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Abstract: An accurate estimation of biomass is needed to understand the spatio-temporal changes
of forage resources in pasture ecosystems and to support grazing management decisions. A timely
evaluation of biomass is challenging, as it requires efficient means such as technical sensing methods
to assess numerous data and create continuous maps. In order to calibrate ultrasonic and spectral
sensors, a field experiment with heterogeneous pastures continuously stocked by cows at three
grazing intensities was conducted. Sensor data fusion by combining ultrasonic sward height (USH)
with narrow band normalized difference spectral index (NDSI) (R%cy = 0.52) or simulated World View?2
(WV2) (R?cy = 0.48) satellite broad bands increased the prediction accuracy significantly, compared
to the exclusive use of USH or spectral measurements. Some combinations were even better than
the use of the full hyperspectral information (R2cy = 0.48). Spectral regions related to plant water
content were found to be of particular importance (996-1225 nm). Fusion of ultrasonic and spectral
sensors is a promising approach to assess biomass even in heterogeneous pastures. However, the
suggested technique may have limited usefulness in the second half of the growing season, due to
an increasing abundance of senesced material.

Keywords: pasture biomass; ground-based remote sensing; ultrasonic sensor; field spectrometry;
sensor fusion; short grass

1. Introduction

To understand the spatio-temporal changes of forage resources in pasture ecosystems and to
support grazing management decisions, an accurate estimation of biomass is needed [1-3]. However,
a timely evaluation of biomass is a challenge, as it requires targeted and efficient means to assess
numerous data for the creation of continuous maps. Though the traditional “clip-and-weigh” methods
of measuring biomass are highly accurate, it is costly, destructive, labor-intensive and time-consuming
to obtain biomass properties at a high sampling density. Alternatively, ground-based remote sensing
techniques have been used as rapid and non-destructive methods to obtain and map the temporal
and spatial variability of vegetation characteristics with high spatial resolution in agricultural and
pastoral ecosystems [4-6]. Pastures are highly heterogeneous systems due to variations in sward
structure, composition and phenology as well as continuous changes caused by different drivers
such as environmental factors and grazing. Therefore, the application of sensors in complex grazing
systems is difficult and there are some limitations for each specific sensor used for the prediction of
sward characteristics [7,8]. To overcome these constraints, the combination of complementary sensor
technologies has been suggested to utilize both the strengths and compensate the weaknesses of
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individual technologies. Combined sensor systems can support multi-source information acquisition
and may provide more accurate property estimates and eventually improved management [9]. Even
though some studies have investigated such strategies in different farming fields [10,11], to date, these
techniques have not been tested in pastures with complex sward diversity. Thus, an evaluation of
sward specific calibration is essential before assessing data on a spatial scale.

Ultrasonic and reflectance sensors are two possible complementary technologies capable of
providing comprehensive structural and functional characteristics of vegetation [4,10,12-15]. Sward
height measured by ultrasonic distance sensing (referred to as ultrasonic sward height (USH)) has been
examined as a possible estimator of biomass in forage vegetation canopies [5,16]. However, the main
limitation of this technique is that signals are reflected predominantly from the upper canopy layers,
regardless of sward density [4]. Moreover, sonic reflections can be affected by canopy architecture,
such as lamina size, orientation, angle and surface roughness of the leaves [5,16,17].

Hyperspectral sensors have also raised considerable interest as a potential tool for prediction
of biomass and forage quality in pastures. However, difficulties occur at advanced developmental
stages of vegetation, as the ability of the reflectance sensor to detect canopy characteristics could be
limited by the presence of a high fraction of senescent material in biomass [18,19] or soil background
effects [18], atmospheric conditions [20], grazing impact [21] and heterogeneous canopy structures due
to mixed species composition and a wide range of phenological stages [1,22,23]. Remarkably, most
studies utilizing remotely sensed data for the estimation of grassland and rangeland biomass were
conducted in tropical savannas, since these ecosystems account for 30% of the primary production
of all terrestrial vegetation. In contrast, comparable studies on grasslands in temperate climates are
rare [24].

