Next Article in Journal
Improving Jason-2 Sea Surface Heights within 10 km Offshore by Retracking Decontaminated Waveforms
Previous Article in Journal
Agricultural Soil Spectral Response and Properties Assessment: Effects of Measurement Protocol and Data Mining Technique
Article Menu
Issue 10 (October) cover image

Export Article

Open AccessArticle
Remote Sens. 2017, 9(10), 1079; https://doi.org/10.3390/rs9101079

Data Synergy between Altimetry and L-Band Passive Microwave Remote Sensing for the Retrieval of Sea Ice Parameters—A Theoretical Study of Methodology

1
Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing 100084, China
2
Department of Atmospheric and Environmental Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
3
State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics (LASG), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
*
Author to whom correspondence should be addressed.
Received: 6 August 2017 / Revised: 18 October 2017 / Accepted: 20 October 2017 / Published: 23 October 2017
(This article belongs to the Section Ocean Remote Sensing)
View Full-Text   |   Download PDF [18607 KB, uploaded 24 October 2017]   |  

Abstract

Accurate knowledge of the sea ice parameters, including the thickness and the snow depth over sea ice, are key to both climate change studies and operational forecast in polar regions. The estimation of these parameters mainly relies on satellite based remote sensing, and current retrieval algorithms usually focus on the retrieval of a single parameter under simple assumptions over the other. In this article, we explore the potential of combined retrieval of both sea ice thickness and snow depth through the data synergy two types of concurrent observations of the sea ice cover: the active altimetry and the L-band passive remote sensing. The data synergy is based on two physical constrains: (1) L-band (1.4 GHz) radiation model for the sea ice cover, and (2) the hydrostatic equilibrium as used in satellite altimetry. Two schemes of data synergy are proposed: (1) the synergy between L-band brightness temperature ( T B ) from passive microwave remote sensing and sea ice freeboard ( F B i c e ) as measured by radar altimetry, and (2) the synergy between L-band T B and snow freeboard ( F B s n o w ) as measured by laser altimetry. Based on retrievability studies, we show that both parameters can be retrieved using the two sets of data. Specifically, we show that there is potential problem of ill-posedness for the synergy between L-band T B and F B s n o w , with two possible retrieval solutions for a small portion of the solution space. On the other hand, the synergy between L-band T B and F B i c e is always well-posed. In terms of sensitivity, lower uncertainty is witnessed for thin ice for the retrieval with F B i c e , while the retrieval with F B s n o w shows advantage for thick ice. Besides the input parameters of T B , F B i c e and F B s n o w , the uncertainty associated with certain model parameters such as snow and ice densities is not negligible for the uncertainty estimation of the retrieved parameters. Verification is carried out with observational data from Operation IceBridge (OIB) campaigns and SMOS satellite, showing that both sea ice thickness and snow depth can be attained by the proposed retrieval algorithms. These algorithms serve as the basis for large-scale retrieval with satellite remote sensing data, including concurrent observation of the Arctic Ocean by independent satellite campaigns such as SMOS, CryoSat-2 and ICESat. View Full-Text
Keywords: sea ice; passive microwave remote sensing; altimetry; brightness temperature; retrieval sea ice; passive microwave remote sensing; altimetry; brightness temperature; retrieval
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Xu, S.; Zhou, L.; Liu, J.; Lu, H.; Wang, B. Data Synergy between Altimetry and L-Band Passive Microwave Remote Sensing for the Retrieval of Sea Ice Parameters—A Theoretical Study of Methodology. Remote Sens. 2017, 9, 1079.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Remote Sens. EISSN 2072-4292 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top