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Abstract: Information about the location and extent of informal settlements is necessary to guide
decision making and resource allocation for their upgrading. Very high resolution (VHR) satellite
images can provide this useful information, however, different urban settlement types are hard to
be automatically discriminated and extracted from VHR imagery, because of their abstract semantic
class definition. State-of-the-art classification techniques rely on hand-engineering spatial-contextual
features to improve the classification results of pixel-based methods. In this paper, we propose
to use convolutional neural networks (CNNs) for learning discriminative spatial features, and
perform automatic detection of informal settlements. The experimental analysis is carried out on a
QuickBird image acquired over Dar es Salaam, Tanzania. The proposed technique is compared against
support vector machines (SVMs) using texture features extracted from grey level co-occurrence matrix
(GLCM) and local binary patterns (LBP), which result in accuracies of 86.65% and 90.48%, respectively.
CNN leads to better classification, resulting in an overall accuracy of 91.71%. A sensitivity analysis
shows that deeper networks result in higher accuracies when large training sets are used. The study
concludes that training CNN in an end-to-end fashion can automatically learn spatial features from
the data that are capable of discriminating complex urban land use classes.

Keywords: image classification; informal settlements; convolutional neural networks; deep learning;
very high resolution satellite imagery

1. Introduction

Rapid urbanization has led to the proliferation of informal settlements in developing countries.
While a clear definition of what constitutes an informal settlement is missing, it usually refers to an
area where the land tenure is not recognized by the public authorities [1], and a neighborhood where
the residents have sub-standard housing and insufficient basic services [2]. Several terms have been
used to allude to informal settlements in urban contexts around the world, for example “squatter
settlements”, “favelas”, “shacks”, “bajos”, “bidonvilles” and “slums” [3]. Informal settlements usually
contain unplanned settlements that are developed disregarding zoning, land use plans and service
allocation [4,5]. There is a shortage of spatial information regarding such informal settlements, which is
necessary for decision making and planning the activities for their improvement. Informal settlements
grow fast, and mostly cover large extents in an urban area, or in some instances form scattered pockets
within formal settlement areas. There is a need for classification methods that are able to provide
spatial information in a timely and accurate way [6].

The availability of very high resolution (VHR) satellite images has provided the capability to
acquire spatial information about informal settlements. The advantage of these images is that they
cover a wide geographical area, and enable characterization of urban settlement types based on
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their morphological characteristics. Informal settlements mostly comprise small, clustered buildings
and little vegetation, whereas formal areas consist of larger buildings arranged in a regular spatial
pattern and vegetation [7]. Two issues are important: (i) a high spatial resolution implies high
within-class variance and low between-class variance and (ii) urban settlement types, such as informal
settlements, are associated with a higher level of semantic abstraction as opposed to land cover classes.
The extraction of spatial-contextual features is thus needed to improve the classification of VHR images
to obtain the desired land use classes [8,9]. While spatial information refers to the spatial arrangement
of spectral information in a scene, contextual information describes the information extracted from a
neighborhood of a particular pixel in the image [10].

Standard methods for extracting spatial-contextual features based on hand-engineering have
been used for the detection of informal settlements from VHR images. These include morphological
profiles [11], GLCM features [12] and lacunarity [13]. Moreover, a comparison of various texture
features such as local binary patterns (LBPs), histogram of oriented gradients (HOGs) and line support
regions (LSRs), among others, is done in [14,15]. A limitation is that extraction of a specific feature
depends on the particular technique used and that their performance on the data is not known
beforehand. In addition, they have free parameters that need to be optimized by a user through trial
and error [16]. In this work, we propose to use CNNs to automate the extraction of spatial-contextual
features by learning them directly from the data [17].

CNNs are artificial neural networks that learn spatial-contextual features in several hierarchical
nonlinear layers [17]. They have been studied widely for computer vision and speech recognition
tasks [18]. CNNs have performed well in multimedia image classification, such as in the ImageNet
LSVRC-2010 contest [19] and in computer vision benchmarks [20]. In recent times, there have been
some applications in land cover classification from satellite imagery [9,21–25], as well as in land use
classification [26–29]. Land use classes, such as informal settlements, are more complex because they
can contain more than one type of land cover, at different scales and orientations.