The limitations of ultrasonic and hyperspectral reflectance sensors in heterogeneous pastures
may be compensated by a combined use of measurement data from both sensors, as shown by [4]
for less variable legume/grass-mixtures. Thus, the main objective of the present study was to
analyze the potential of ultrasonic and hyperspectral sensor data fusion in pastures with high
structural sward diversity to predict biomass, which is a prerequisite for future mapping of spatially
heterogeneous grassland.

2. Materials and Methods

2.1. Study Area and Site Characteristics

For data acquisition, a long-term pasture experiment was chosen at the experimental farm
Relliehausen of the University of Goettingen (51°46’55”N, 9°42/13”E, 180-230 m above mean sea
level; soil type: pelosol-brown earth; soil pH: 6.3; mean annual precipitation: 879 mm; mean annual
daily temperature: 8.2 °C). The plant association was a moderately species-rich Lolio-Cynosuretum [25].
The pastures exhibited pronounced heterogeneity in sward structure, with short and tall patches
and various sward height classes [26,27]. Three levels of grazing intensity were allocated to adjacent
pasture paddocks of 1 ha size, which were continuously stocked by cows from the beginning of May
to mid-September. Grazing intensities were: (a) moderate stocking, average of 3.4 standard livestock
units (SLU, i.e., 500 kg live weight) ha~!; (b) lenient stocking, average 1.8 SLU ha~!; and (c) very
lenient stocking, average 1.3 SLU ha~! [25]. To ensure extensive sward variation for data assessment,
one representative study plot of 30 x 50 m size was selected within each of the three paddocks using
a grazed /ungrazed-classified aerial image to obtain comparable surface proportions.

2.2. Field Measurements

Field measurements were conducted at four sampling dates (designated from now on as Date 1
to Date 4) in 2013: (Date 1) 25 April to 2 May (before grazing), (Date 2) 3 to 5 June, (Date 3) 21 to
23 August and (Date 4) 30 September to 2 October (after final grazing) within each study plot. In each
campaign, 18 reference sample plots (each 0.25 m?) were chosen within each of the 3 study plots,
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adding up to a total of 54 samples per date which represented the existing range of available biomass
levels and sward structures. To verify a representative biomass range, a stratified random sampling
was performed. In each study plot, three levels of sward height (low, medium, and high) were
sampled randomly to compile all date-specific biomass levels in the data set. A Trimble GeoXH GPS
device (Trimble Navigation Ltd., Sunnyvale, California, USA) with DGPS correction from AXIO-net
(Hannover, Germany, PED-RTK 420 mm) was used to avoid repeated sampling at the same location
during the growing season.

2.2.1. Ground-Based Remote Sensing Measurements

Sensor measurements took place prior to reference data assessment. Hyperspectral data was
measured using a hand-held portable spectro-radiometer (Portable HandySpec Field VIS/NIR, tec5,
Germany) in a spectral range of 305-1700 nm. Spectral readings were recorded in 1 nm intervals.
Measurements were made from a height of about 1 m above and perpendicular to the soil surface
between 10:00 a.m. and 2:00 p.m. (local time) in clear sunshine. The sensor had a field of view of
25°. Spectral calibrations were performed at least after every six measurements using a greystandard
(Zenith® Diffuse Reflectance Standard 25%). Ultrasonic sward height (USH) measurements took
place subsequent to hyperspectral measurements using an ultrasonic distance sensor of type UC
2000-30GM-IUR2-V15 (Pepperl and Fuchs, Mannheim, Germany). The sensor specific sensing range
was from 80 to 2000 mm within a sound cone formed by an opening angle of about 25° [28]. Ultrasonic
sward height (mm) was calculated by subtracting the ultrasonic distance measurement value in mm
from the sensor mount height using Equation (1).

USH (mm) = Mount height (mm) — Ultrasonic distance (mm) 1)

At each sampling plot, five measurements were recorded with the ultrasonic sensors placed at
five positions on a frame at a height of about 1 m. Further details of the USH device and methodology
can be found in Fricke et al. [5]. In addition to sensor measurements, plant composition of all sampling
plots was assessed according to the method of Klapp and Stahlin [29] by visually estimating the
abundance and dominance of all plant species.

2.2.2. Sampling of Reference Data

The biomass of each sampling plot was cut at ground surface level. Total fresh matter yield was
measured and representative sub-samples were either directly dried in the oven for 48 h at 105 °C
for the calculation of total dry matter yield or sorted into fractions of grasses, legumes, herbs, mosses
and dead material and subsequently also dried at 105 °C for 48 h to determine the proportion of
each functional group. These data were used as reference values (dependent variables) in regression
analysis procedures.

