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Abstract: Understanding the effects that the Urban Heat Island (UHI) has on plant phenology is
important in predicting ecological impacts of expanding cities and the impacts of the projected
global warming. However, the underlying methods to monitor phenological events often limit
this understanding. Generally, one can either have a small sample of in situ measurements or
use satellite data to observe large areas of land surface phenology (LSP). In the latter, a tradeoff
exists among platforms with some allowing better temporal resolution to pick up discrete events
and others possessing the spatial resolution appropriate for observing heterogeneous landscapes,
such as urban areas. To overcome these limitations, we applied the Spatial and Temporal Adaptive
Reflectance Model (STARFM) to fuse Landsat surface reflectance and MODIS nadir BRDF-adjusted
reflectance (NBAR) data with three separate selection conditions for input data across two versions
of the software. From the fused images, we derived a time-series of high temporal and high spatial
resolution synthetic Normalized Difference Vegetation Index (NDVI) imagery to identify the dates of
the start of the growing season (SOS), end of the season (EOS), and the length of the season (LOS).
The results were compared between the urban and exurban developed areas within the vicinity of
Ogden, UT and across all three data scenarios. The results generally show an earlier urban SOS, later
urban EOS, and longer urban LOS, with variation across the results suggesting that phenological
parameters are sensitive to input changes. Although there was strong evidence that STARFM has the
potential to produce images capable of capturing the UHI effect on phenology, we recommend that
future work refine the proposed methods and compare the results against ground events.
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1. Introduction

The world’s urban population has been growing quickly from only 30% of the global population
residing in urban areas in the 1950s to as much as 54%, or 3.9 billion urban residents, in 2014. It is
projected to increase toward 66% by 2050 [1], so it is important to understand the effects of urban areas
on the environment. One such effect is the elevated temperature in urban areas, which in turn affects
the growth cycle of plants known as plant phenology.

Urban heat island (UHI) is the term used to describe higher temperatures in an urban environment
compared to the surrounding rural areas [2]. UHI is mainly a result of changing a natural landscape
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into a man-made urban texture [3] and arises due to the modified surface affecting the storage and
transfer of heat, water, and airflow [4]. The UHI has a measurable effect, as previous research has
shown a small UHI effect of 0.17 ◦C for cities as small as 2–3 km2 and a larger effect of 2.9 ◦C during
the day and 2.3 ◦C during the night for larger cities of >100 km2 [5]. Since the UHI is comparable
to projected global temperature increases [6], urban environments have been used as a surrogate for
future climate change (i.e., [7]).

The relationship between urban intensity and the course of annual developmental events in plants,
known as plant phenology, has been documented [8]. From a biological perspective, phenological
research predominantly addresses the timing of switches between recurrent phases of organisms [9].
In cool and temperate regions, to maximize growth, trees need to extend the growth period as long
as possible while avoiding frost damage [10]. It has been confirmed that bud burst is under strong
temperature control, with leaves appearing earlier and growing faster during a warmer spring [11].
In the fall, growth cessation and dormancy are in response to the shortening of the photoperiod [12],
however, low temperature also causes growth cessation [13]. Plants, in general, will develop earlier in
cities by a factor of days to weeks when compared to their rural settings. However, there is no clear
association with autumn phenophases. Comparing the urban to rural trends of phenology allows for
the evaluation of phenological trends in differing conditions and assessment of impacts of climate
change [6].

Earlier greening of land cover and later autumnal leaf fall may alter seasonal climate through
biogeochemical processes and physical properties [14]. Phenological changes will have varying impacts
on albedo [15] and surface temperature [16]. In addition, the length of the growing season plays a
key role in the amount of CO2 in the atmosphere [17]. Earlier spring onset leads to an increase in
Gross Primary Production (GPP) and ecosystem respiration, with GPP having the larger increase
resulting in a higher Net Ecosystem Productivity (NEP) [18]. From a biological perspective, due to
species responding differently to warming temperatures, mismatches in the phenology across trophic
levels may already be occurring due to non-uniform shifting of co-occurring organisms, changing the
biological communities [19].

Satellite derived measurements of land surface reflectance have been used to study land surface
phenology (LSP) over large areas (for example, [20]). When applied to examine the length of growing
season for urban and rural areas, it was found that the growth season was about 15 days longer
in urban areas [21]. However, this type of analysis has historically been restricted due to clouds,
atmospheric conditions, and the infrequent satellite coverage [22]. Removing these atmospheric effects
has a relatively long history [23]. However, even after this correction, the level of detail that urban
maps provide is dependent on the spatial resolution of the sensor [24] and the error in phenology
detection increases with a reduction in temporal resolution [25]. Therefore, both high temporal and
high spatial satellite sensors each have complementary advantages when observing urban phenology.

With the goal to obtain more information than each sensor can independently provide [26],
a number of blending algorithms have been developed that focus on spatial and temporal
dynamics [27]. One such method is the Spatial and Temporal Adaptive Reflectance Fusion Model
(STARFM). It was designed to predict surface reflectance with the spatial resolution of Landsat and the
temporal resolution of the Moderate Resolution Imaging Spectroradiometer (MODIS) [28]. STARFM is,
as of 2013, widely used [27]. Originally shown to capture phenology changes for forested or cropland
areas, as well as a mixture of cropland, evergreen, and deciduous forest [28], it has since been applied
to observe, for example, community level phenology [29], crop growth stages [30], urban phenomena
such as the land surface temperature (LST) of the urban heat island [31], and the Normalized Difference
Vegetation Index (NDVI) values of a semi-arid rangeland of northern Utah [32].

This study aims to build on the existing research and use blended, also known as fused or
synthetic, satellite imagery to examine how the built up environment affects LSP of developed land in
a metropolitan area of Northern Utah. We derived 12 years of fused Landsat and MODIS reflectance
data using the STARFM method with three different selection criteria for input data. Then, from the
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resulting fused datasets, we derived three time-series of a standard vegetation index for the study
area to estimate phenology metrics and make comparisons of the urban and exurban area. Our study
addressed three important research questions:

(1) In our study area, is there an observable difference in key phenological parameters (Start of
Season (SOS), End of Season (EOS), and Length of Season (LOS)) between the urban and exurban
areas when using fused imagery over several years and how sensitive those differences to base
pair selection?