The aim of this work is to investigate deep CNNs to detect informal settlements from VHR
satellite imagery. Using a QuickBird image acquired over Dar es Salaam, Tanzania, the CNN was
trained in an end-to-end way and its performance of using learned spatial-contextual features was
analyzed. The results were then compared with the performance of state-of-the-art classifier relying
on hand-engineered features. The remainder of the paper is organized as follows: Section 2 describes
the adopted methods, Section 3 describes the experimental set up, Section 4 the results and analysis,
Section 5 the discussion and Section 6, the conclusion.

2. Method

2.1. CNN Building Blocks

We developed and optimized a dedicated CNN based on the general architecture shown
in Figure 1. The architecture consists of g convolutional layers responsible for learning the
spatial-contextual features from the image, and t fully connected layers that derive the discriminative
function using softmax activations. During the training phase, patches with a fixed size are used as
input to the CNN to learn the information class of the central pixel of the patch [19]. At inference
time, a sliding window produces a pixel-wise classification map [9]. The size of the sliding window is
determined by the size of the input patches used during the training.

CNNs make use of convolutions in at least one of their layers. A convolutional layer contains k
filters of size h× h× b, where h is the height and width of the filter and b is the number of input bands.
The first convolutional layer performs a convolution over the 3-D input volume of dimension m×m× b,
where m defines the spatial dimension of the patch. The output of the convolutional layer has a
dimension of m−k+2z

s × m−k+2z
s × k, where z is the number of zeros used to pad the input, k is the

dimension of the response activations, and s is the stride of the convolution, i.e., the number of steps
by which the filter is shifted during the convolution.
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Zero padding consists adding a number of rows and columns of zeros to the border of the input
image patch to control the size of the obtained feature map. In the convolutional layers, using a filter
with a size less than the input reduces the number of connections, hence the number of parameters
when determining the output. Moreover, the same set of weights is learned for each location in the
input image for a particular convolutional layer, resulting in parameter sharing [30].

The response activations from a convolutional layer are linear in nature. They are passed through
a nonlinear activation function, resulting in a nonlinear transformation. Saturating nonlinearities such
as the hyperbolic tangent, f (x) = tan h(x) and the sigmoidal function, f (x) = (1 + e−x) suffer
from the vanishing gradient problem [31,32]. This means that during training, the gradient of
the output of the network with respect to its parameters tend to remain extremely small even if
inputs with a large magnitude are used, thereby the learning algorithm lacks the guide to update the
parameters. Un-saturating nonlinear activations such as the rectified linear unit (RELU) are robust
to this problem [32]. RELU is given as f (x) = max(0, x) and is useful in optimizing models that
are gradient based because they remain mostly linear. Faster training of networks is observed if
RELU nonlinearity is used as compared to saturating units such as the hyperbolic tangent and the
sigmoidal function [33].

Pooling is the use of summary statistics of adjacent outputs in a feature map to determine the
activations to be propagated to the subsequent layer. It results in rotationally and translationally
invariant features [34]. For a window of size p× p, average pooling returns the arithmetic mean of
signals in the window whereas maxpooling returns the dominant signal in that window. The stride of a
pooling layer refers to the number of steps between two subsequent pooling windows. Pooling with a
stride s > 1 results into downsampling with a factor s. Pooling with downsampling reduces the spatial
dimension of the output [35]. Effectively, the computation cost decreases. Also, the receptive field
of the subsequent convolutional layers increases as more convolutional layers with down-sampling
are used.

The output of the final convolutional layer is flattened to a vector containing the extracted features
and fed into the fully connected layer with l neurons. The output of the last fully connected layer is
normalized using a softmax activation function. It has c units, representing the number of classes and
gives the class distribution scores for each label yi expressed as:

p(yi|xi) =
exp(xi)

∑c
j=1 exp

(
xj
) (1)
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where xi is an input vector representing the un-normalized scores for the sample i for i = 1 . . . c.
The parameters of the network are determined by means of supervised training by minimizing the
negative log likelihood over the training data. The loss function is equal to:

