectral—Spatial
Classification of Hyperspectral Images. Proc. IEEE 2013, 101, 652–675. [CrossRef]

17. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
18. Schmidhuber, J. Deep Learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [CrossRef]

[PubMed]
19. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural

Networks. In Advances in Neural Information Processing Systems; Pereira, F., Burges, C.J.C., Bottou, L.,
Weinberger, K.Q., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2012; pp. 1097–1105.

20. Ciresan, D.; Meier, U.; Schmidhuber, J. Multi-column Deep Neural Networks for Image Classification.
In Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Providence, RI, USA, 16–21 June 2012; pp. 3642–3649.

21. Paisitkriangkrai, S.; Sherrah, J.; Janney, P.; van den Hengel, A. Semantic Labeling of Aerial and Satellite
Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2868–2881. [CrossRef]

22. Längkvist, M.; Kiselev, A.; Alirezaie, M.; Loutfi, A. Classification and Segmentation of Satellite Orthoimagery
Using Convolutional Neural Networks. Remote Sens. 2016, 8, 329. [CrossRef]

23. Alshehhi, R.; Reddy, P.; Lee, W.; Dalla, M. Simultaneous extraction of roads and buildings in remote sensing
imagery with convolutional neural networks. ISPRS J. Photogramm. Remote Sens. 2017, 130, 139–149.
[CrossRef]

http://dx.doi.org/10.1016/j.landusepol.2005.07.004
http://dx.doi.org/10.1016/j.apgeog.2012.11.016
http://dx.doi.org/10.1016/j.compenvurbsys.2014.07.012
http://dx.doi.org/10.1007/978-3-540-77058-9_29
http://dx.doi.org/10.1016/j.proenv.2011.07.027
http://dx.doi.org/10.5194/isprsarchives-XXXIX-B8-519-2012
http://dx.doi.org/10.1109/TSMC.1973.4309314
http://dx.doi.org/10.1109/36.905239
http://dx.doi.org/10.1109/JSTARS.2016.2538563
http://dx.doi.org/10.1016/j.apgeog.2011.07.016
http://dx.doi.org/10.1109/JSTARS.2012.2190383
http://dx.doi.org/10.1109/JPROC.2012.2197589
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1016/j.neunet.2014.09.003
http://www.ncbi.nlm.nih.gov/pubmed/25462637
http://dx.doi.org/10.1109/JSTARS.2016.2582921
http://dx.doi.org/10.3390/rs8040329
http://dx.doi.org/10.1016/j.isprsjprs.2017.05.002


Remote Sens. 2017, 9, 1106 17 of 18

24. Kussul, N.; Lavreniuk, M.; Skakun, S.; Shelestov, A. Deep Learning Classification of Land Cover and Crop
Types Using Remote Sensing Data. IEEE Geosci. Remote Sens. Lett. 2017, 14, 778–782. [CrossRef]

25. Mnih, V. Machine Learning for Aerial Image Labeling. Ph.D. Thesis, University of Toronto, Toronto, ON,
Canada, 2013.

26. Luus, F.P.S.; Salmon, B.P.; Van Den Bergh, F.; Maharaj, B.T.J. Multiview Deep Learning for Land-Use
Classification. IEEE Geosci. Remote Sens. Lett. 2015, 12, 2448–2452. [CrossRef]

27. Castelluccio, M.; Poggi, G.; Sansone, C.; Verdoliva, L. Land Use Classification in Remote Sensing Images by
Convolutional Neural Networks. arXiv 2015; 1–11, arXiv:1508.00092.

28. Ševo, I.; Avramović, A. Convolutional Neural Network Based Automatic Object Detection on Aerial Images.
IEEE Geosci. Remote Sens. Lett. 2016, 13, 740–744. [CrossRef]

29. Marmanis, D.; Datcu, M.; Esch, T.; Stilla, U. Deep Learning Earth Observation Classification Using ImageNet
Pretrained Networks. IEEE Geosci. Remote Sens. Lett. 2016, 13, 105–109. [CrossRef]

30. Volpi, M.; Tuia, D. Dense semantic labeling of sub-decimeter resolution images with convolutional neural
networks. IEEE Geosci. Remote Sens. Lett. 2017, 55, 881–893. [CrossRef]

31. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; The MIT Press: Cambridge, MA, USA, 2016.
32. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.

In Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS),
Sardinia, Italy, 13–15 May 2010; Volume 9, pp. 249–256.

33. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the
27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–25 June 2010; pp. 807–814.

34. Kivinen, J.J.; Williams, C.K.I. Transformation equivariant Boltzmann machines. In Lecture Notes Computer
Science(LNCS) (Including Its Subseries Lecture Notes Artificial Intelligence and Lecture Notes in Bioinformatics);
Springer: Berlin/Heidelberg, Germany, 2011; Volume 6791, pp. 1–9.

35. Zeiler, M.D.; Fergus, R. Stochastic pooling for regularization of deep convolutional neural networks.
arXiv 2013, arXiv:1301.3557.

36. Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proceedings of COMPSTAT’2010;
Springer: Cham, Swizerland, 2010; pp. 177–186.

37. LeCun, Y.A.; Bottou, L.; Orr, G.B.; Müller, K.-R. Efficient BackProp. In Neural Networks: Tricks of the Trade,
2nd ed.; Montavon, G., Orr, G.B., Müller, K.-R., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 9–48.

38. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent
Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

39. Sliuzas, R.V.; Hill, A.; Lindner, C.; Greiving, S. Dar es Salaam Land Use and Informal Settlement Data Set;
NASA Socioe: Palisades, NY, USA, 2016.

