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Figure S1. Sparsity (the number of non-zero elements) of the block-sparse matrix 16 

𝑊𝑏  (1), the elementwise sparse matrix 𝑊𝑒  (2), and the combined regression 17 

coefficients matrix 𝑊 (3) of the model generated from linear multi-task learning 18 

for predicting available nitrogen (a), available phosphorous (b), available potassium 19 

(c), water content (d), pH (e), electrical conductivity (f), and organic matter (g).  20 



  

 21 

Figure S2. Used features (non-zero items in the transpose of the block-sparse matrix 22 

𝑊𝑏  (a), the elementwise sparse matrix 𝑊𝑒  (b) and the combined regression 23 

coefficients matrix 𝑊 (c)) of linear multi-task learning models with 𝜆𝑏 = 40 and 24 

𝜆𝑒 = 10. 25 
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