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Abstract: This paper proposes to use band selection-based dimensionality reduction (BS-DR)
technique in addressing a challenging multi-temporal hyperspectral images change detection
(HSI-CD) problem. The aim of this work is to analyze and evaluate in detail the CD performance
by selecting the most informative band subset from the original high-dimensional data space.
In particular, for cases where ground reference data are available or unavailable, either supervised or
unsupervised CD approaches are designed. The following sub-problems in HSI-CD are investigated,
including: (1) the estimated number of multi-class changes; (2) the binary CD; (3) the multiple CD;
(4) the estimated optimal number of selected bands; and (5) computational efficiency. The main
contribution of this paper is to provide for the first time a thorough analysis of the impacts of band
selection on the HSI-CD problem, thus to fix the gap in the state-of-the-art techniques either by simply
utilizing the full dimensionality of the data or exploring a complex hierarchical change analysis. It is
applicable to CD problems in multispectral or PolSAR images when the feature space is expanded for
discriminant feature extraction. Two real multi-temporal hyperspectral Hyperion datasets are used to
validate the proposed approaches. Quantitative and qualitative experimental results demonstrated
that by selecting a subset of the most informative and distinct spectral bands, the proposed approaches
offered better CD performance than the state-of-the-art techniques using original full bands, without
losing the change representative and discriminable capabilities of a detector.

Keywords: change detection (CD); hyperspectral images; dimensionality reduction; band selection;
multi-temporal images; remote sensing

1. Introduction

Next-generation hyperspectral sensors onboard airborne and spaceborne crafts can acquire
hyperspectral images (HSIs) through dense spectral sampling (e.g., 1–10 nm) over a wide wavelength
spectrum (e.g., 400–2500 nm) [1]. Hyperspectral imaging has becoming increasingly popular and
important in various applications (e.g., environmental monitoring, food safety control, mineral
discovery, and the military). In particular, for Earth observations, it provides materials’ spectral
signatures at a fine and sophisticated level. Different from the traditional multispectral images,
which characterized coarse spectral resolution in several broad spectral channels (i.e., bands),
the detailed spectral sampling in hyperspectral imaging results in hundreds or even thousands
of contiguous spectral bands that dramatically increases data storage volume and the ensuing data
processing complexity. The high dimensionality may lead to the so-called “curse of dimensionality”
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or “Hughes phenomenon”, i.e., with a fixed number of training samples, the predictive power of
a classifier reduces as the dimensionality increases [2,3]. Moreover, the adjacent bands are highly
correlated. Such redundant information may affect how the user-interested information has been
represented and detected to a great extent. The aforementioned challenges have raised many
issues about handling hyperspectral data in different remote sensing tasks, e.g., classification, target
detection, etc.

Dimensionality reduction (DR) techniques have been intensively investigated and used in
hyperspectral image analysis [3–16]. Usually, as a kind of pre-processing method, DR techniques are
able to reduce very high-dimensional data to a manageable low-dimensional space where data analysis
can be performed in a more effective way [4]. By reviewing the literature, two main categories of DR
methods can be summarized: transformation-based DR and band selection-based DR. The former
transforms the original data into a compact feature space and analyzes the major components.
Approaches such as Principle Component Analysis (PCA) [5], folded-PCA [6], Minimum Noise
Fraction (MNF) [7], Independent Component Analysis (ICA) [8], Orthogonal Subspace Projection
(OSP) [9], etc., have been successfully integrated into HSIs applications. The latter searches for an
appropriate subset of original bands according to certain criteria and retains the physical meaning
of pixels’ spectral response. In this context, Du and Yang [10] proposed an unsupervised band
selection algorithm based on band similarity measurement, employing the idea from the distinctive
pixel identification in endmember extraction. Yang et al. [11] designed a supervised and efficient
band selection approach based on minimum estimated abundance covariance (MEAC) by using the
known class signatures. Yang et al. [12] proposed a semi-supervised feature-metric-based affinity
propagation (FM-AP) band selection technique, which takes advantage of the relevant component
analysis to build a FM for assessing the class discrimination capability of single band and measuring
the spectral correlation among bands. Patra et al. [13] developed a rough-set-based supervised band
selection approach to select the informative bands having higher relevance and significant values.
Jia et al. [14] developed an enhanced fast density-peak-based clustering (E-FDPC) for the unsupervised
band selection task in HSI, and an isolated-point-stopping criterion was developed to automatically
determine the appropriate number of bands to be selected. Yuan et al. [15] proposed a group-wise band
selection framework. It evaluates the representativeness of band combination based on a multi-task
sparsity pursuit criterion, where a smart yet intrinsic descriptor and a computational evolutionary
strategy are used. Other new techniques such as manifold learning [16] and sparse coding [17,18]
represent new trends to analyze and provide a solution to a multi-feature dataset, which have the
potential to contribute to the considered BS topic in practical applications. Existing DR methods are
mainly focused on solving a classification or target detection problem in a single-time HSI [3,6,10–16].
To the best of our knowledge, no work has been done to investigate in detail the DR technique and
its impact on the multi-temporal hyperspectral images change detection (HSI-CD) task. This is very
important due to the high dimensionality of hyperspectral images, and is also applicable to feature
selection for CD enhancement in other types of datasets, i.e., Polarimetric Synthetic Aperture Radar
(PolSAR) or multispectral images, with an increased number of expanded or extracted features.