2.3. Data Analysis

Prior to analysis, an insignificant number of outliers (maximum two were excluded), which
appeared as extreme outliers in the box plot analysis [30], were excluded from the dataset due to
incorrectly entered or measured data. Moreover, noisy parts of the hyperspectral data (305-360 nm,
1340-1500 nm and 1650-1700 nm) were eliminated, leaving 1126 spectral bands between 360 and
1650 nm. Datasets were combined using a common dataset (n = 214) comprising samples from all
study plots (grazing intensities) and all dates, as well as subsets for each date representing a typical
phenological status of plants during the vegetation period (n = 52—54). A modified partial least squares
regression (MPLSR) was applied as a powerful and full-spectrum based method to analyze the original
reflectance values using the WINISI III package (Infrasoft International, LLC. FOSS, State College, PA,
version 1.63). To evaluate the potential of a 2-band vegetation index across the available hyperspectral
range, the normalized difference spectral index (NDSI) [31] was applied over the range of all single
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(n = 1126) wavebands using all possible combinations of two-band reflectance ratios based on the
NDVI formula [32] according to Equation (2):

NDSI (b1, b2) = bl —b2/ bl +b2 @)

where b1 and b2 represent spectral bands of reflection signals with Wavelength bl > Wavelength b2.

To test the performance of the multispectral approach used in satellites, hyperspectral data
were re-combined into 8 broad wavebands according to WorldView-2 satellite images: coastal
(400-450 nm), blue (450-510 nm), green (510-580 nm), yellow (585-625 nm), red (630-690 nm),
red edge (705-745 nm), near infrared-1 (770-895 nm) and near infrared-2 (869-900 nm) (http:
/ /www.landinfo.com/WorldView2.htm).

Ordinary least squares regression analysis was performed using the statistical program R to
examine the relationship between the dependent variables (fresh matter yield, dry matter yield and
dead material proportion) and USH (Equation (3)), NDSI and satellite bands exclusively (Equations (4)
and (5)) and as a combination of USH with variables calculated from hyperspectral data (Equations (6)
and (7)) to compare their potential for sensor fusion. After having examined the data and verified
that saturation effects could be excluded, it was assumed that squared variables would sufficiently
represent possible non-linear effects. Regardless, due to the limited sample size of n < 54, squared
satellite band variables were omitted from the regressions to reduce the risk of over-fitting.

Exclusive ultrasonic sward height

Y = USH + USH? 3)
Exclusive vegetation index
Y = NDSI + NDSI? (4)
Exclusive satellite bands
Y =X1+X2+...4 Xn (5)

Combination of ultrasonic sward height and vegetation index

Y = USH + NDSI + USH x NDSI + USH? + USH? x NDSI + NDSI? + USH x NDSI?> + USH? x NDSI?> (6)
Combination of ultrasonic sward height (USH) and satellite bands

Y = USH + USH? + X1 + X2 +...+ Xn + USHx X1 +...4+ USH x Xn + USH x X1 +...+ USH? x Xn (7)

where Y = fresh matter yield (FMY) (g'm~2), dry matter yield (DMY) (g'm~2) or dead
material proportion (DMP) (% of DMY); USH = ultrasonic sward height (mm); NDSI = 2-band
combination vegetation index derived from hyperspectral data based on original NDVI formula;
and X = World View-2 satellite bands.

To determine the best NDSI wavebands in order to maximize R?, wavelength selection was first
conducted according to Equation (4) and (6) for each target parameter. Thus, all possible 2-band NDSI
combinations, in all 633,375 indices, were individually used in linear regression models for each sensor
combination. The best fit wavelengths for the full models were then used to develop regression models.
According to the rules of hierarchy and marginality [33,34], non-significant effects were excluded
from the models using a step-wise approach, but were retained if the same variable appeared as part
of a significant interaction at «-level of 5%. In order to reduce the risk of over-fitting, all models
were validated by a four-fold cross validation method [35]. The prediction accuracy was evaluated
using two measures: (a) the cross-validated squared correlation coefficient (R?cy), which describes the
linear relation between the measured dependent variables (i.e., FMY, DMY, and DMP) and the values
predicted by the linear model; and (b) the cross-validated root mean square error (RMSEcy), which
describes the average deviation of the estimated values from the observed ones.
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3. Results