(2) If there is an observable difference in SOS, EOS, or LOS between the urban and exurban areas
when using fused imagery, how often do these differences appear?

(3) Does the amount of impervious area at a location affect any observable differences in SOS, EOS,
or LOS between the urban and exurban areas when using fused imagery?

2. Materials and Methods

2.1. Study Area

The study area falls toward the southern edge of Landsat Path/Row 38/31, starting at about
35 km north of Salt Lake City, Utah (Figure 1). The urban and exurban areas were classified as such
based on the average percent developed imperviousness for each municipality. These values were
derived from performing a mean Zonal Statistic on the NLCD 2011 Percent Imperviousness (2011
Edition, amended 2014) data (available at [33]) with the zones defined by the geospatial dataset
“Municipal Boundaries” found on the UTAH Automated Geographic Reference Center (available
at: https://gis.utah.gov/data/boundaries/citycountystate/). The results showed a natural break in
percent impervious surface, with no municipalities having a mean percent impervious surface between
23% and 40%. This break was used to define the urban and exurban areas and is similar to the criteria
used by Imhoff et al. [34]. They saw that, for most of the largest biomes in the continental US except
desert and xeric shrubland ecoregions, urban areas of 25% impervious surface area (ISA) or greater have
a higher average LST than suburban and rural areas of less than 25% ISA. This classification resulted
in the municipal boundaries of areas that had an average of 41%–51% imperviousness representing
the urban area and included Clearfield, Ogden City, Roy City, South Ogden, Sunset, and Washington
Terrace. The boundaries of areas that had an average of 5%–22% imperviousness represented the
exurban areas and included West Point, West Haven, Marriott-Slaterville City, Plain City, and Farr
West (Figure 1). We used the municipal boundaries dataset to calculate geometry for each municipality
in ArcGIS and revealed a total of 129.3 km2 for the urban areas and 110.9 km2 for the exurban areas
(Table 1).

Table 1. Area of each municipality.

Urban Municipal Name Area (km2) Exurban Municipal Name Area (km2)

Sunset 3.8 West Point 18.5
Clearfield 20.0 West Haven 26.8

Roy 20.3 Marriott-Slaterville 19.1
Ogden 70.4 Plain City 31.2

Washington Terrace 5.2 Farr West 15.3
South Ogden 9.6

Total 129.3 110.9

https://gis.utah.gov/data/boundaries/citycountystate/
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temperatures by correcting for spectral emissivities according to [35]. Emissivities were estimated 
using the NDVI thresholding method of Sobrino et al. [36], using NDVI values that were calculated 
from reflectance images downloaded from the Climate Data Record (CDR) collection available on the 
USGS’s EarthExplorer website. Clear LST data were extracted using a mask produced by the CFMask 
QA data provided with the Landsat reflectance data. Last, zonal statistics in ArcGIS were used to 
calculate the mean temperatures for the urban and exurban areas by date. The results show that for 
75% of the dates calculated, average LST is higher in the urban areas by a range of 1.38–2.98 °C. The 
other 25% of the areas show a difference less than 0.1 °C. 
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average maximum temperature ranged from 3 °C to 33.67 °C, respectively. For this same timeframe, 
the normal water year precipitation was 409 mm with normal seasonal snowfall of 1427 mm [38]. 

Figure 1. Location map of the study area within the contiguous United States and mean impervious
surface and urban/exurban classification by municipality.

Table 2 shows the calculated mean urban and exurban LSTs for several leaf-off and leaf-on dates.
To perform the calculation, we first converted the at-sensor spectral radiance for the thermal band 6
of selected Landsat 5 images into at-sensor brightness temperature and then calculated final surface
temperatures by correcting for spectral emissivities according to [35]. Emissivities were estimated
using the NDVI thresholding method of Sobrino et al. [36], using NDVI values that were calculated
from reflectance images downloaded from the Climate Data Record (CDR) collection available on the
USGS’s EarthExplorer website. Clear LST data were extracted using a mask produced by the CFMask
QA data provided with the Landsat reflectance data. Last, zonal statistics in ArcGIS were used to
calculate the mean temperatures for the urban and exurban areas by date. The results show that for
75% of the dates calculated, average LST is higher in the urban areas by a range of 1.38–2.98 ◦C. The
other 25% of the areas show a difference less than 0.1 ◦C.

Table 2. Mean urban and exurban temperatures as well as the difference between them.

Day 21,
Year 2003

Day 181,
Year 2003

Day 245,
Year 2003

Day 58,
Year 2005

Day 298,
Year 2005

Day 48,
Year 2007

Day 128,
Year 2007

Day 208,
Year 2007

Mean Exurban
Temp. (◦C) 5.5 36.8 28.9 11.0 22.2 8.4 28.1 30.2

Mean Urban
Temp. (◦C) 5.5 39.3 30.3 12.5 22.2 9.9 29.9 33.2

Degrees Celsius
Warmer Urban −0.01 2.47 1.38 1.54 0.06 1.53 1.77 2.93

The elevation for these municipalities ranges from approximately 1286 to 1424 meters [37].
According to the National Weather Service, the local forecast office for Ogden, UT is Salt Lake City, UT.
We used this local forecast office as an estimate to describe our study area’s conditions. From 1981 to
2010, Salt Lake City had a normal winter average temperature of slightly below freezing at −0.39 ◦C
and a normal summer average temperature of 23.94 ◦C. The monthly average minimum temperature
for this period ranged from −5.78 ◦C in January to 18.17 ◦C in July and the monthly average maximum
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temperature ranged from 3 ◦C to 33.67 ◦C, respectively. For this same timeframe, the normal water
year precipitation was 409 mm with normal seasonal snowfall of 1427 mm [38].