Change detection (CD) is one of the most important remote sensing applications. Technically, it is
the process identifying changes occurred between two (or more) images over a same geographical area
at different observation times [19,20]. In the past decades, due to the availability of multi-temporal
optical remote sensing datasets, CD tasks were intensively conducted on multispectral images [21–28].
Recently, the available multi-temporal HSIs in data archive have promoted the extension of CD
research at a finer level. By considering the CD application purpose, these techniques can be mainly
divided into two groups for binary CD and multiple CD [29]. Binary CD methods consider only the
presence/absence of changes, without analyzing the possible different land-cover class transitions.
Studies on aspects such as transformation-based CD techniques, e.g., covariance equalization and
cross covariance [30,31], multivariate alteration detection (MAD) [32], Temporal-PCA (TPCA) [33],
ICA [34], etc. and spectrum analysis-based CD methods, e.g., change analysis after radiometric
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normalization [35], target-background separation based on orthogonal subspace projection [36], etc.
can be found to address the binary CD problem in HSIs. For the more challenging multiple CD,
it aims to detect the changes, but also to identify different kinds of changes. Liu et al. [1] proposed a
coarse-to-fine hierarchical spectral change clustering approach for detecting changes having spectral
variations at different significance levels. Liu et al. [37] designed a semi-supervised sequential spectral
change vector analysis (S2CVA) approach for discovering, identifying, and discriminating multiple
changes according to a sequence of adaptive change projections. Liu et al. [38] investigated the
spectral–temporal mixture properties in multi-temporal hyperspectral images, and proposed an
unsupervised multi-temporal spectral unmixing model to address the multiple CD problem at a
subpixel level. However, these works either simply utilized the full dimensionality of the feature
space [30–33,35,36,38], or exploited a complex hierarchical structure of the changes [1,34,37], ignoring
the potential capability of solving the HSI-CD problem in a reduced low-dimensional feature space.

In this paper, we address for the first time the challenging HSI-CD problem in a low-dimensional
feature space by using band selection-based DR (BS-DR) algorithms. The most informative band
subset is investigated for change representation and discrimination in an unsupervised and supervised
fashion, respectively. In particular, the following issues are analyzed in detail: (1) the estimated
number of changes; (2) the binary CD; (3) the multiple CD; (4) the estimated optimal number of
selected bands; and (5) computational efficiency. The main contribution of this paper is, through the
design of complete evaluation procedures and the obtained experimental results, to investigate the
feasibility of addressing the considered high-dimensionality HSI-CD task in a reduced feature space
without losing the change representative and discriminable capabilities of a detector. Note that the
proposed method is also potentially applicable to practical CD applications in multi-temporal remote
sensing images after having high-dimensional features, such as generated spectral, textural features,
and the stacked PolSAR features derived from different coherent and incoherent decomposition models.
Two multi-temporal hyperspectral Hyperion datasets are used to validate the proposed approaches.
Experimental results demonstrate the effectiveness of using selected band subsets to meet or even
exceed the CD performance of all original bands, and a comparable performance is observed when
comparing with two state-of-the-art reference methods.

The rest of this paper is organized as follows. Section 2 describes in detail the proposed HSI-CD
approaches based on BS-DR and the evaluation procedure. Section 3 introduces the hyperspectral
datasets and reports and discusses the experimental results. Finally, Section 4 draws conclusions.

2. Methodology

In this section, the proposed unsupervised and supervised CD approaches based on BS-DR
techniques to address the considered HSI-CD problem are described in detail. The proposed
approaches mainly consist of four steps: (1) full dimensional difference image construction; (2) band
selection based on the difference image; (3) change feature representation; (4) change detection
strategies. In particular, the unsupervised CD approach is proposed in the compressed feature space,
whereas the supervised approach is based on the uncompressed features. CD performance is evaluated
in detail from different perspectives following a designed evaluation procedure. Block scheme of the
proposed CD approaches and the performance evaluation processes are illustrated in Figure 1. Details
are given in the following subsections.
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2.1. Proposed CD Approaches Based on Band Selection

2.1.1. Full Dimensional Difference Image Construction

Let X1 and X2 be two co-registered B-dimensional HSIs acquired over the same geographical area
at times t1 and t2, respectively. The B-dimensional difference image XD, i.e., Spectral Change Vectors
(SCVs), can be computed as:

XD = X2 − X1. (1)

After band selection, M-dimensional XS with M pre-defined number of bands can be extracted
according to certain optimal criteria as a subset of the original B-dimensional XD. Let Ω = {ωn, Ωc} be
the set of all classes in XS, where ωn is the no-change class and

{
ωC1 , ωC2 , . . . , ωCK

}
is the set of the K

possible change classes. Therefore, the considered multiple CD problem can be formalized to detect
the changed pixels (Ωc) and to identify their change classes in Ωc =

{
ωC1 , ωC2 , . . . , ωCK

}
.

2.1.2. Band Selection Based on the Difference Image

As mentioned earlier, BS-DR approaches select a subset of the original bands to reduce data
dimensionality. The intrinsic information in the original data is maintained without losing the original
physical meaning of each selected channel. In this context, if prior knowledge is available as in a
supervised case, band selection can be done by selecting the bands representing the most information
of the user-interested targets. In an unsupervised case, the most informative and distinctive bands are
selected according to certain searching criteria. In this paper we adopt an unsupervised method in [10]
and a supervised method in [11] due to their excellent performance and simple implementation. Both
algorithms were designed using spectral unmixing related concepts in conjunction with sequential
forward search strategy. Their main steps are summarized in Table 1.

Table 1. Main steps of the band selection algorithms in [10,11].

Main Descriptions

Step 1 Initialization by choosing a pair of bands to form a selected band subset Φ = {b1,b2}.

Step 2 Find a third band b3 that follows a certain criterion in Φ and to update Φ = Φ ∪ {b3}

Step 3 Iterate Step 2 until the number of bands in Φ reaches the convergence (reach the pre-defined number M).