3.1. Sward Characteristics

Biomass as FMY and DMY varied from 68.8 to 3207 g-m~2 and from 29.2 to 691.9 g-m~2 with
an overall mean value of 823.9 g:m~2 and 276.4 g-m 2, respectively, for all sampling dates (Table 1).
The sampling date at the beginning of June (Date 2) exhibited the highest biomass (mean value of
1240 g'm~2 and 314.5 g-m~2 for FMY and DMY, respectively), whereas Date 4 showed the lowest
biomass (mean value of 567.5 g-m 2 and 237.6 g-m 2 for FMY and DMY, respectively). USH ranged
from 7 to 646 mm during the growing season and the lowest sward heights were found at Date 1
(mean value = 136 mm). A wide range of DMP (1.4% to 83.6% of DM; sd = 20.5%) was observed
throughout the growing season. The highest variability of DMP was observed at more advanced
developmental stages of swards (Date 3 and 4; sd = 18.8% and 17.7% of DMY, respectively) which also
delivered the highest mean values of DMP (45.7% and 40% of DMY, respectively). The proportion
of grass was always considerably higher than proportions of legumes and herbs. The proportion of
moss was negligible (overall mean value 1.9%). In total, 48 species were identified in the sampling
plots (Table Al). The most important species were Dactylis glomerata (Constancy, C = 89.7%) and
Lolium perenne (C = 70.1%) among the grasses, Trifolium repens (C = 39.7%) and Trifolium pratense
(C =17.8%) among the legumes, and Taraxacum officinale (C = 57.5%) and Galium mollugo (C = 40.7%)
among the herbs.

Table 1. Descriptive statistics of dry matter yield, fresh matter yield, ultrasonic sward height and
proportion of mosses, grasses, legumes, herbs and dead materials for common and date-specific swards.

N Min Max Mean Sd Min Max Mean Sd
Dry matter yield (g-m~2) Fresh matter yield (g-m~2)
Common 214 29.2 691.9 276.4 145.5 68.8 3207.0 823.9 554.6
Date 1 54 51.9 612.1 248.8 130.0 140.0 1883.0 739.6 416.9
Date 2 54 319 691.9 314.5 180.2 107.2 3207.0 1240.0 785.6
Date 3 52 68.2 654.8 305.7 138.1 148.0 1822.0 7454 337.0
Date 4 54 29.2 468.8 237.6 112.7 68.8 1325.0 567.5 281.7
Ultrasonic sward height (mm) Grass proportion (% of DM)
Common 214 7 646 252 151 8.0 93.7 50.6 239
Date 1 54 7 438 136 99 129 81.1 449 16.8
Date 2 54 31 646 364 174 8.2 93.7 722 19.0
Date 3 52 105 615 268 119 8.8 929 419 24.8
Date 4 54 48 576 240 107 8.0 85.3 43.1 20.6
Legume proportion (% of DM) Moss proportion (% of DM)
Common 214 0.0 39.6 2.9 6.8 0.0 27.5 1.9 44
Date 1 54 0.0 36.4 4.7 8.2 0.0 21.3 49 6.1
Date 2 54 0.0 39.6 41 9.0 0.0 14.7 0.7 24
Date 3 52 0.0 31.2 1.9 5.0 0.0 27.5 1.6 44
Date 4 54 0.0 7.1 0.6 1.6 0.0 5.8 0.3 0.9
Herb proportion (% of DM) Dead material proportion (% of DM)
Common 214 0.0 63.7 13.1 129 14 83.6 31.6 20.5
Date 1 54 0.0 44.6 13.6 12.7 2.5 70.3 31.9 149
Date 2 54 0.0 63.7 13.9 15.0 14 37.6 9.2 6.4
Date 3 52 0.0 47.5 14.6 12.8 3.9 76.3 40.0 18.8
Date 4 54 0.0 421 10.3 10.8 10.5 83.6 45.7 17.7