L(w) = − 1
N

N

∑
n=1

C

∑
c=1

ync log(ŷnc) (2)

where w represents the weights (i.e., the parameters of the network), ync is the vector of the true
labels and ŷnc is the vector of the predicted labels for a training set comprising of N samples. The loss
function quantifies the misclassification by comparing ync and ŷnc for N training samples. The CNN
is trained using stochastic gradient descent (SGD) with momentum α and learning rate ε from a
small subset of training data called a mini-batch [36]. The decay learning rate, εd is used to model
the random noise introduced by the SGD that is present even after the loss function is minimized.
These parameters influence the ability of the SGD to minimize the loss function [31]. The parameters of
the network, w are learned using backpropagation with SGD. The weights are updated in Equation (3)
while the learning rate is updated using Equation (4):

∆w(τ) = −ε(τ)
∂Lτ

∂w
+ α∆w(τ − 1) (3)

ε(τ) =
ε0

1 + εdτ
(4)

where ∆w are the weight updates, ∂Lτ
∂w are the partial derivatives, and ε0 is the initial learning rate.

τ and τ − 1 represent the current and previous epochs of the training phase [9,37].
During training, the CNN is likely to overfit because of limited training data. One way to mitigate

this is by means of dropout, where a percentage dr of the neurons and their connections is turned
off [38]. A second way is to use early stopping: the algorithm is run until the error on the validation
set does not improve for a given number of epochs, en. A third way is to penalize the parameters
deviating from zero. The resulting cost function after adding `2-norm regularization is given as:

L1(w) = L(w) + λ ‖ w ‖2
2 (5)

where λ is the regularization parameter, and ‖ w ‖2 is the `2-norm of the weight vector.

2.2. Adopted Architecture

Our proposed network comprises convolutional layers, fully connected layers and a softmax
classification layer. In each convolutional layer, a series of operations is performed on the input:
(i) a 2-D convolution, (ii) point-wise nonlinear transformation using RELU and (iii) maxpooling with
subsampling. A schematic overview of a convolutional layer of the proposed CNN architecture is
shown in Figure 2.
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The fully connected layers summarize the learned features and the softmax activation gives the
distribution of scores for each class. We carried out experiments varying the structure of the network.
An overview of the hyperparameters is presented in Table 1. The training hyperparameters are kept
constant while different values of the spatial feature learning hyperparameters are tried.

Table 1. Overview of CNN hyperparameters.

Training Hyperparameters Spatial Feature Learning Hyperparameters

Learning rate, ε Patch size, m
Momentum, α Convolutional layers, g

Learning rate decay, εd Fully connected layers, t
Early stopping patience, Number of filters, k

Maximum number of epochs, en Filter size, h
Weight decay, λ
Dropout rate, dr

3. Experimental Set-Up

3.1. Data

We use a QuickBird image acquired over Dar es Salaam, Tanzania, acquired in 2007 (Figure 3)
for the experiments. The city of Dar es Salaam is considered because about 80% of its buildings are
located in informal areas, and 80% of the residents of Dar es Salaam live in informal areas [1].
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The multispectral image is pan-sharpened with a spatial resolution of 0.60 m. It has four bands,
namely, blue, green, red and near infrared. A reference land use vector map prepared in 2004 is
available [39,40], and has four classes: “informal”, “formal”, “other urban” and “agricultural”. It was
used, together with visual image interpretation, to prepare the reference data to be used in the
experiments. To carry out a binary classification, a class “other” was created by combining the last
three classes, while maintaining the “informal” class. This was done to evaluate the ability of the
classifier to distinguish the “informal” settlement class from all other urban classes. Three tiles of
2000 × 2000 pixels, covering an area of 1.2 × 1.2 km on the ground were used. The raw image tiles
and the corresponding reference data are presented in Figure 4.
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Figure 4. Raw QuickBird images of Dar es Salaam, Tanzania, and the corresponding reference data for
Tile 1, Tile 2 and Tile 3 prepared by means of visual image interpretation. Each tile covers an area of
1.2 × 1.2 km on the ground.

The Theano deep learning framework and the Keras library were used for designing the CNN,
Python language for programming and R for extracting GLCM features [41–43].