Step 1 initializes the algorithm, and readers can refer to the literature for details [10,11]. Step 2
is the key step with the employment of a proper searching criterion. A similarity criterion based on
linear prediction (LP) was proposed [10], which jointly evaluated the similarity between a single band
and multiple bands. Let a third band b is estimated by b1 and b2 with N pixels as:

a0 + a1b1 + a2b2 = b′, (2)
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where b′ is the linear prediction of b, and a = (a0, a1, a2)
T are parameters minimizing the prediction

error e, i.e., e = ‖b− b′‖. Then a can be estimated according to the least squares solution:

a =
(

PTP
)−1

PTq, (3)

where P is constructed as an N × 3 matrix, where the first column is one, and the second and third
columns are the N pixels in b1 and b2, respectively. q is an N× 1 vector with all pixels in b. The band that
results in the maximum error e is selected because it is the most dissimilar to b1 and b2. The algorithm
can continue to select more bands.

A minimum estimated abundance covariance (MEAC) method was proposed for supervised band
selection [11]. Assume that a given pixel z can be expressed according to a linear mixture model:

z = Sα + n, (4)

where S = [s1, s2, . . . , sp] includes the known p class spectral signatures, α is the abundance vector,
and n is the uncorrelated white noise. The least squares estimation of α, denoted as α̂, can be
calculated as:

α̂ =
(

STS
)−1

STz. (5)

If q classes are actually present and q > p (i.e., in the situation of classes are partially known),
the abundance of p classes can be estimated according to the weighted least square solution as:

α̂ =
(

ST ∑−1 S
)−1

ST ∑−1 z. (6)

The selected third band in Step 2 should let the deviation of α̂ from α be as small as possible.
Hence, for the first and second case the problem is equivalent to minimizing the trace of covariance,
as in [7] and [8], respectively:

argmin
Φ

{
trace

[(
ŜTŜ

)−1
]}

(7)

argmin
Φ

{
trace

[(
ŜTΣ̂−1Ŝ

)−1
]}

, (8)

where Ŝ is the matrix containing signatures in selected bands Φ, and Σ̂ is the data covariance matrix
with the selected bands in Φ only.

2.1.3. Change Feature Representation

The sequential spectral change vector analysis (S2CVA) is one of the popular state-of-the-art
techniques recently proposed to solve the challenging multi-class CD problem in multi-temporal
HSIs [35]. It was designed to robustly explore the hierarchical nature of complex multiple changes
according to a sequential compressed feature analysis in an unsupervised fashion, without relying on
the availability of ground reference data. It provides a quick yet effective solution to simultaneously
address the relevant problems in CD including an estimation of the number of changes, separating
the change and no-change binary information, and distinguishing different kinds of changes. In this
paper, the unsupervised evaluation was mainly designed based on the S2CVA and its components.

In greater detail, S2CVA defines two change variables: change magnitude ρ and change direction
θ. Magnitude ρ is the Euclidean compression of all SCVs, in which two modes can be observed on
its histogram indicating the change and no-change classes. Thus the magnitude ρ is usually used
for binary CD purposes. Direction θ is defined based on the spectral angle distance (SAD) [39].
It points out different types of changes with respect to the change of spectral response for a given
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pixel. So the multiple changes discrimination can be implemented by analyzing the direction variable
θ. Mathematically, the definition of the two variables is as follows:

ρ =

√
M
∑

m=1

(
Xm

S
)2

θ = arccos

[(
M
∑

m=1

(
Xm

S rm)/√ M
∑

m=1

(
Xm

S
)2 M

∑
m=1

(rm)2

)] , (9)

where Xm
S and rm is the m-th (m = 1, . . . , M) component of XS and of an adaptive reference vector r,

respectively. In particular, r is defined as the first eigenvector of eigen-decomposition of the covariance
matrix A for XS [37]:

A = cov(XS) = E
[
(XS − E[XS])(XS − E[XS])

T
]
, (10)

A ·V = V ·W (11)

where E[XS] is the expectation of XS, W is a diagonal matrix with the eigenvalues being sorted in a
descending order (i.e., λ1 > λ2 > . . . > λM) in the diagonal, and V is the matrix of eigenvectors.
The reference vector r is the first eigenvector corresponds to the largest eigenvalue λ1, which allows
a projection of the considered SCVs into a reference direction that maximizes the variance of the
measurement while preserving the discriminative information of different changes.

A compressed 2D polar domain [37] can be constructed based on variables ρ and θ, as shown in
Figure 2. The no-change (i.e., ωn) and change (i.e., Ωc) classes are separated along the magnitude ρ

axis, and homogenous clusters present along the direction θ axis in the Ωc region indicate the possible
number of multiple changes. A hierarchical analysis is originally designed in S2CVA in order to
discover and detect all possible subtle changes (i.e., spectrally insignificant changes) in HSIs driven
by the detection purpose at a certain level of significance. However, major changes (i.e., spectrally
significant changes) can be identified at a single or several detection levels in the hierarchy. In this
case, changes that are not associated with real land-cover changes (e.g., co-registration errors) can also
be detected but will be defined as non-interest changes in real applications. For more details about the
S2CVA technique, one can refer to [37]. Note that SCVs are projected in the defined 2D compressed
polar domain, where the color of points indicates the frequency of such projections occurred in a given
sector (see Figures 8 and 13).
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2.1.4. Change Detection Strategies

• Proposed Unsupervised CD strategies

Based on the difference image XD, the unsupervised BS-CD algorithm [4] is applied to generate
the selected band subset XS. Let the number of changes associated to the binary and multiple CD
step be Kb and K, respectively. It is obvious that Kb = 2 in the binary CD to separate the Ωc and ωn

two classes. The compressed magnitude of XS (i.e., ρ) (9) is analyzed, where a high pixel magnitude
indicates a high probability to be changed and vice versa. It is widely used in the literature to solve the
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binary CD problem [1,26,37,40,41]. In this paper, two unsupervised CD algorithms, i.e., Expectation
Maximization (EM) thresholding based on Bayesian decision theory [40] (denoted as Bayesian-EM) and
fuzzy c-means (denoted as FCM) clustering, are considered. In particular, the EM algorithm estimates
a threshold value Tρ on the magnitude ρ by searching for two modes (i.e., Ωc and ωn) on its histogram,
and it is then applied to estimate automatically the class statistical parameters (i.e., prior probabilities,
mean values and variances) under the framework of Bayesian decision theory [40]. The unsupervised
and automatic clustering FCM algorithm is implemented by defining k = Kb = 2.