2.2. STARFM Model Description

The theoretical basis for STARFM, as outlined by Gao et al. [28], was based on the premise that
MODIS and Landsat surface reflectances are comparable, with small biases. Neglecting any small bias,
the surface reflectance of a heterogeneous course pixel at date t (Ct), is equal to the sum of each of the
finer resolution homogenous pixel (F) times the percent of the area which the fine resolution pixel
covers (A) at each location i, written as:

Ct = ∑(Fi
t × Ai

t) (1)

For a MODIS image that has been super sampled to the equivalent fine resolution and boundary
of a Landsat image with the same coordinate system, the homogenous MODIS course pixel (M) from
the same location (xi, yi) and time (t0) of the Landsat fine pixel (L) is equal to the Landsat pixel plus the
difference between the observed MODIS and observed Landsat values, written as [28]:

L
(

xi, yj, t0
)
= M

(
xi, yj, t0

)
+ ε0 (2)

As explained by Gao et al. [28], in an ideal situation, ground coverage and system errors for any
given pixel does not change from a base date (t0), when both coarse and fine resolution values are
known for a pixel as described above, to the prediction date (tk), when course resolution values are
known but fine resolution values are unknown and need to be predicted. In the situation where there
is no change, which is often not satisfied, ε0 = εk and:

L
(

xi, yj, tk
)
= M

(
xi, yj, tk

)
+ L

(
xi, yj, t0

)
− M

(
xi, yj, t0

)
(3)

To incorporate additional information from neighboring pixels, a central fine resolution pixel can
be computed with the weighting function [28]:

L(xw/2, yw/2, tk) = ∑w
i=1 ∑w

j=1 ∑n
k=1 Wijk ×

(
M
(
xi, yj, tk

)
+ L

(
xi, yj, t0

)
− M

(
xi, yj, t0

))
(4)

where w is the search window size and L(xw/2, yw/2, tk) is the pixel that is in the center of this search
window. Wijk is a weight that determines how much each neighboring pixel contributes to the
predicted reflectance of the central pixel. This weight is higher for neighboring pixel locations where
the difference between the fine and course pixel of the same time is smaller, the difference between the
coarse pixels at the base and prediction date are smaller, and the neighboring pixel is closer in distance
to the central pixel. Within the search window, the algorithm uses spectrally similar pixels that are
cloud free [28].

2.3. Satellite Data Processing

In accordance with Olexa and Lawrence’s [32] validation of STARFM for the same Landsat
Path/Row, Landsat TM data were used as the high spatial resolution images. The choice of high
temporal resolution was based on previous findings [39] that favored the MODIS Bidirectional
Reflectance Distribution Function (BRDF) adjusted 16-day reflectance (MCD43A4) product over
MODIS 500 m daily surface reflectance (MOD09GA) data. Therefore, we chose to use the nadir
BRDF-adjusted reflectance (NBAR) data with an eight day overlapping temporal resolution from the
MODIS collection 5 data products.

USGS’s EarthExplorer website provided the download for the Landsat TM reflectance images
from the Climate Data Record (CDR) collection. Two different methods were used to select the Landsat
images used in the base pairs. The first used an informal screening process, similar to Olexa and
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Lawrence [32], where we visually inspected Landsat scenes to ensure that there was relatively minimal
cloud, shadow, snow, or water in our study area and immediately adjacent to it. To do this, we
downloaded 80 images for path 38/row 31 with less than 10% cloud cover spanning the period from
the start of the MODIS data production until the end of Landsat 5 (Day 49, 2000–Day 361, 2011). The
CDR data also included identification for clouds, cloud shadows, snow, and water [40].

Python scripts were written to automate the process of preparing Landsat data for STARFM by
looping through the images at each step, relying on the ArcPy library [41] for many steps. The first
step was to extract the files and rename the Red, Near Infrared (NIR), and Quality Assurance (QA)
data for sorting and pairing when defining the STARFM inputs. The data were then reprojected to
the WGS84 UTM_Zone12N coordinate system and clipped to the same extent. Based on the CFmask
QA band that comes as a part of the CDR data, the scripts masked out all areas that represent fill,
water, shadow, snow, and cloud, removing them from the analysis. Last, the scripts converted the
images to a generic 16-bit signed binary file. Figure 2 shows a schematic that details the flow of the
Python algorithm. Processed images were visually inspected under the informal screening criteria to
remove those with high levels of no data values in and immediately adjacent to the study area, which
left 54 Landsat images available for analyses. Removing a processed Landsat scene does not reduce
the number of images used in determining seasonality parameters, instead it adds in an additional
prediction day by removing a base pair.
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The second Landsat selection criteria used a statistical approach similar to Walker et al. [39] where
the selection was based on the percent of unclear pixels. To do this, for all available Landsat surface
reflectance images we calculated the proportion of clear pixels within a 1500 m buffer of our study
area, which represents the entire area that STARFM used for the search window. To determine the
total number of clear pixels, we reclassified the clear flag in the CFMask file from the Landsat Surface
Reflectance product so that clear pixels are set to a value of 1 and snow, water, cloud, and cloud
shadows are set to 0. We then preformed zonal statistics on each reclassified CFMask that summed up
all pixel values within our buffer area, considering no data pixels as not clear. To determine the total
number of possible pixels, we created a raster image with 30 m resolution that encompassed the study
area plus the 1500 m buffer and obtained a count of the pixels (504,714 in total). We then divided the
total number of clear pixels by the total count and multiplied by 100. We set two statistical thresholds
of the amount of clear pixels needed to include the image, one at 90% and the other at 95%. The same
Python script then prepared all images that met either of these criteria for STARFM.

Then the NASA Reverb ECHO website provided all 546 NBAR (MCD43A4) images corresponding
to the start of the MODIS data production through the end of the Landsat 5 data production. The
BRDF describes the scattering of light from one direction into another [42]. BRDF effects are not a
concern when developing a surface reflectance product for Landsat imagery since it is acquired within
less than 7.5 degrees of nadir [43]. Due to no data being collected by MODIS from Day 166 to Day
184 in 2001 [44], the MODIS scene that corresponds to this timeframe was omitted, leaving us with
545 MODIS scenes to use. The Landsat scene from Day 175 of 2001, which paired with this MODIS
scene, was also removed from analysis leaving 53 Landsat images available for analyses based on
the informal screening process, 81 images based on a 95% threshold, and 92 images based on a 90%
threshold (Figure 3).
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MODIS data were also prepared for STARFM using Python scripts. The scripts first extracted the
Red and NIR bands and reprojected the images to the same coordinate system as Landsat. To help
with reducing the file size before further processing, these data were subset to include a buffer around
the final extent. The buffer allowed us to resample MODIS data to the same 30 m resolution as Landsat
in a shorter amount of processing time while still preserving the ability to apply a final mask of the
same extent of Landsat. If the final extent was applied before resampling, the edge of the image would
include additional areas of no data due to the clip line bisecting a larger cell. Then the scripts shifted
the cells to align perfectly with Landsat data. Last, all images were converted to a 16-bit signed generic
binary format (Figure 2). The step of shifting cells was simplified for the MODIS data used in the
statistical selection methods by shifting the final clip file instead.
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2.4. STARFM Parameters and Input Text Creation