3.2. Training Hyperparameters

The rate at which the SGD converges, and whether it is at an optimal solution is influenced by
the training hyperparameters. Preliminary experiments using a subset of 500 × 500 pixels showed a
stable classification accuracy upon varying these hyperparameters. The hyperparameter values kept
constant during the CNN experiments are: ε = 0.001, α = 0.9, εd = 0.001, en = 50, λ = 0.0001. A dropout
rate, dr = 0.5 is used in the fully connected layers. The CNN configuration is shown in Table 2.

Table 2. CNN configuration.

Parameters Values

Layers 1 I − (C – A – P − D1) × g − (F−D2) × t − O
Nonlinearity used in A and F RELU

Nonlinearity used in O softmax
Pooling size 2
Width of F 128

1 Layer Notation: I = input, C = convolutional layer, A = Activation function, P = pooling, F = fully connected layer
and O = output. The convolutional stride is 1.
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A mini-batch size of 128 is used. Weights are initialized using normalized initialization [32].
We exclude m

2 − 1 border pixels from all sides of the tile when selecting samples during training and
testing, where m is the patch size in pixels. This is to avoid likely misclassification resulting from
padding the border pixels with zeros when selecting the samples.

3.3. Spatial Feature Learning Hyperparameters

We investigate spatial feature learning hyperparameter values for an optimally designed CNN.
They include the patch size, m = [65, 99, 129, 165], the number of convolutional layers, g = [2, 3, 4]
the number of the fully connected layers, t = [1, 2, 3], the number of the filters, k = [8, 16, 32, 64] and
the kernel dimension, h = [7, 17, 25]. We keep the patch size constant at m = 99 while optimizing the
hyperparameters in order to keep a low computational cost. The network is trained using SGD over a
sample set of size 2160. The accuracy is calculated using an independent test set drawn from the three
tiles. A summary of the experimental values is presented in Table 3.

Table 3. A summary of the values used in CNN hyperparameter optimization. The columns represent
the experiment carried out. The main diagonal shows the values tried.

Parameters Patch Size m Convolutional Layers g Fully Connected t Number of Filters k Filter Size h

Patch size m (65,99,129,165) 99 99 99 99

Convolutional layers g 2 (2,3,4) 2 2 2

Fully connected 1 1 (1,2,3) 1 1

Number of filters k 8 8 8 (8,16,32,64) 8

Filter size h 7 7 7 7 (7,17,25)

Spatial feature learning hyperparameters affect the quality of the spatial-contextual features
that are automatically extracted during training. The patch size defines the size of area from which
contextual information is derived and influences the assigned label [44]. The number of kernels
(filters) denotes the variety of spatial patterns that can be learned to distinguish the land use classes.
The dimension of the kernel defines the size of the patterns considered when distinguishing between
classes of interest. Fully connected layers make use of all the features in the previous convolutional
layers to derive the final classification rule [9].

3.4. Baseline Method: SVM with GLCM Features and LBP Features

As a comparison, we use SVM with RBF kernel making use of GLCM features. Spatial contextual
features are extracted from the GLCM and used in the classification [10]. GLCM variance was shown
to be useful in the detection of informal settlements in [12] and is obtained as:

f = ∑
i

∑
j
(i− µ)2 p(i, j) (6)

where p(i, j) is the (i, j)th entry in a normalized gray-tone spatial dependence matrix, i and j are gray
tones of neighboring pixels. The average of GLCM variance extracted over four directions is used
for window size, ws = [65, 99, 129, 165]. SVM classifiers maximize the margin between the classes
while minimizing the training error. It is characterized by high generalization ability (i.e., smaller error
on the independent test set) and high classification accuracy [45]. For training the SVM, we use hold
out cross validation to determine the regularization parameter C from 1 to 103 and the spread of the
RBF kernel Υ from 10−4 to 1 which are logarithmically spaced. The number of border pixels excluded
from an image tile is given by ws

2 − 1 where ws is the window size in pixels. During GLCM extraction,
the border pixels are padded with zeros, likely resulting to misclassification.