For the multiple CD, the number of changes K has to be estimated since no prior knowledge or
ground reference is available. This is addressed by defining K equal to the number of homogenous
change clusters present in compressed 2D polar domain in S2CVA as shown in Figure 2. Then the
multiple CD is carried out on the compressed change variable θ. After masking the no-change pixels
(based on the binary CD result obtained by Bayesian-EM and FCM, respectively) on the direction θ

image, k-means and FCM are applied to cluster Ωc into K classes, respectively. Note that in order
to reduce the uncertainty due to random initialization, the final binary CD result is provided as the
average over 50 runs of k-means and FCM.

• Proposed Supervised CD strategies

For the supervised CD approaches, Kb = 2 and the number of multiple changes K is known
and fixed according to the available reference map. Different from the compressed features that are
used in the unsupervised approach, the supervised approach is designed based on the uncompressed
M-dimensional XS. For binary CD, two-class training samples are generated from the reference map.
A supervised classifier is used to classify the XS and obtain the final binary CD map. Then XS is
masked, only keeping pixels belonging to Ωc according to binary CD results. The multi-class training
samples are then used in the classifier to train the masked XS and generate the final multiple CD
map. Two popular supervised CD methods, i.e., Support Vector Machine (SVM) [42] and Random
Forest (RaF) [43] classifiers, are selected to address the multiple CD task, due to their excellent
classification performance. In the SVM, the RBF kernel, and a grid-search and five-fold cross-validation
are implemented to find out the optimal parameters [44]. The number of decision trees in the RaF is
set as 200.

2.2. Evaluation Process

The capability and reliability of BS-DR techniques are evaluated carefully from the following five
aspects in order to provide a comprehensive assessment (see Figure 3) including: (1) the estimated
number of changes; (2) the binary CD; (3) the multiple CD; (4) the estimated number of selected bands;
and (5) computational efficiency.
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Figure 3. Processes for evaluating the CD performance.

The number of multi-class changes is expected to vary in the 2D polar representation by selecting
different band subsets XS. The ultimate goal is to find the XS with a given number of M that allows all
K changes to be detected.

For binary and multiple CD, the overall accuracy (OA) is evaluated by comparing the binary
and multiple CD results obtained by the proposed CD approaches with the known reference map.
Note that for each CD approach, OA values obtained on different XS are computed by comparing
with the baseline result obtained on all bands (i.e., XD). In addition, multiple CD performance was
evaluated by comparing the proposed band selection-based approaches with two state-of-the-art
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HSI-CD techniques, i.e., hierarchical spectral change vector analysis (HSCVA) [1] and sequential
spectral change vector analysis (S2CVA) [37].

In order to assess the influence of the selected band number M and find the optimal one (defined
as Mopt), in this paper we analyzed Mopt from two perspectives. The first perspective is based on a
sequential analysis by manually increasing the number of selected bands (i.e., M). Then the optimal
parameter Mopt can be defined according to the following two strategies, which identifies the number of
band subset that: (1) reaches (or exceeds) the baseline OA; and (2) results in the highest OA. The second
perspective is based on the virtual dimensionality (VD) estimation approaches. Usually they are used
to estimate the number of classes present in an image [10], whereas in our case they are used to make
the data dimensionality high enough to accommodate all change classes for CD. Thus the estimated
number can be a reference value for the number of bands to be selected. Three VD techniques are
considered in this work, including the Harsanyi–Farrand–Chang (HFC) and the noise-whited HFC
(NW-HFC) methods [45] and the eigenvalue likelihood maximization (ELM) approach [46], which are
popular and widely used in the literature. Note that instead of implementing VD approaches on the
original whole SCVs (XD) that contain both change and no-change classes, in our experiments SCVs
associated with the general change class (i.e., Ωc) are considered for VD estimation, thus the estimated
reference value Mopt provides potentially valuable information related to the multiple changes and
their discrimination in the multiple CD task.

The computational efficiency is evaluated in the supervised SVM-based and RaF-based approaches
on different XS with a certain dimensionality M. The total computational cost is the sum of cost in
band-selection step and in SVM (or RaF) implementation, whereas the baseline is the computational
time of SVM (or RaF) on XD. Note that due to the nature of unsupervised approaches based on two
compressed features (i.e., magnitude ρ and direction θ), the time cost is only related to the band
selection step itself. Therefore, they are not considered in the evaluation. Detailed analysis of time
consumption has been conducted on both datasets by using Matlab R2014a, on an Intel(R) Xeon (TM)
CPU E5-1630 v3 octa-core 3.70 GHz workstation with 16 GB of RAM.

3. Experimental

3.1. Dataset Descriptions

The first dataset is made up of a pair of real bitemporal hyperspectral EO-1 Hyperion remote
sensing images acquired over a wetland agricultural land in Yancheng, Jiangsu Province, China.
Images were acquired on 3 May 2006 (X1) and 23 April 2007 (X2), respectively. A subset of the original
images is selected with a size of 220 × 430 pixels. The original Hyperion images contain 242 bands
ranging from 350 to 2580 nm, characterized by a spectral resolution of 10 nm and a spatial resolution
of 30 m. Pre-processing was applied on the original images including uncalibrated and noisiest bands
removal, bad stripes repairing, atmospheric correction, and image co-registration, with a residual error
of 0.5 pixel. Due to the fact that noisy bands with low SNR can be distinctive but not informative, they
were removed in the pre-processing phase [10]. Finally, 128 pre-processed bands (i.e., 13–53, 85–96,
103–118, 135–164, 188–199, and 202–218) were used in the experiments. False color composites of X1,
X2 and three bands in XD are shown in Figure 4a–c, respectively. In this scenario, five major land-cover
change classes are present, mainly associated with the changes in vegetation, bare land, water, and soil.
These five major changes are spectrally significant, which allows for single-level identification in the
unsupervised S2CVA. Each change and no-change class and their corresponding number of samples in
the reference map are provided in Figure 4. Note that the reference map was generated after careful
visual analysis and image interpretation, as shown in Figure 4d. For the supervised CD approaches,
class training samples are generated based on the change reference map. For binary CD, 2% of training
samples were generated in each class. For multiple CD, due to the unbalanced class samples, training
samples were generated as follows: 50% (class samples <1000), 2% (class samples ≥1000). Detailed
class samples and their numbers are listed in Table 2.
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Figure 4. False color composite (R: 752.4254 nm, G: 650.6727 nm, B: 548.9194 nm) of the bi-temporal
EO-1 Hyperion images acquired over a wetland agricultural area in Yancheng (China) in (a) 2006 (X1)
and (b) 2007 (X2); (c) composite of three SCV channels; (d) change reference map. Five changes are in
different colors, whereas the unchanged pixels are in gray.