STARFM can either use one or two base pairs. Based on Olexa and Lawrence’s [32] satisfactory
results, we opted for one base pair to be used. In addition, to coincide with Olexa and Lawrence [32],
the surface reflectance uncertainties were set to 0.002 for the Red and 0.005 for the NIR bands, and 40
for the spectral similarity test. However, we doubled the search distance to 1500 m to help compensate
for the heterogeneous urban environment. As recommended by the software README file, the spatial
flag was set to on. STARFM requires an input text file that specifies all of these input parameters and
the names of the base pair images and the predicted image. Two custom Python scripts automated
this, one for creating synthetic images for days which do not coincide with a base pair, and one for
creating synthetic images for days which do coincide with a base pair. Three separate sets of input text
files were created for each base pair selection method.

The overall approach for these scripts first identified the base pairs for the Red bands, or the
Landsat and MODIS scenes that were closest to each other in date. To do this, the scripts compared the
middle date (8th day) of the 16 day MODIS acquisition time to the Landsat acquisition date. If the
difference between the Landsat and MODIS dates was between −4 and 3, this signified that the MODIS
scene had the middle acquisition day closest to the Landsat acquisition date and the two images should
be a base pair. If the difference was outside of this range, the MODIS scene became a coarse resolution
image that had a high resolution image predicted for it. For each predicted scene identified, these
scripts created a text file with a unique name, a unique name for the predicted high resolution image
was specified, and the name of the MODIS scene for the predicted day was written to the text file. Next,
the names of the base pairs that had the Landsat acquisition date closest to the middle acquisition day
of the predicted MODIS scene were added to the text file as base pairs. Last, the file had all constant
input parameters written to it. The scripts then copied the file, changed the names from representing
Red to NIR images, and the process was repeated for the next MODIS image (see Figure 4).

A similar script created the input files for prediction days that coincide with base pair dates. The
reason for this prediction is mainly to have a 30 m file with the same name as the rest of the predicted
days, but also to account for and apply any underlying biases that may or may not have existed in
the methodology in a uniform manner. The main differences are that during the initial pairing, the
predicted day assumed the MODIS name as well as the base pair day. STARFM software version 1.1.2
was then run by looping through the input texts for both the informal selection criteria and the 95%
threshold criteria. The 90% threshold criteria was processed with STARFM version 1.2.1. Version 1.2.1
improves computational efficiency by allowing predictions for multiple dates with one run when
the pair image is the same. It can also run in parallel computing mode [30]. STARFM can fill small
gaps or clouds in the prediction MODIS image using information from neighbor pixels if Landsat
pixels are valid. These predictions are useful but may be less accurate. The version 1.2.1 constrains the
predictions for the cloud pixels in the MODIS pair and prediction images. Predictions for clear pixels
in Landsat and MODIS images are the same from both versions.

2.5. NDVI Time Series Preparation and Seasonality Extraction

Vegetation indices (VI) are correlated to photosynthetically active radiation absorbed by plants in
the visible spectrum [45]. Normalized Difference Vegetation Index (NDVI) is the most widely used
VI [46]. This NDVI signal allows us to estimate seasonal changes in light absorption of a surface [9]
and may summarize the annual and interannual variability of plant penology [47]. The fused images
produced by STARFM were used to calculate NDVI values (for example, see Figure 5) at an eight-day
time series interval for each of the three methods with the following formula [46]:

NDVI = (NIR − RED)/(NIR + RED) (5)
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Figure 5. Example synthetic NDVI image.

This produced a range of values from −1 to 1, where negative values were related to areas with
open water and positive values were areas covered by green vegetation [47]. All locations with no
data in either of the synthetic images were set to be well outside of this range. For the time series
produced by the statistical methods, areas where the Landsat image used in the base pair had a value
for fill, water, shadow, snow, or cloud in the CFMask were also set to be well outside of this range.
Based on the three NDVI time series values, the SOS, EOS, and LOS were all extracted using TIMESAT
3.2 software.

TIMESAT is an accurate method for extracting seasonality parameters [48]. The SOS and EOS
were defined as points in time where the value has increased or decreased by a certain amount [49].
We used the following settings for this study: no spike method, logistic function for data smoothing,
one envelope iteration, an amplitude season start method, an adaptation strength of two, and the
amplitude value of 0.2 (or 20%) for both SOS and EOS. For specific details on these parameters, please
consult the TIMESAT manual [50]. In addition to using the calculated NDVI values in TIMESAT,
since according to the software manual TIMESAT requires the same number of images for each year,
a dummy image with values well outside of the NDVI value range was created and used for the
day when no MODIS data was collected and every eight days between Day 1 and Day 41 of 2000.
In addition, to ensure TIMESAT extracted data for all of the years in our study, two dummy years were
included in the TIMESAT input that were duplicates of the first and last years of data and placed at the
beginning and end of the time series. During seasonality extraction, the date range of synthetic images
that specified when each SOS was expected to occur included three images (time steps) before the
start of the year through the end of the year (i.e., image range 44–92 was used for the year 2000 which
spanned images 47–92), for EOS the date range included the start of the year to three images after the
end of the year (i.e., image range 47–95 for the year 2000), and the date range for LOS included three
images before the start of the year through three images after the end of the year (i.e., image range
44–95 for the year 2000).

2.6. Dates of Phenological Events for Developed Areas

Start of Season (SOS), End of Season (EOS), and Length of Season (LOS) were estimated for
developed areas in the study area based on a total of 177,480 pixels representing the Developed Land
Cover Classes (21 (Developed, Open Space), 22 (Developed, Low Intensity), 23 (Developed, Medium
Intensity), and 24 (Developed, High Intensity)) within the 2011 NLCD Land Cover (amended 2014)
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data (available at [33]). For both SOS and EOS, the day of the event for each year was calculated by
subtracting the number of images that were from years prior and then multiplying the result by the
time step of eight days [50]. Since the LOS output provided the time of the length and not a date,
multiplying the length time by eight days produced the length in days.