LBP features [46] are extracted and used for comparison, since it was demonstrated in [14] that
they could lead to a high accuracy in the classification of urban settlements. Let us define a set of
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interpolation points (pixels) P, lying on a circle of radius R. The gray levels of these points is gp,
while that of the center of the circle is gc. Binary LBP codes are calculated by obtaining the difference
between the gray level of the points on the circle and the gray level of the point at its center. A value
of 1 is assigned when the difference is positive and 0 when the difference is negative giving a binary
sequence illustrated as:

T = t(s(g0 − gc), s(g1 − gc), . . . , (gP−1 − gc)) (7)

where

s(x) =

{
1, x ≥ 0
0, x < 0

(8)

By assigning a binomial factor 2p for each sign s
(

gp − gc
)
, a unique LBPP,R number is obtained

that characterizes the local image texture and is defined as:

LBPP,R =
P−1

∑
p=0

s
(

gp − gc
)
2p (9)

A histogram of uniform features is computed over a local window of rotation invariant features
and is defined in [47] as:

LBPriu2
P,R =


P−1
∑

P=0
s
(

gp − gc
)
, U(LBPP,R) ≤ 2

P + 1 , otherwise
(10)

where

U(LBPP,R) =
∣∣s(gp−1 − gc

)
− s(g0 − gc)

∣∣+ P−1

∑
p=1
ds
(

gp − gc
)
− s
(

gp−1 − gc
)
e (11)

The histogram of features is used as the final feature vector. For more information about
LBP, we refer the readers to [47]. In this work, LBP features are extracted using R = 3, and P = 8.
The histogram of uniform features is computed from the LBP codes using a window of 165× 165 pixels.

3.5. Size of the Training and Test Set

The size of the training set affects optimal determination of the CNN parameters. Three different
training sets of size 1080, 2160 and 3060 were obtained through stratified random sampling based on
the frequency of the classes. A patch of size 165 was used because it facilitated the testing of a deep
CNN. The convolutional layers were varied between two and six and each had eight kernels with a
dimension of 7 × 7. Each training sets is drawn from the three reference maps by stratified random
sampling based on the frequency of the two classes. The test set is obtained from the reference maps
by excluding training pixels. The resulting number of test pixels used to compute the classification
accuracy is equal to 10,116,974. Visual quality assessment of the classified maps is also carried out.

4. Results and Analysis

4.1. Spatial Feature Learning Hyperparameters

In Figure 5a, the analysis of the effect of the patch size shows that high classification accuracy is
achieved when a large contextual window is used. Using m = 129 results to an accuracy of 83.29%.
This is according to the expectations, because a large contextual neighborhood is needed to discriminate
the two abstract land use classes. A decrease in accuracy to 82.87% for m = 165 is because of the limiting
factor of using a fixed training sample set of 2160, while the number of parameters grows. It is observed
from Figure 5b that using more convolutional layers increases the classification accuracy. Using more
layers increases the level of abstraction of the features learned from simple to more complex features.
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Figure 5. Results of the spatial feature learning hyperparameter optimization for (a) patch size,
(b) convolutional layers, (c) fully connected layers, (d) number of kernels and (e) dimension of kernels.

The designed CNN has a pooling layer with subsampling with a factor of two. The spatial
resolution of the feature maps is reduced by two after each convolutional layer. This results in fewer
parameters because the number of connections in the fully connected layers is effectively reduced.
As seen in Figure 5c, varying the number of fully connected layers has a less significant impact on the
classification accuracy.

In Figure 5d, there is a slight decrease in the classification accuracy that is attributed to an increase
in the number of parameters as the number of kernels increases. The slight drop is because a larger
variety of informative features which contribute to better discrimination of the classes are learnt.
A large kernel implies a large receptive field. Consequently, the number of parameters to be optimized
by the model during training increases. We observe in Figure 5e that increasing h causes a decrease of
2.5% in accuracy. This is due to an increase in the number of parameters if a large filter dimension
is used.

The number of the convolutional layers and the patch size were the most sensitive
hyperparameters in our experiments. We also observed that the size of the training set was a
limiting factor. Therefore, an experiment to determine the relationship between varying the number of
convolutional layers against a training sample was carried out.