Table 2. Number of class training samples used in the supervised CD approaches (Yancheng dataset).

Binary CD Multiple CD

Class Training Samples (Pixels) Change Class Training Samples (Pixels)

Ωc 483 ωC1 170
ωn 1409 ωC2 290

ωC3 58
ωC4 212
ωC5 82

The R2 correlation matrix was computed on the XD image as shown in Figure 5a, which represents
the correlation of each spectral band with the rest of bands. So it illustrates band similarity within the
considered dataset [47]. From Figure 5a, we can observe five high correlated band regions (i.e., S1: 1–25,
S2: 26–41, S3: 42–53, S4: 54–69, S5: 70–128), where the adjacent bands are highly similar to each other.
It indicates the necessity of implementing band selection to reduce the redundancy in those regions.

The second dataset is also made up of a pair of real bitemporal Hyperion hyperspectral images
acquired on 1 May 2004 (X1) and 8 May 2007 (X2). The considered study area is an irrigated agricultural
land of Umatilla County, Oregon (USA), which is a subset of the original images having a size of
180 × 225 pixels. The same preprocessing operations (i.e., uncalibrated and noisiest bands removal,
bad stripes repairing, atmospheric correction, co-registration) has been done as in the previous dataset,
thus finally 159 bands (i.e., 8–57, 82–119, 131–164, 182–184, and 187–220) out of the original 242
bands were used in the CD experiment. Land cover changes in this scenario mainly include the class
transitions between crops, bare soil, variations in soil moisture, and water content of vegetation [36].
Figure 6a–c shows the false color composite of X1, X2, and three bands in the XD images, respectively.
Note that the subtle changes associated with the road surrounding the irrigated agricultural land
were not considered in this paper due to the detection needing be realized at a subpixel level [36].
Thus, in this case, six pixel-level major changes were focused. Figure 6d is the change reference map
generated according to a careful image interpretation, where the six changes are shown in different
colors and pixels in gray color indicate the no-change class. Detailed change and no-change class
labels and their corresponding number of samples can also be found in Figure 6. Note that for binary
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CD, training samples were generated as 2% of each class, and for multiple CD, 10% of samples were
generated for each class. Training samples used in the supervised CD are listed in Table 3.
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Figure 6. False color composite (R: 650.67 nm, G: 548.92 nm, B: 447.17 nm) of the bi-temporal EO-1
Hyperion images acquired over an irrigated agricultural area in Umatilla County (USA) in (a) 2004 (X1)
and (b) 2007 (X2); (c) composite of three SCV channels (R: 823.65 nm, G: 721.90 nm, B: 620.15 nm);
(d) change reference map. Six changes are in different colors, whereas unchanged pixels are in gray.

The constructed R2 correlation matrix based on the XD image is provided in Figure 7a, where four
high-correlation band regions are observed (defined as S1: 1–30, S2: 31–69, S3: 70–88, S4: 89–159).
Spectral bands within these band regions are highly similar and correlated with their adjacent bands,
which inevitably lead to information redundancy, thus reducing the sensitivity and accuracy of the CD
process. The unsupervised LP algorithm and the supervised MEAC algorithm were applied to XD,
respectively, by defining the number of bands (i.e., M) from 1 to 30. The first 20 selected bands in the
two algorithms are highlighted in blue (unsupervised) and red (supervised), as illustrated in Figure 7b.
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Figure 7. (a) The R2 correction matrix of XD image, where four highly correlated adjacent band groups
are highlighted as S1–S4; (b) the first 20 selected bands and their corresponding positions in each group
(Umatilla County dataset).

Table 3. Number of class training samples used in the supervised CD approaches (Umatilla county dataset).

Binary CD Multiple CD

Class Training Samples (Pixels) Change Class Training Samples (Pixels)

Ωc 198 ωC1 103
ωn 612 ωC2 105

ωC3 511
ωC4 126
ωC5 48
ωC6 99

3.2. Results on the Yancheng Wetland Agricultural Dataset

The unsupervised LP algorithm and the supervised MEAC algorithm were applied to XD,
while varying the selected bands (i.e., M) from 1 to 30. The first 20 selected bands in the two algorithms
are highlighted in blue (unsupervised) and red (supervised) in Figure 5b. We can observe that
they are located in different highly correlated spectral regions (i.e., S1–S5). This demonstrates the
effectiveness of the adopted band selection approach to extract the most informative and distinctive
bands, which represent information in the original data XD.

CD performance was analyzed in detail based on different selected band subsets XS with
M = [1,30]. The number of multi-class changes K in the unsupervised CD is estimated according
to the S2CVA 2D change representation, as described in Section 2.1.3. The estimation results are
provided in Table 4. One can see that all five change classes became detectable with the minimal
number of bands equal to 5. This is intuitive because K classes should be identified with at least K
bands. Two S2CVA 2D scattergrams are shown in Figure 8 with M = 2 and M = 5, which allow the
identification of two and five change classes, respectively (see the highlighted changes in Figure 8a,b).
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Table 4. Estimated number of changes in multiple CD with different number of selected bands
(Yancheng dataset).