2.7. Statistical Analyses

The raw dates for the urban and exurban areas provided us with the data for basic descriptive
statistics. Similar to Zipper et al. [51], prior to any comparisons that aggregated the years together
all data were normalized to account for different temperature-based seasons. We normalized for
each phenological parameter by year according to the expected exurban value for each land class
by subtracting the mean value of the exurban area from each data point for each year. The resulting
normalized values represented the number of days between the expected timing of the event in the
exurban area and the timing of the event at each given point. Therefore, the time averaged zero for the
exurban area and the urban area’s average represented the difference in days of the event between the
urban and exurban area. After normalization, each land cover class was extracted according to if it is
within the exurban or urban areas and then stacked using RStudio [52].

To help determine the appropriate statistical tests to run, we tested the stacked datasets for
normality by visually inspecting a histogram of the data. Then the data were tested for equal variances
between each urban and exurban sample using an F-test. We then performed a t-test to test if the mean
of the urban area is statistically different from the mean of the exurban area.

3. Results

3.1. Accuracy Assessment of STARFM

Although our study area falls into the area of a previous study [32] which validated STARFM’s
ability to fuse images in our general location, a brief accuracy assessment was performed to ensure the
heterogeneous urban area of our study did not significantly alter the accuracy of synthetic Landsat
images. To assess the accuracy, we compared reflectance values of several Landsat surface reflectance
images to the synthetic Landsat scene that was closest in date. The comparison was made by reporting
both the R2 values and the mean absolute difference (Table 3). None of these Landsat images that
were used in validation were used as a part of a base pair in STARFM. In addition, the scenes chosen
represent both leaf-on conditions and leaf off conditions.

Table 3. Accuracy assessment results showing R2 values and the mean absolute difference between
synthetic NDVI values and Landsat surface reflectance NDVI values that were not used in data fusion.

Informal Selection Day 21,
Year 2003

Day 181,
Year 2003

Day 245,
Year 2003

Day 58,
Year 2005

Day 298,
Year 2005

Day 48,
Year 2007

Day 128,
Year 2007

Day 208,
Year 2007

Mean Abs. Diff. All Areas 0.07 0.04 0.05 0.07 0.07 0.12 0.06 0.04

Mean Abs. Diff.
Urban Locations 0.07 0.04 0.04 0.06 0.06 0.11 0.05 0.04

Mean Abs. Diff.
Exurban Locations 0.09 0.06 0.07 0.08 0.08 0.14 0.07 0.04

R2 All areas 0.59 0.85 0.87 0.72 0.72 0.36 0.81 0.89

R2 Urban Locations 0.66 0.91 0.92 0.77 0.8 0.41 0.84 0.91

R2 Exurban Locations 0.45 0.69 0.8 0.63 0.54 0.28 0.71 0.85

Statistical Selection Method Day 21, 2003:
95% Selection

Day 250, 2005:
95% Selection

Day 250, 2005:
90% Selection

Day 43, 2011:
95% Selection

Day 43, 2011:
90% Selection

Mean Abs. Diff All Areas 0.05 0.04 0.04 0.11 0.17

Mean Abs. Diff Urban Locations 0.05 0.04 0.04 0.11 0.22

Mean Abs. Diff Exurban Locations 0.05 0.05 0.06 0.11 0.15

R2 All areas 0.68 0.88 0.87 0.46 0.16

R2 Urban Locations 0.72 0.9 0.92 0.54 0.19

R2 Exurban Locations 0.57 0.82 0.76 0.35 0.13
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3.2. Descriptive Statistics

Since SOS dates for many observations occurred before 23 February 2000, when the MCD43A4
data first became available, we removed this year from further analyses of SOS and LOS. In addition,
since the descriptive statistics placed the EOS dates for many observations after the last year (2011)
of data, further analysis for both EOS and LOS did not include 2011. For each year, we sampled
48,942 exurban and 128,539 urban points, although the number of samples used for any given year
varied due to no data values. The maximum number of no data values for all three base pair selection
methods for the SOS was between 30,489 and 33,005 for the entire exurban area in and 91,482 and
116,354 for the urban areas.

The normalized data of the informal selection show an earlier SOS for urban areas by a factor
of 2.21 to 6.73 days on average, depending on the class. The more developed classes had the biggest
difference in SOS and the least developed classes along with all of the classes together had the smallest
difference. Although the developed areas as a whole and individual classes both show a later EOS for
the urban areas, the number of days between the mean EOS for the urban and the exurban area had a
lower range that was from 0.04 to 0.71 days. Lastly, the difference in the average length of season was
longer in urban areas and ranges from being 2.84 days for all developed areas up to 6.8 days longer for
the most developed areas, with the difference increasing for each class with percent imperviousness
(Figure 6a). Standard deviations for the years were generally largest for the LOS parameter (Table 4).

Table 4. Standard deviations for the normalized data.

All
Developed

Open
Space

Low
Intensity

Medium
Intensity

High
Intensity

Informal Base
Pair Selection

SOS Urban 18.4 16.6 16.3 17.7 21.7
SOS Exurban 17.7 16.0 16.4 17.6 22.9
EOS Urban 17.6 17.9 16.1 16.5 22.0

EOS Exurban 19.7 19.3 18.6 20.2 25.3
LOS Urban 24.5 24.9 22.3 23.3 29.9

LOS Exurban 26.2 25.8 24.5 25.9 35.1

95% Clear Base
Pair Selection

SOS Urban 19.0 16.4 16.8 18.6 26.0
SOS Exurban 19.2 17.5 18.4 19.8 22.3
EOS Urban 19.1 20.1 17.6 17.9 23.7

EOS Exurban 21.7 21.7 20.8 22.4 24.1
LOS Urban 26.1 25.7 23.7 25.2 34.0

LOS Exurban 29.4 29.5 28.5 29.9 31.9

90% Clear Base
Pair Selection

SOS Urban 28.3 22.7 27.3 28.8 35.5
SOS Exurban 24.6 22.0 24.3 26.1 29.4
EOS Urban 24.4 26.3 23.8 22.9 30.4

EOS Exurban 27.3 27.3 26.3 28.4 31.9
LOS Urban 36.8 36.6 35.9 36.5 47.3

LOS Exurban 36.9 36.5 35.8 38.6 42.8

The normalized data of the 95% statistical selection threshold show an earlier SOS for urban areas
by a factor of 1.05 to 3.56 days on average. Although the developed areas as a whole and the two
classes of developed open space and developed medium intensity show a later EOS for the urban
areas up to 1.25 days, the other two classes show a later EOS for the exurban area of 0.35 and 0.79 days.
Again, the difference in the average length of season was longer in urban areas and ranges from being
0.78 days up to 4.32 days longer. The difference for each class does not consistently increase with
percent imperviousness (Figure 6b).