4.2. Size of the Training Set

In Figure 6, it is observed that the accuracy increases when more convolutional layers are used.
When the number of training samples is small, the classification accuracy saturates at a lower number
of convolutional layers. This can be attributed to overfitting of the model as its capacity becomes
large. The highest classification accuracy is attained when five convolutional layers are used and
with a corresponding training set of 3060. A deeper network can reach higher accuracy by learning
discriminative features when trained with large training sets. However, a large training sample is
accompanied by more training time [31].
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4.3. Classification Results

The classification results from SVM, SVM + GLCM, SVM + LBP and CNN (for g = 2, 3, 4, 5, 6)
using a training sample size of 3060 are compared in Table 4. GLCM features extracted using a window
size of 165 provided the highest classification accuracy with SVM. Classification relying on spectral
features alone results in a low classification accuracy. Addition of spatial-contextual features causes an
increase in classification accuracy as seen in SVM + GLCM, SVM + LBP and CNN. Performance of the
CNN increases with each addition of a convolutional layer, with the highest classification accuracy
being provided by CNN-5. We note that CNN-2 has a lower accuracy than SVM + GLCM. Adding
one layer, CNN-3 results in a higher classification accuracy for Tile 2 and Tile 3 only. For g = 4, 5
or 6, CNN outperforms SVM + GLCM. When g = 6, there is a slight drop in the overall accuracy in
Tile 1 and Tile 2 of 0.32% and 0.47% respectively, whereas the classification accuracy of Tile 3 increases
by 0.26%. CNN-5 results in more than 10% gain over SVM + GLCM in overall accuracy for Tile 3.
The classification accuracy of CNN is consistent across the three tiles as opposed to SVM + GLCM.
SVM + LBP performs better in Tile 1, Tile 2 and Tile 3 as compared to SVM + GLCM. In addition, it has
a high classification accuracy as close to CNN-4, CNN-5 and CNN-6.

Table 4. Comparison of classification accuracies of Support Vector Machines (SVM), SVM + Grey Level
Co-Occurrence Matrix (SVM + GLCM), SVM + Local Binary Patterns (SVM + LBP) and Convolutional
Neural Networks (CNN). Overall Accuracy (OA) computed across the three tiles is also provided.

Tile ID SVM SVM + GLCM SVM + LBP CNN-2 CNN-3 CNN-4 CNN-5 CNN-6

Tile 1 59.48 91.99 90.77 88.06 89.60 92.48 93.05 92.73
Tile 2 78.61 88.40 90.49 88.33 90.11 91.28 92.24 91.77
Tile 3 68.45 79.40 90.18 82.57 87.20 87.78 89.85 90.11
OA 68.84 86.60 90.48 86.32 88.97 90.51 91.71 91.53

Figure 7 presents the classified maps for SVM, SVM + GLCM, SVM + LBP and CNN. Results for
CNN-2 and CNN-5 are shown. The columns represent Tiles 1, 2 and 3. The first row shows the ground
reference maps while the subsequent rows show the results of SVM using spectral features, SVM with
GLCM, SVM with LBP, CNN-2 and CNN-5.
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Figure 7. Classification maps from SVM, SVM relying on GLCM features, SVM relying on LBP features
and CNN for Tile 1, Tile 2 and Tile 3.

From Figure 7, we observe that maps of SVM using spectral features alone cannot reliably
distinguish the two abstract land use classes. The maps where spatial-contextual features have been
used have a higher accuracy. The boundary definition is much smoother in CNN-5 as compared
to CNN-2. Furthermore, CNN-5 has less noisy classified maps than CNN-2 and some of the
misclassification in the northwestern corner of Tile 3 is reduced. From Tile 3, it is evident that the extent
of the informal settlement is better captured by CNN approach as opposed to SVM + GLCM approach.
We observe that spatial-contextual features that are learned by CNN are capable of discriminating
informal settlements from other urban settlement types.
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In Figure 8, the northeastern corners of both Tiles 2 and 3 are highlighted. In the input images,
these areas are open fields lying within areas of informal settlements. The pixels have been classified
as “formal”, whereas their corresponding label in the reference image is “informal”. This has an effect
on the accuracy assessment.
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Table 5 reports user’s accuracy (UA) and producer’s accuracy (PA) [48] computed from the
combined confusion matrices of tile 1, tile 2 and tile 3. We observe that CNN-5 has higher accuracy for
both “informal” and “other” classes. In the “informal” class, CNN-5 has a PA of 91.40% and a UA of
88.22%, whereas SVM + GLCM has a PA of 90.44% and a UA of 75.63%, and SVM + LBP has a PA of
92.37% and a UA of 83.87%.