Number of Selected Bands (M) Estimated Number of Changes (K)

1–2 2
3–4 4
5–60 5

For binary CD, the unsupervised Bayesian-EM, FCM approaches were applied on the compressed
magnitude of XS with Kb = 2, respectively. Note that M was increased from 1 to 30 in XS. Figure 9
shows the quantitative comparison results, where we can observe that: (1) by increasing the number
of selected bands M, the binary CD performance enhanced with respect to the increasing OA
values. In all four approaches, OA values finally reached over the baseline; (2) two supervised
approaches (i.e., SVM-based and RaF-based) resulted in higher OA values than two unsupervised
ones (i.e., Bayesian-EM and FCM). In this case, the RaF-based approach achieved a similar but slightly
higher performance than the SVM-based one, whereas Bayesian-EM outperformed FCM, offering
higher overall OA values. A qualitative comparison of the obtained CD maps can be seen in Figure 11
row 1 and row 2. The binary CD results demonstrated that the selected informative band subsets are
effective at separating changed pixels from unchanged ones.
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Figure 9. Binary CD accuracies obtained by the proposed CD approaches based on BS-DR (Yancheng
dataset). The unsupervised Bayesian-EM and FCM were applied on the compressed magnitude
of XS (i.e., XS-ρ) and the supervised SVM-based and RaF-based approaches were applied on the
uncompressed XS. Baseline results (on XD) are shown as dashed lines for comparison purposes.

For multiple CD, only pixels belonging to the change class (i.e., Ωc) that were obtained in the
binary CD step were considered. In the unsupervised and supervised approaches, multi-class CD
was conducted on the compressed 1D direction variable (XS-α) and the original B-dimensional XS,
respectively. In k-means and FCM, K was equal to 5 according to the estimated number provided in
Table 4. For the two supervised approaches (i.e., SVM-based and RaF-based), training samples (see
Table 2) were used to train the classifiers based on the M-dimensional XS. Multiple CD results are
given when M ≥ 5, which allows all five changes to be detected. Two reference approaches were also
tested on this dataset. Quantitative and qualitative comparison results are shown in Figures 10 and 11
(i.e., rows 3–5), respectively. One can see that the two proposed supervised approaches outperformed
the unsupervised ones with respect to higher OA values. Multiple CD results showed the potential
capabilities of the selected band subsets in containing sufficient information for multiple changes
discrimination with a reduced dimensionality. Two reference CD methods offered similar performance
to the proposed unsupervised approaches but had lower accuracy than the proposed supervised ones.
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Two reference methods explored the hierarchical change structure in the original full dimensionality
(i.e., SCVs XD), requiring more complex change representation and discrimination.
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Figure 10. Multiple CD accuracies obtained by the proposed CD approaches based on BS-DR and
the reference methods (Yancheng dataset). The unsupervised k-means and FCM were applied on
the compressed direction of XS (i.e., XS-θ) and the supervised SVM-based and RaF-based approaches
were applied on the uncompressed XS. Baseline results on XD in the proposed approaches and in two
reference methods are shown as dashed lines for comparison purposes.
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Figure 11. Binary (row 1–2) and multiple (row 3–5) CD maps obtained by the proposed CD 
approaches (Yancheng dataset). The unsupervised approaches: (a) Bayesian-EM (or k-means for 
multiple CD); (b) FCM. The supervised approaches: (c) SVM-based and (d) RaF-based. Rows 1 and 3 
are baseline results on XD, and rows 2 and 4 are results on XS with M = 20; (e) HSCVA; (f) S2CVA. 

According to the designed strategies, the selected number Mopt was analyzed manually from 
the multiple CD result as in Figure 10 and automatically estimated using three VD algorithms (i.e., 
HFC, NW-HFC, and ELM) on the masked XD with only changed pixels. Results are provided in 
Table 5. We can see that the estimated Mopt varies under different probability of false alarm (i.e., pf) 
values in HFC and NW-HFC. Three reasonable pf values are considered, producing estimates 

Figure 11. Binary (row 1–2) and multiple (row 3–5) CD maps obtained by the proposed CD approaches
(Yancheng dataset). The unsupervised approaches: (a) Bayesian-EM (or k-means for multiple CD);
(b) FCM. The supervised approaches: (c) SVM-based and (d) RaF-based. Rows 1 and 3 are baseline
results on XD, and rows 2 and 4 are results on XS with M = 20; (e) HSCVA; (f) S2CVA.

According to the designed strategies, the selected number Mopt was analyzed manually from the
multiple CD result as in Figure 10 and automatically estimated using three VD algorithms (i.e., HFC,
NW-HFC, and ELM) on the masked XD with only changed pixels. Results are provided in Table 5.
We can see that the estimated Mopt varies under different probability of false alarm (i.e., pf ) values in
HFC and NW-HFC. Three reasonable pf values are considered, producing estimates within the range
of [10,15]. ELM resulted in the estimated number of Mopt equal to 13. By analyzing all obtained values
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in different considered approaches, we can briefly conclude that in this case, a reliable Mopt value for
generating a comparable result with the baseline might be in the range of [8,13], and a higher Mopt

value (e.g., [22,33]) might lead to higher CD performance.

Table 5. Estimation of the optimal number of selected bands (Yancheng dataset).