The normalized data of the 90% statistical selection threshold on STARFM version 1.2.1 also show
an earlier SOS for all urban areas ranging from 0.28 to 3.55 days. All developed areas as a whole and all
four classes show a later EOS for the urban areas ranging from 2.84 to 5.15 days. Again, the difference
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in the average length of season was longer in urban areas and ranges from being 3.22 and 7.02 days
longer (Figure 6c).
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Figure 6. Three bar charts showing the approximate average number of days the SOS is earlier, EOS is
later, and LOS is longer in the urban area for (a) the informal selection criteria, (b) the 95% statistical
criteria, and (c) the 90% statistical selection criteria. Error bars represent a 99.9% confidence interval.

To see how consistent these overall findings were from year to year between classes, one can also
look at the 11 years separately. This showed that the average urban SOS date was earlier for up to all of
the 11 years for developed high intensity urban areas when using informal base pair selection criteria,
but also earlier in only six years when using 90% selection criteria for developed low intensity areas.
The average EOS date was later for the urban areas from as few as three out of the 11 years to as many
as nine, with all three selection methods showing the least amount of years in the developed high
intensity class. The average LOS was longer in the urban areas for 10 out of 10 years for developed
open space with an informal selection and for only six years for various classes with both the 90% and
95% selection criteria (Table 5).
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Table 5. Frequencies of years where mean SOS was earlier, EOS was later, and LOS was longer in the
urban areas according to base pair selection.

Years with Earlier Urban SOS Informal Selection 95% Selection 90% Selection

All Developed Areas 9 8 7
Developed Open Space 9 8 8

Developed Low Intensity 8 8 6
Developed Medium Intensity 10 7 7

Developed High Intensity 11 8 8

Years with Later Urban EOS

All Developed Areas 7 6 8
Developed Open Space 9 7 8

Developed Low Intensity 6 7 8
Developed Medium Intensity 7 8 9

Developed High Intensity 3 3 6

Years with longer Urban LOS

All Developed Areas 7 7 6
Developed Open Space 10 6 8

Developed Low Intensity 9 6 6
Developed Medium Intensity 8 7 7

Developed High Intensity 8 6 6

3.3. Tests for Variance Equality and Normality

Based on the results of the F-tests, almost all land cover classes and the developed areas as a whole
had statistically unequal variances between the urban and exurban areas. The exceptions to this were
the informal selection developed medium intensity land cover class for the SOS and the 90% selection
criteria’s LOS for all developed areas, developed open space and developed low intensity, where all
p-value were above 0.1. Visual inspection of all histograms showed an approximate normal distribution
(see Supplementary Materials for the histograms). This method was chosen over a statistical test due
to small deviations from normality being marked as significant even though they should not affect
parametric test results [53].

3.4. Tests for Inequality of Phenological Parameters

RStudio performed a two-tailed and two-sample t-test for each parameter and each developed
area as a whole as well as each land cover class separately to see if the mean of the urban area was
statistically different from the mean of the exurban area. The t-test assumed unequal variances in
all cases except when the F-test could not show an unequal variance. The tests showed that for the
SOS, both the informal and 95% selection criteria show a statistical difference between the urban and
exurban areas at the 99.9% level for all areas together and all classes separately, with all observed
p-values of <2.2 × 10−16. However, after applying a Bonferroni correction, the 90% selection criteria
only shows a 99.9% significant difference for all developed areas, developed medium intensity, and
developed high intensity areas, with p-values of <2.2 × 10−16 for all developed areas and medium
developed areas and 4.91 × 10−15 for developed high intensity areas. It also shows an insignificant
difference in the SOS for both developed open space and developed low intensity with p-values of
0.0045 and 0.013, respectively.

The EOS results were all statistically significant at the 99.9% level, with all observed p-values
of <2.2 × 10−16, for the 90% selection criteria. However, they were mixed for both the informal and
95% selection criteria. With the informal selection criteria, both developed areas as a whole and
developed open space had an observed p-value of <2.2 × 10−16. After applying a Bonferroni correction
for the remaining classes, the results show no statistical difference for EOS in the developed low
intensity, developed medium intensity, and developed high intensity classes with observed p-values
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of 0.448, 0.011, and 0.107, respectively. With the 95% selection criteria, both developed low intensity
and medium intensity were statistically significant with p-values of 6.5 × 10−10 and <2.2 × 10−16,
respectively, and after the Bonferroni correction developed high intensity was significant at the 99%
level with an observed p-value of 0.000012. There was no significance for the remaining classes after
a Bonferroni correction with all developed areas having a p-value of 0.03 and developed open space
having a p-value of 0.75.

The length of season showed the most consistent results with most classes for all methods having
an observed p-value of <2.2 × 10−16 making them significant at the 99.9% level. The only exceptions
to this were the developed high intensity results for both the 95% and 90% selection methods. The 90%
selection criteria results were still significant at the 99.9% level but the observed p-value was 1.5 × 10−14.
The 95% selection method still did show significance at the 99% level after a Bonferroni correction with
an observed p-value of 0.000049.

4. Discussion

4.1. Start of Season

Our study analyzed the effects of UHI on phenology in urban areas, although we did not attempt
to measure temperature for each land cover per se. Instead, we used percent imperviousness to
understand the spatial variability of temperature in cities. Since UHI is the direct product of the
transformation of natural landscapes into an impervious man-made urban texture [3] and a strong
linear relationship between the percent impervious surface area and land surface temperature has been
shown [54], it is reasonable to assume that the areas we defined as urban are warmer than the areas we
defined as exurban. Based on previous findings suggesting that leaves appear earlier during a warmer
spring [11] and that leaves develop earlier in cities [6], we reasonably expected our urbanized areas to
exhibit an earlier SOS, which was supported by the results of this study, although not statistically when
using STARFM v1.2.1 and a 90% selection criteria for all classes. Therefore, base pair selection and
software version may make a difference when observing SOS of the urban environment. In addition,
it has been shown that temporal gradients in leaf onset varies [55], which coincides with our findings
of a large standard deviation for SOS (Table 4).