3.2. Exclusive use of Ultrasonic Sward Height

Prediction accuracies for DMY and FMY varied significantly between sampling dates and were
predominately low (Figures 1 and 2). Higher accuracies were achieved at Date 1 both for DMY and
FMY (R%cy = 0.73 and 0.80 respectively) when sward heights were much lower than at later dates.
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The lowest R? values were found at Dates 3 and 4 (R%cy < 0.40). DMP had very weak or no correlation
with USH and, thus, data are not shown.
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Figure 1. Cross-validation (CV) results for a range of sensor models used for prediction of fresh matter
yield (FMY), including exclusive use of ultra-sonic sward height (USH), all hyperspectral wavebands
using modified partial least squares regression (MPLSR), normalized difference spectral index (NDSI),
and multispectral representation of World View-2 wavebands (WV2), as well as models formed from

combinations of these sensors.
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Figure 2. Cross-validation (CV) results for a range of sensor models used for prediction of dry matter
yield (DMY), including exclusive use of ultra-sonic sward height (USH), all hyperspectral wavebands
using modified partial least squares regression (MPLSR), normalized difference spectral index (NDSI),
and multispectral representation of World View-2 wavebands (WV2), as well as models formed from

combinations of these sensors.
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3.3. Exclusive Use of Spectral Data

Maximum prediction accuracy based exclusively on NDSI was found mostly with bands between
1035 and 1139 nm, i.e., the ascending slope of the first water absorption band and the descending
slope of the second water absorption band. The ascending slope of the second water absorption
band (1188 to 1305 nm) was found to be the most important part of the spectrum for prediction of
DMP (Table 2). Among models utilizing sensors exclusively, the MPLSR prediction accuracy was
best both for DMY (R?cy of 0.48 for common and 0.15-0.79 for date-specific models) and FMY (0.67
and 0.33-0.86 respectively) (Figures 1 and 2). For DMP the MPLSR prediction was only best for the
common model and date 1 (R%2¢cy of 0.76 and 0.67), while for the other dates the NDSI showed the
best results (R?>cy between 0.43 and 0.68) (Figure 3). This regression approach integrates spectral
information from the whole hyperspectral range and its usefulness for measuring grassland properties
has been acknowledged by other studies [36—40]. The predictive power of WorldView2 (WV2) bands
(R? 0.13-0.55) was not satisfactory and never outperformed the NDSI or MPLSR approach.

Table 2. Wavelength position of best-fit band combination (b1, b2) for the normalized difference
spectral index (NDSI) exclusively and in combination with ultrasonic sward height (USH) predicted
target parameter.

Common (n = 214) Date 1 (n =54) Date 2 (n = 54) Date 3 (n =52) Date 4 (n = 54)

bl b2 bl b2 bl b2 bl b2 bl b2
Dry matter yield (g-mfz)

NDSI 1035 1051 389 609 1097 1139 1122 1128 769 778
USH + NDSI 521 578 1215 1225 1024 1031 1116 1118 1622 1633
Fresh matter yield (g-m~2)

NDSI 1117 1134 1040 1073 1080 1104 1122 1128 751 782
USH + NDSI 1077 1086 996 1005 536 564 1122 1135 1621 1633
Dead material proportion (% of dry matter yield)

NDSI 1242 1305 1231 1285 1188 1202 1236 1281 1187 1206
R%y RMSEy (% of dry matter yield)
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Figure 3. Cross-validation (CV) results for a range of sensor models used for prediction of dead material
proportion (DMP), including exclusive use of all hyperspectral wavebands using modified partial
least squares regression (MPLSR), normalized difference spectral index (NDSI), and multispectral
representation of WorldView-2 wavebands (WV2) as explanatory variables.
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Figure 4. Plots of fit between measured and predicted dry matter yield (DMY) for exclusive

use of ultrasonic sward height (USHeycjusive) and the best fit normalized difference spectral
index (NDSlgyusive) as well as a combination of USH and NDSI (USH + NDSI) applied in
date-specific swards.