40. Sliuzas, R.V. Managing Informal Settlements: A Study Using Geo-Information in Dar es Salaam, Tanzania.
Ph.D. Dissertation, Utrecht University, Utrecht, The Netherlands, 2004.

41. Theano Development Team. Theano: A {Python} framework for fast computation of mathematical
expressions. arXiv 2016, arXiv:1605.02688.

42. R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.r-
project.org/ (accessed on 23 October 2017).

43. Rossum, G. Python Reference Manual; CWI (Centre for Mathematics and Computer Science): Amsterdam,
The Netherlands, 1995.

44. Farabet, C.; Couprie, C.; Najman, L.; Lecun, Y. Learning hierarchical features for scene labeling. IEEE Trans.
Pattern Anal. Mach. Intell. 2013, 35, 1915–1929. [CrossRef] [PubMed]

45. Bruzzone, L.; Persello, C. Handbook of Pattern Recognition and Computer Vision. In Handbook of Pattern
Recognition and Computer Vision; Chen, C.H., Ed.; World Scientific: Singapore, 2010; pp. 329–352.

46. Ojala, T.; Pietikäinen, M.; Mäenpää, T. A generalized local binary pattern operator for multiresolution gray
scale and rotation invariant texture classification. Adv. Pattern Recognit. 2001, 2013, 399–408.

47. Ojala, T.; Pietikäinen, M.; Mäenpää, T. Multiresolution gray-scale and rotation invariant texture classification
with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 2002, 24, 971–987. [CrossRef]

48. Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data.
Remote Sens. Environ. 1991, 37, 35–46. [CrossRef]

49. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef] [PubMed]

http://dx.doi.org/10.1109/LGRS.2017.2681128
http://dx.doi.org/10.1109/LGRS.2015.2483680
http://dx.doi.org/10.1109/LGRS.2016.2542358
http://dx.doi.org/10.1109/LGRS.2015.2499239
http://dx.doi.org/10.1109/TGRS.2016.2616585
https://www.r-project.org/
https://www.r-project.org/
http://dx.doi.org/10.1109/TPAMI.2012.231
http://www.ncbi.nlm.nih.gov/pubmed/23787344
http://dx.doi.org/10.1109/TPAMI.2002.1017623
http://dx.doi.org/10.1016/0034-4257(91)90048-B
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://www.ncbi.nlm.nih.gov/pubmed/26353135


Remote Sens. 2017, 9, 1106 18 of 18

50. Zeiler, M.D.; Fergus, R. Visualizing and Understanding Convolutional Networks. In Computer Vision–ECCV
2014; Springer: Cham, Swizerland, 2014; Volume 8689, pp. 818–833.

51. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition.
CoRR 2014.

52. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models.
In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June
2013; Volume 28, p. 6.

53. Kohli, D.; Stein, A.; Sliuzas, R. Uncertainty analysis for image interpretations of urban slums. Comput. Environ.
Urban Syst. 2016, 60, 37–49. [CrossRef]

54. Marconcini, M.; Esch, T.; Chrysoulakis, N.; Düzgün, H.S.; Tal, A.; Forth, T.H.; Aviv, T. Towards EO-based
sustainable urban planning and management. In Proceedings of the 2013 IEEE International Geoscience and
Remote Sensing Symposium (IGARSS), Melbourne, Australia, 21–26 July 2013; pp. 4273–4276.

55. Sliuzas, R. Opportunities for enhancing communication in settlement upgrading with geographic
information technology-based support tools. Habitat Int. 2003, 27, 613–628. [CrossRef]

56. Ward, P.M. Housing rehab for consolidated informal settlements: A new policy agenda for 2016 UN-Habitat III.
Habitat Int. 2016, 50, 373–384. [CrossRef]

57. Hasan, A. Orangi Pilot Project: The expansion of work beyond Orangi and the mapping of informal
settlements. Environ. Urban. 2006, 18, 451–480. [CrossRef]

58. Karanja, I. An enumeration and mapping of informal settlements in Kisumu, Kenya, implemented by their
inhabitants. Environ. Urban. 2010, 22, 217–239. [CrossRef]

59. Abbott, J. An analysis of informal settlement upgrading and critique of existing methodological approaches.
Habitat Int. 2002, 26, 303–315. [CrossRef]

60. Marais, L.; Ntema, J. The upgrading of an informal settlement in South Africa: Two decades onwards.
Habitat Int. 2013, 39, 85–95. [CrossRef]

61. Musakwa, W.; Niekerk, A. Van Implications of land use change for the sustainability of urban areas: A case
study of Stellenbosch, South Africa. Cities 2013, 32, 143–156. [CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.compenvurbsys.2016.07.010
http://dx.doi.org/10.1016/S0197-3975(03)00008-0
http://dx.doi.org/10.1016/j.habitatint.2015.08.021
http://dx.doi.org/10.1177/0956247806069626
http://dx.doi.org/10.1177/0956247809362642
http://dx.doi.org/10.1016/S0197-3975(01)00049-2
http://dx.doi.org/10.1016/j.habitatint.2012.11.001
http://dx.doi.org/10.1016/j.cities.2013.01.004
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Method 
	CNN Building Blocks 
	Adopted Architecture 

	Experimental Set-Up 
	Data 
	Training Hyperparameters 
	Spatial Feature Learning Hyperparameters 
	Baseline Method: SVM with GLCM Features and LBP Features 
	Size of the Training and Test Set 

	Results and Analysis 
	Spatial Feature Learning Hyperparameters 
	Size of the Training Set 
	Classification Results 
	Visualization of Feature Maps 

	Discussion 
	Conclusions 