Approaches Estimated Number of Mopt

Sequential Analysis (Manually)
FCM k-means SVM RaF

Strategy 1 9 22 10 8

Strategy 2 23 22 29 23

VD Estimation (Automatic)

pf

10−5 10−4 10−3

HFC 12 13 14

NW-HFC 10 12 15

ELM 13

The evaluation of computational efficiency in the two proposed supervised approaches, i.e.,
SVM-based and RaF-based, in comparison with HSCVA and S2CVA, the two reference methods,
is provided as shown in . It can be seen that by increasing the number of M in XS, the time consumed
increased in both approaches, especially in the SVM-based one. The full computational time of
SVM-based and RaF-based approaches obtained on XS is much lower than the baseline results based
on XD. In particular, a significant reduction of time can be observed in SVM-based (i.e., from 86.23 s
to an average of 35.74 s) and in RaF-based (i.e., from 15.15 s to an average of 4.87 s). Note that the
computational cost of band selection for a given XS is included. RaF has more stable and efficient
computational performance than SVM, which can be observed in Figure 12 and the smaller standard
deviation value (i.e., 0.75). Compared with the two reference methods, the time cost of the whole
procedure is much lower in the proposed approaches.
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3.3. Results on the Umatilla County Irrigated Agricultural Dataset

The estimated number of multi-class changes K in the selected subset XS with M = [1,30] was
obtained based on the analysis of S2CVA 2D change representation. Results are shown in Table 6. Note
that in this case, the first five bands were not able to provide the correct number of all existing change
classes (i.e., K = 6). Only until M = 6, all six changes became visible and detectable. This indicates
that the multiple change information is implicitly represented in the first few selected bands, which is
not sufficient to represent the complex changes present in the original data. Two 2D scattergrams
when M = 2 and M = 6 are shown in Figure 13a,b, with the identification of four and six change
classes, respectively.

Table 6. Estimated number of changes in multiple CD with different number of selected bands (Umatilla
county dataset).

Number of Selected Bands (M) Estimated Number of Changes (K)

1 2
2–5 4

6–60 6
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Figure 13. S2CVA 2D change representations obtained on XS when: (a) M = 2 (four changes were
identified); (b) M = 10 (six changes were identified).

The value Kb was fixed as 2 in the unsupervised Bayesian-EM, FCM approaches for binary CD.
The compressed magnitude ρ of XS was analyzed by increasing M from 1 to 30, whereas the result
obtained on all bands (XD with B = 159) was considered as a baseline (illustrated as dotted lines
in Figure 14). The obtained binary CD maps are shown in Figure 16 (rows 1 and 2) for qualitative
comparison. Figure 14 shows the quantitative results of binary CD; one can see that by increasing the
number of selected bands M, the binary CD performance improved with respect to the increasing OA
values, which finally reached over the baselines and tended to be stable. This confirms that the few most
informative bands are able to accomplish the binary CD task, resulting in a higher OA than when using
the original full dimensionality. From the obtained OA values, SVM-based and RaF-based approaches
resulted in higher OA values than the two unsupervised ones (i.e., Bayesian-EM and FCM) by taking
advantage of the available training samples and supervised classifiers. In particular, the SVM-based
approach had a similar but slightly better performance than the RaF-based one, whereas Bayesian-EM
outperformed FCM, having higher overall OA values.
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Figure 14. Binary CD accuracies obtained by the proposed CD approaches based on BS-DR (Umatilla
County dataset). The unsupervised Bayesian-EM and FCM were applied on the compressed magnitude
of XS (i.e., XS-ρ) and the supervised SVM-based and RaF-based approaches were applied on the
uncompressed XS. Baseline results (on XD) are shown as dashed lines for comparison purposes.

Multiple CD was carried out based on the binary CD result considering the pixels only belong to
Ωc. The unsupervised k-means and FCM were applied on the compressed XS-θ variable individually,
by defining k equal to the estimated number K (see Table 6). SVM-based and RaF-based approaches
were implemented on the M-dimensional XS by using the multi-class training samples provided.
The second dataset is also made up of a pair of real bitemporal Hyperion hyperspectral images
acquired on 1 May 2004 (X1) and 8 May 2007 (X2). The considered study area is an irrigated agricultural
area in Umatilla County, Oregon (USA), which is a subset of the original images having a size of
180 × 225 pixels. The same preprocessing operations (i.e., uncalibrated and noisiest bands removal,
bad stripes repairing, atmospheric correction, co-registration) has been done as in the previous dataset,
thus 159 bands (i.e., 8–57, 82–119, 131–164, 182–184, and 187–220) out of the original 242 bands were
used in the CD experiment. Land cover changes in this scenario mainly include the class transitions
between crops, bare soil, variations in soil moisture, and water content of vegetation [36]. Figure 6a–c
shows the false color composite of X1, X2 and three bands in XD images, respectively. Note that
the subtle changes associated with the road surrounding the irrigated agricultural land were not
considered in this paper because their detection should be realized at a subpixel level [36]. Thus, in this
case, six pixel-level major changes were the focus. Figure 6d is the change reference map generated
according to careful image interpretation, where the six changes are shown in different colors and
pixels in gray color indicate the no-change class. Detailed change and no-change class labels and their
corresponding number of samples can also be found in Figure 6. Note that for binary CD, training
samples were generated as 2% of each class, and for multiple CD, 10% of samples were generated for
each class. The training samples used in the supervised CD are listed in Table 3.

Note that results were evaluated with M≥ 6 when all six change classes are estimated. Accuracies
were also compared with those obtained by two reference methods (i.e., HSCVA and S2CVA). From the
multiple CD results shown in Figures 15 and 16, one can notice that by taking advantage of the
supervised training process using the known reference samples and the advanced classifiers, the two
proposed supervised methods resulted in better performance (higher OA values) compared with the
two unsupervised ones. In particular, in this case the SVM-based approach outperformed the other
three methods, having the highest OA values. The RaF-based approach had a similar but slightly
lower performance than the SVM-based one. FCM showed its better discriminability in multiple CD
than k-means. By increasing M, all four approaches finally exceeded the baseline results obtained
using all bands (i.e., 159). This demonstrates the effectiveness of using BS-DR to enhance the change
discrimination and detection performance in HSI-CD. The two hierarchical approaches yielded higher
accuracies than the two unsupervised methods but lower than the supervised ones. However, full



Remote Sens. 2017, 9, 1008 18 of 23

modeling of multiple changes in the original dimensionality inevitably decreases the applicability of
the two reference methods.
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Figure 16. Binary (row 1–2) and multiple (row 3–5) CD maps obtained by the proposed CD 
approaches (Umatilla County dataset). The unsupervised approaches: (a) Bayesian-EM (or k-means 
for multiple CD); (b) FCM. The supervised approaches: (c) SVM-based and (d) RaF-based. Rows 1 
and 3 are baseline results on XD, and rows 2 and 4 are results on XS with M = 20; (e) HSCVA; (f) 
S2CVA. 