Training CNN from scratch using a patch size of m = 165 takes an average time of four hours when
training, and spatial feature learning hyperparameters are kept constant using an NVDIA Quadro
K2200 4GB GPU. The extraction of LBP and GLCM features takes an average time of two hours.
While CNN is computationally intensive compared to SVM + GLCM or SVM + LBP, it enables the
spatial-contextual features to be learned automatically in an end-to-end fashion.

Table 5. Accuracy assessment for the methods SVM, SVM + GLCM and CNN computed by combining
the confusion matrix of Tile 1, Tile 2 and Tile 3.

Approach Overall Accuracy (%) Class
Accuracy (%) Error (%)

User Producer Commission Omission

SVM 68.84
Informal 40.61 71.60 59.39 28.40

Other 88.68 68.00 11.32 32.00

SVM + GLCM 86.60
Informal 75.63 90.44 24.37 9.56

Other 94.39 84.65 5.61 15.35

SVM + LBP 90.48
Informal 83.87 92.37 16.13 7.63

Other 95.13 89.35 4.87 10.65

CNN-2 86.32
Informal 84.71 84.71 15.29 15.29

Other 87.38 87.37 12.62 12.63

CNN-3 88.97
Informal 81.56 91.38 18.44 8.62

Other 89.66 87.58 10.34 12.42
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Table 5. Cont.

Approach Overall Accuracy (%) Class
Accuracy (%) Error (%)

User Producer Commission Omission

CNN-4 90.51
Informal 85.29 91.14 14.71 8.86

Other 94.17 90.11 5.83 9.89

CNN-5 91.71
Informal 88.22 91.40 11.78 8.60

Other 94.17 91.92 5.83 8.08

CNN-6 91.53
Informal 87.70 91.43 12.30 8.57

Other 94.22 91.60 5.78 8.40

4.4. Visualization of Feature Maps

Figure 9 visualizes the feature maps extracted by the CNN to explain why the CNN performs
better. The visualization demonstrates that the lower layers detect basic features such as edges,
whereas the higher layers evolve to detect more complex features. The CNN feature maps indicate
regions and patterns of the input image that produce activations in the network. A feature map is
generated when a filter with learned weights is applied to the input image. Higher values in the
feature maps correspond to regions of strong activations in the input image [49,50]. The displayed
feature maps were generated by upsampling the actual feature maps, using bilinear resampling,
to the original size of the input image to enhance the visualization process. We visualize the features
from CNN-5 when tile 1 is used as an input. The rows indicate the eight feature maps that are
generated after each of the convolutional layers (represented by the columns). In the 1st and 2nd
layers, edges are more prominent (see Row 2, Column 1; Row 2, Column 2; Row 4, Column 1).
In the higher layers, the feature maps are class specific and regions with informal settlements can be
observed for example in (Row 3, Column 4; Row 3, Column 5; Row 5, Column 5). The lower layers
of the CNN detect low level features while the higher layers detect more abstract features related to
the semantic classes. Our experiments demonstrate that deep architecture can learn discriminative
hierarchical spatial features. Intermediate layers distinguish the local information well, whereas the
higher layers better discriminate the semantics classes. Indeed, in the highest layers, we observe
that high values correspond to areas where the network detects the presence of informal settlements,
while low activations corresponds to the class “other”.
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Figure 9. An illustration of eight feature maps for tile 1, derived from a CNN with five layers for each
of the layers. The feature maps are upsampled through bilinear interpolation to attain a resolution of
2000 × 2000 pixels for visualization. High values are obtained where there is a strong response in the
activations as the filter convolves over the input image.