Interestingly, our results do not show a similar magnitude of differences in the SOS between
classes throughout the urban and exurban area. This coincides with the case study by Melaas et al. [56],
which showed that the amount of impervious surface area in surrounding vegetation patches influences
the timing of SOS. Although we do not show a clear trend with the difference in SOS growing as mean
percent imperviousness does, for all three selection methods the difference in mean days becomes
larger between urban and exurban areas for the two most developed classes when compared to the
two least developed classes. In addition, out of all 11 years where SOS was calculated, all methods
showed an earlier urban SOS for all classes more times than a later urban SOS. However, there is
a range to the number of years where urban SOS is earlier. Based on this, there is not a uniform
effect on the SOS throughout the entire urban area. In addition, it is reasonable to assume that we
may lose some information if we generalize entire municipalities as having an earlier SOS. For this
reason, having a spatial resolution finer than that of MODIS, such as that produced by fused data,
would allow for a better understanding of the complex relationships between heterogeneous urban
and exurban environments.

4.2. End of Season

The EOS results were not as conclusive as the SOS results, which is not surprising since previous
research also found an unclear association between the urban-exurban differences and autumn
phenophases [6] and high variability in the difference [57]. Even though the mean EOS was later for
urban areas in 13 out of 15 of the stacked datasets, the statistical significance across all classes was
present only when the 90% criteria was used. This also indicates that base pair and software selection
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may lead to different results than when looking at features or specific locations within the municipality.
This supports previous findings that EOS in urban vegetation patches is influenced by the percent
impervious surface of surrounding patches [56].

There are two potential reasons for such findings of EOS inconsistency between base pair selection
and software. First, there could be a consistent and large difference in the EOS, as the 90% selection
criteria with STARFM v 1.2.1 showed, but our methods were too simplistic or introduced excessive
errors so the difference was improperly observed with using an informal and 95% selection criteria
and STARFM v1.1.2. Second, there are potentially other environmental factors that are similar between
the urban and exurban area, which are the main cues for trees to start growth cessation. For example,
Perry [12] points to the shortening of the photoperiod. If this were true, we would not expect the UHI
to change EOS. In addition, this would mean that the difference in EOS shown when using the 90%
criteria is a result of observing a sample of the EOS under control of another environmental factor such
as, for example, photoperiod.

4.3. Length of Season

Although LOS is the only phenological parameter that is consistently statistically significant, we
are cautious of these results. Both the SOS and EOS contribute to the LOS, and under an informal and
95% selection criteria the most reliable contributor to the statistically longer growing season in the
urban area is the earlier start in the spring. As shown in Figure 6a,b, the difference in the SOS for the
urban and exurban area is proportionally larger than the EOS, thus contributing more to the difference
in the LOS. In addition, even without statistically different EOS dates for all of the classes with these
two methods, the difference in the LOS is still statistically significant for all classes. However, when
we look at LOS derived from the 90% criteria, the opposite is true that without all statistically different
SOS dates, the difference in the LOS is still statistically significant for all classes. Therefore, since there
is uncertainty with why LOS is longer in the urban areas, it is difficult to support that it is true.

Moreover, when looking at the mean LOS for each class, a similar trend appears as we see with
the SOS, which is that there is a difference in the LOS across classes. Once again, this observation
suggests to look at intra-city features and not just the urban area as a whole to be able to describe better
the effects of the urban environment on phenology.

4.4. Study Assumptions and Potential Limitations

The method we used for normalization ensures that all data obtained are used. It also corrects
for interannual shifts in phenological parameters by placing the event at each location in relation to
the expected date of the same exurban event for the same year. This allows for the comparison of the
difference in time between an event at each location and the timing of the corresponding expected
exurban area’s event and not a comparison of the actual dates, which may not be comparable from one
year to the next due to changing weather patterns. Thus, after normalization, one can compare the
urban and exurban data to show the differences within each separate year and also among all years
together. Importantly, the approach accounts for the uneven and inconsistent sample proportions
between the urban and exurban environments from year to year. Simply normalizing according to the
mean value of all urban and exurban pixels would pull the normalized value in different amounts,
based on the proportional size, toward the sample with the larger size and not centering the normalized
values at the same value from year to year. For example, if one year had one exurban point for every
two urban points and the next year this ratio decreased to 1:4, the normalized values of the second
year would be pulled closer to zero for the urban areas and further from zero for the exurban areas,
making them incomparable.

However, an underlying assumption of this normalization method is that if a shift in dates does
occur from one year to the next, the amount of the shift is the same for both the urban and exurban
environment. If this assumption is violated, any disproportional interannual shifts would skew the
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results to either be over or under represented depending on if the urban sample size was large or small
for that year.

A second underlying assumption of this study is that the expected vegetation type and
management practices were similar between like land cover classes for both the urban and rural
environments. For example, it was assumed that any influences a homeowner may have on phenology
due to landscaping practices (i.e., watering the lawn in the spring) and vegetation transplanting
(i.e., planting grass for a lawn) were just as likely to occur regardless if the individual lives in a rural
and urban settings. This is an important assumption, as it has been observed that phenological traits
can differ between vegetation types [51]. However, making comparisons between the urban and rural
environments of developed areas with the same land cover classes controlled for this, as opposed to
comparing dissimilar land cover classes that may have dissimilar landscape management techniques.

The third assumption is that changes in NVDI values accurately represent changes in phenological
parameters. The current study used changes in NDVI as a proxy for growing season parameters.
However, it is not well understood how well these values, derived from fused imagery, correspond to
the actual ground events of SOS, EOS, and LOS. The Collection 5 MODIS NBAR data used in this study
were the 8-day overlapping product that is collected over 16 days. Depending on the data availability
during the 16-day period especially around the SOS and EOS dates, we could miss or smooth the small
changes from the multi-date data products.

The fourth limitation is that we did not attempt to resolve any potential errors with the NLCD
classifications. Although overall accuracies were 79% and 78% for the previous Level II NLCD versions
from 2001 and 2006, respectively, they did have difficulty distinguishing the context of grass. In relation
to the land cover classes we looked at, the 2006 NLCD had a producer’s accuracy of 42%, 70%, 80%, and
26% for classes 21, 22, 23, and 24, respectively. The user’s accuracies for these classes were 52%, 59%,
69%, and 83%, respectively. The 2001 NLCD accuracy was similar (within 5%) to the 2006 accuracies
except for the producer’s accuracy for class 24, which was 81% [58].