The estimated numbers of Mopt using both manual and automatic approaches are provided in 
Table 7. For the automatic VD estimation approaches (i.e., HFC, NW-HFC and ELM) a reasonable pf 
value (e.g., 10−5, 10−4, 10−3) can be used, resulting in an estimate in the range of [9,12]. The Mopt 
obtained by ELM is equal to 7. By considering all the estimated Mopt values, a reliable Mopt value 
could be concluded within the range of [7,10], which allows the generation of comparable CD 
performance to the baseline. A higher Mopt value might lead to higher CD accuracy. However, a 
compromise should be made between the improvement of accuracy and the increase in 
computational cost due to the use of more selected bands. 

The computational efficiency of the two proposed supervised approaches, i.e., SVM-based and 
RaF-based, was evaluated on XS. The detailed time cost values are provided in Figure 17. It can be 
seen that the SVM-based approach took more time to accomplish the multiple CD task: an average 
of 21.42 s in the considered XS subsets, whereas the RaF-based one only took 4.95 s. The time 
consumed by the SVM-based approach increased with a larger number of selected bands in XS, 
whereas the time cost in the RaF-based one is relatively stable and low (with a lower standard 
deviation value equal to 0.49). Significant reduction in computational costs can be observed in 
SVM-based approach from the baseline cost of 68.05 s to an average of 21.42 s. The RaF-based 
approach is extremely fast, but the average cost (i.e., 4.95 s) is still lower than the baseline cost (i.e., 
6.89 s) including both BS and CD processes. In addition, compared with the two reference 
approaches, a significant decrease in on the computational cost can be seen, whereas similar or even 
higher OA values are obtained (see Figure 15). 

Figure 16. Binary (row 1–2) and multiple (row 3–5) CD maps obtained by the proposed CD approaches
(Umatilla County dataset). The unsupervised approaches: (a) Bayesian-EM (or k-means for multiple
CD); (b) FCM. The supervised approaches: (c) SVM-based and (d) RaF-based. Rows 1 and 3 are baseline
results on XD, and rows 2 and 4 are results on XS with M = 20; (e) HSCVA; (f) S2CVA.

The estimated numbers of Mopt using both manual and automatic approaches are provided in
Table 7. For the automatic VD estimation approaches (i.e., HFC, NW-HFC and ELM) a reasonable
pf value (e.g., 10−5, 10−4, 10−3) can be used, resulting in an estimate in the range of [9,12]. The Mopt

obtained by ELM is equal to 7. By considering all the estimated Mopt values, a reliable Mopt value could
be concluded within the range of [7,10], which allows the generation of comparable CD performance
to the baseline. A higher Mopt value might lead to higher CD accuracy. However, a compromise should
be made between the improvement of accuracy and the increase in computational cost due to the use
of more selected bands.

The computational efficiency of the two proposed supervised approaches, i.e., SVM-based and
RaF-based, was evaluated on XS. The detailed time cost values are provided in Figure 17. It can be
seen that the SVM-based approach took more time to accomplish the multiple CD task: an average of
21.42 s in the considered XS subsets, whereas the RaF-based one only took 4.95 s. The time consumed
by the SVM-based approach increased with a larger number of selected bands in XS, whereas the time
cost in the RaF-based one is relatively stable and low (with a lower standard deviation value equal
to 0.49). Significant reduction in computational costs can be observed in SVM-based approach from
the baseline cost of 68.05 s to an average of 21.42 s. The RaF-based approach is extremely fast, but the
average cost (i.e., 4.95 s) is still lower than the baseline cost (i.e., 6.89 s) including both BS and CD
processes. In addition, compared with the two reference approaches, a significant decrease in on the
computational cost can be seen, whereas similar or even higher OA values are obtained (see Figure 15).
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Table 7. Estimation of the optimal number of selected bands (Umatilla county dataset).

Approaches Estimated Number of Mopt

Sequential Analysis (Manually)
FCM k-means SVM RaF

Strategy 1 10 9 9 9

Strategy 2 30 28 18 12

VD Estimation (Automatic)

pf

10−5 10−4 10−3

HFC 9 10 12

NW-HFC 9 9 11

ELM 7

4. Conclusions

This paper proposes using a band selection-based DR technique to address the CD task in
multi-temporal hyperspectral images. The most informative band subset with a reduced dimensionality
is considered in the CD process rather than analyzing the original full dimensional data. In particular,
both unsupervised and supervised band selection and CD approaches are designed by investigating
the CD task from the compressed and uncompressed feature perspectives. Theoretical analysis and
practical evaluation of the impact of the band selection-based DR technique on CD performance are
investigated in detail with different datasets. Experimental results demonstrate that band selection can
offer better CD performance when the number of selected bands is sufficiently large (e.g., 30) and can
reduce the overall computational cost. Moreover, a comparable performance is obtained by comparing
with two state-of-the-art HSI-CD methods using the full spectral channels.

This work contributes to fill a research gap between the state-of-the-art HSI-CD techniques simply
utilizing the full high-dimensionality and the ones exploring a complex hierarchical change analysis.
The considered CD task in a reduced feature space is demonstrated to be feasible without losing the
change representative and discriminable capabilities of a detector. It is potentially applicable to many
other CD problems with high feature dimensionality.
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