5. Discussion

In this research, we investigated the use of CNN for the detection of informal settlements.
CNN hyperparameter optimization experiments show that the depth of the network and the patch
size have a significant influence on the network accuracy. A deep network allows for a hierarchy of
useful spatial-contextual features to be learnt [51]. Deep networks are able to effectively look into
a larger area of the input image as opposed to shallow networks, because the effective size of the
receptive field of successive convolutional layers increases as the number of convolutional layers
increase [31]. A large patch size allowed the extraction of spatial-contextual information from a large
window. The optimal values of the CNN hyperparameters is guided by the particular classification
task. We observed the importance of the training set size. Using a large training set is necessary to learn
complex features and obtaining high generalization ability. In this work, training samples are derived
from three tiles that contain informal settlements with different characteristics. Accuracy assessment
across the three tiles showed that CNN is promising with regard to generalisation in the detection
of informal settlements. Presently, urban settlements have a heterogeneous appearance based on
their geographical location [12]. It would be desirable to have a method that is transferrable to detect
informal settlements regardless of their location around cities in rapidly developing countries.

Visually, the quality of maps classified by CNN appear quite regular as shown in Figure 7.
Nonetheless, the presence of islands in the classified maps could have been smoothened by using
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simple post-processing. Here, we do not perform post-classification as we aimed to use CNN in an
end-to-end fashion, from raw pixels to desired classes. We were able to visualize our CNN in order
to gain an insight of the learned features. While most neurons were able to specialise, there were
examples of some that failed to specialise as seen in (Row 1, Column 2; Row 8, Column 5) in Figure 9.
This is due to the limitation of those RELU units which have zero gradient when inactive, which makes
it impossible to adjust their weights during training [52]. Visualizing a trained CNN is also important
because it can give insight into its design, for example, on the choice of the number of convolutional
layers or dimension of kernel [50].

SVM + GLCM provided competitive results and the utility of GLCM features for the detection of
informal settlements evident as shown in [12]. Similarly, LBP features are also useful for the detection
of informal settlements as described in [14]. CNN showed the capability to learn spatial-contextual
features directly from the input image, rather than hand-engineering. The high classification accuracy
and visual quality of the maps demonstrate that CNNs are useful for the detection of informal
settlements from VHR imagery.

Some uncertainties and inaccuracies in the classified maps were shown in Figure 8. The difficulty
in correctly classifying these areas can be a result of an area having morphological characteristics of
formal settlements, yet occurring within an informal settlement. Some work on evaluating uncertainty
in image interpretation of informal settlements has been done in [53]. Nonetheless, the quantification
of the magnitude and nature of these uncertainties could be evaluated in future studies.

Classified land use maps indicate the location and extent of informal settlements in a study
area. This information is necessary to support decision making, planning and management of urban
areas [54]. For instance, maps of informal settlements could be used to guide government and
municipalities to properly allocate funding and resources for upgrading projects [55]. The upgrading
process aims to improve social, organisational and environmental aspects of an informal settlement [56].
Maps can be used for planning specific interventions such as building new roads and infrastructures
for access to clean water and sanitization [57,58]. In some situations, maps could be used to decide
whether a slum should be eradicated and people moved to a more appropriate part of the city [59].
In addition, the resulting land use maps are useful in evaluating the sustainability in land use, land
cover changes and transition when considered over a time series [60,61].

6. Conclusions

Our experiments showed that classification of VHR images using spectral features alone has a low
accuracy and poor quality of maps. When spatial-contextual features are added, a high classification
accuracy is obtained. SVM relying on GLCM features and LBP features performs well in this regard,
hence well-designed hand-crafted features can exhibit competitive performance in the presence of
classes with a high level of semantic abstraction. Our CNN had a high classification accuracy and
outperformed SVM + GLCM and SVM + LBP, especially if a higher number of convolutional layers
and a large training set were used. A deeper network allowed more discriminative spatial-contextual
features to be learned, which help in separating complex classes. CNNs require an adequate training
set to ensure the optimal determination of the parameters of the network. The methodology outlined
in this paper can be replicated to map informal settlements in other cities. We conclude that CNNs,
trained in an end-to-end fashion, can effectively learn complex, hierarchical and abstract features for
a complex land use classification task, such as detection of informal settlements from VHR images.
Future work may involve investigating transferability of this method for the detection of informal
settlements in other geographical regions.
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