The last assumption is that our sample was representative of the conditions of the entire urban
and exurban areas. We had a very large sample, so this is reasonable to assume. However, the areas
of no data predictions could be biased due to some uniform trait and therefor underrepresented.
For example, the proportion of the sample remaining toward the center of the urban and exurban
areas was similar for the informal and 95% selection criteria. However, for the 90% selection criteria
the central areas were disproportionally under represented (Table 6). Previous research [21] has shown
a relationship between the UHI and distance to urban core area and should be considered.

Table 6. Total original sample size for all developed areas based on base pair selection and the percent
of the original sample remaining 500 m and 1500 m inward away from the urban and exurban edges.

Parameter Total Sample Size Percent Remaining at
500 m Inward

Percent Remaining at
1500 m Inward

Informal Selection
SOS 1,241,726 56 12
EOS 1,681,156 56 13

>95% Selection
SOS 1,263,499 56 13
EOS 1,632,057 57 13

>90% Selection
SOS 511,615 45 5
EOS 634,573 44 5

In addition, selecting Landsat images with less than 10% cloud cover as an initial screening process
could potentially omit additional dates of clear Landsat images for the study area, thus reducing
the number of base pairs used. Based on previous research [59], the risk of omitting these scenes
potentially leads to a less than optimal quality of fused image since there could have been a potential
base date nearer to some of our predicted dates than what we used for prediction. Adding to this,
using a visual inspection to remove Landsat images could introduce human error.
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4.5. Future Work

Future research should attempt to identify the source of variation that caused inconsistent results,
being cautious of how input data would affect their sample distribution and validity of predictions.
Evaluating base pair selection should include not only ensuring a valid fused image, but also taking
into account how the distribution will affect the location of no data and how this in turn affects
TIMESAT. Since the difference in base pair selection method does not produce large differences in the
validity of our fused images, how the data and parameters can affect the ability of TIMESAT to make
predictions is important to consider.

The MODIS collection 6 now provides daily NBAR product at 500 m resolution which could be
utilized in data fusion. The BRDF corrected daily surface reflectance is another option to use in the
future. The daily MODIS products may be able to reduce uncertainties in extracting phenological
parameters. This study used Landsat 5 TM data for data consistency. Landsat 7 ETM+ data even
with the Scan-Line-Corrector errors can still be used to increase the frequency of high resolution data.
Other recent high resolution data such as Landsat 8 and Sentinel-2 can be included in the future. The
Landsat and MODIS pair images may be gap-filled first before data fusion to increase valid prediction.
Different weights from original and the fused data sources may be considered similar to the strategy
used in mapping crop phenology [30].

The results of future work should also validate the predicted phenological dates derived from
STARFM synthetic imagery against in situ observations of phenological parameters for the urban
and exurban environments, preferably for a variety of land cover classes. In addition, our study was
confined to a very specific environment and may not be generalizable to a variety of areas. Expanding
the prediction to a variety of climates and cities would help to overcome this. Last, the value of using
a fusion model over one source of satellite data to predict the differences in the urban and exurban
growing seasons should be explored. Our next steps will be to attempt to model LSP parameters with
high resolution/low frequency and low resolution/high frequency data alone. This will allow making
conclusions about the amount of information gained from fusing the data in regards to observing the
effects of the UHI on phenology.

Beyond lacking in comparisons to other data sources and locations, the current study did not aim
to explore in depth how different land cover classes affect phenological events. Although this paper
described the difference in mean urban and exurban values among land cover classes, it was limited
to a simple descriptive analysis. In addition, it may be interesting to see if there is a shift in calendar
dates of phenological events for both urban and exurban environments, rather than just look at the
shift in the number of days of the normalized difference between the two as we did.

5. Conclusions

This study has uncertainties, but it offers encouragement that STARFM can be sensitive enough
to detect the change in phenological parameters of vegetation that we would expect to see because of
the UHI effect in urbanized landscapes. Although base pair selection for image fusion did not strongly
affect the validity of fused images, it did have a noticeable effect on the phenology results. We suspect
that this is in part due to the changing distribution of where no data are available for TIMESAT to fit.
As the number of base pairs increases, so will the potential locations of no data from Landsat that is
masked out from a prediction. As we saw with disproportional distribution of no data in one instance,
these no data points might not be randomly distributed and therefore skew any results. We believe that
this could have skewed the results for the 90% base pair selection because we not only added in the
potential for an additional 5% unclear pixel coverage, but also due to the software change. STARFM
v1.2.1 added in a strict validation that may potentially not allow a prediction to be made in areas where
it did before, thus compromising a lesser sample size for an increase in overall prediction quality and
not covering up any bias distribution in no data.

Our statistical results are mixed, but generally, they support the notion that the UHI leads to
an early start of growing season (SOS) and an overall increase in the length of the growing season
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(LOS). Conversely, the results show that depending on the methods used to select base pairs and
the software version used to make the predictions, the effects urban areas have on the timing of the
end of the growing season (EOS) can fluctuate. By using the fusion method, we were able to work
toward understanding some of the advantages and challenges of modeling the heterogeneous urban
landscape while preserving temporal accuracy. Overall, it allowed us to not only see a difference in
phenological parameters between urban and exurban areas, but also to see that regardless of fusion
method, there is variability among phenological parameters according to the land cover class at 30 m
resolution. Depending on the base pair selection and version of STARFM, the differences in mean
earlier urban SOS between land cover classes within each selection criteria ranged from as many as 4.5
to as few as 2.5 days, the differences in mean EOS urban delay between land cover classes ranged from
0.67 to 2.3 days, and the differences in mean longer urban LOS ranged from 3.6 to 3.9 days. Without
having the temporal and spatial resolution of a fused image, these intercity variations in phenological
parameters might not be observable.

However, how well the changes detected correlate to actual in situ conditions and the actual
timing of phenological events is unknown. Lastly, it has yet to be determined how much information
that describes phenology is gained by fusing the data and to what extent errors are introduced into
these estimations.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/9/1/99/s1,
Figure S1: Histograms of stacked data for (a1–c10) informal selection of base pairs; (d1–f10) 95% clear threshold
for selection of base pairs; and (g1–i10) 90% clear threshold for selection of base pairs.
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