3.4. Sensor Data Fusion Using Combinations of USH and Spectral Variables

Combination of USH with the applied spectral variables increased R%cy -values for common
swards from 0.42 (USH exclusively) to a maximum of 0.52 (NDSI combined with USH) for DMY and
from 0.42 (USH exclusively) to a maximum of 0.63 (NDSI combined with USH) for FMY in common
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swards (Figures 1 and 2). Irrespective of spectral sensor configuration, date-specific calibrations of
yield parameters for Dates 1 and 2 performed better than for Dates 3 and 4. The combination of
USH and NDSI consistently produced the best results, both in common and date-specific calibrations.
Similar to the model findings with exclusive use of NDSI, the dominant bands of NDSI when in
combination with USH were mostly located at water absorption bands, i.e., the ascending slop of
the first absorption band (between 996 and 1086 nm) and the ascending slope of the second water
absorption band (1215 to 1225 nm) as well as the green region in the visible spectrum (521 to 578 nm)
(Table 2). Figure 4 shows example plots of fit for DMY prediction based on USH and NDSI and
provides a comprehensive insight into the effects of sensor combination. It becomes clear that with
exclusive use of sensors, calibration models led to an overestimation at low levels of DMY, whereas
higher values were underestimated. An improvement of fit by combining sensors is obvious for
all sampling dates (except Date 3), as demonstrated by higher R?cy -values and convergence of the
regression line to the bisector. Yield predictions in heterogeneous pastures as presented in this study
partly show a complex interaction between USH, NDSI and DMP (Figure 5). At higher levels of NDSI
(here seen as a measure of, e.g., sward density), DMY and FMY basically follow a linear increase with
USH gain (here seen as a measure for sward height), regardless of DMP. In contrast, at low levels of
NDSI, DMY and FMY curves show differing trends. While DMY (Figure 5A) just shows a parallel shift
to lower yield levels, FMY (Figure 5B) in swards with high DMP shows a saturated curve.
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Figure 5. Predictions of dry matter yield (DMY) (A); and fresh matter yield (FMY) (B) in common
swards based on ultrasonic sward height (USH) and the Normalized Difference Spectral Index (NDSI)
as influenced by dead material proportion (DMP) in the range of + standard deviation (SD). NDSI
represents narrow-band reflection values selected in combination with USH for each parameter.
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4. Discussion

4.1. Exclusive Use of USH

Sward height measured by ultrasonic sensors seems to become a poorer predictor of biomass
with progression of the grazing season, as partly utilized patches were short in height but had a dense
biomass. In addition, some species such as Dactylis glomerata and Festuca rubra frequently grow in dense
tussocks and produce high biomass at low height, which results in an underestimation of biomass by
USH (Figure 1). In some patches rejected by animals, very tall and mature species like Cirsium arvense,
elongated stems of Galium mollugo or very tall and sparse individuals of Phleum pratensis at inflorescence
stage occurred. Such sward structures may tend to be overestimated (Figure 1) and may have boosted
USH measures although the amount of biomass was not particularly high. This effect was also
observed by Fricke et al. [5], who further showed that the relationship between forage mass and USH
could be influenced by weed proportion, as some weeds grow higher than the sown species. Beside
the heterogeneity of canopy structure, variation in leaf angle among plant species and movements
of swards during measurement due to wind may have further affected the reflection of ultrasonic
signal [16,17]. In summary, exclusive use of USH measurements produced low prediction accuracies
for yield parameters in heterogeneous pastures.

4.2. Exclusive Use of Spectral Data

Most spectral variables gave better prediction accuracies than exclusive use of USH measurements.
This finding does not match that of Fricke et al. [4] and Adamchuk et al. [41] who reported that exclusive
use of USH achieved better results than exclusive use of narrow or broad band spectral vegetation
indices for prediction of biomass in more homogeneous grasslands. Contrary to yields, separation of
the common dataset into date-specific subsets did not improve prediction accuracy for DMP (Figure 3).
Yang and Guo [19] found that the relationship between dead material cover and spectral indices is
a function of the amount of dead material, and they concluded that spectral indices could be used for
estimating dead material cover which is greater than 50% in mixed grasslands. In this respect, the lower
model accuracies for yield at later dates may be partly attributed to the higher amount of dead material
at this time. The higher proportion of explained variance in DMP by spectral variables may reflect the
impact of dead materials on the canopy reflectance at Date 3 (R?cy = 0.43-0.64) and, to a lesser degree,
at Date 1 (R?cy = 0.26-0.49) and Date 4 (R?*cy = 0.39-0.66). In contrast, DMP is much lower at Date 2,
which corresponds to lower R2cy values for DMP prediction (0.09-0.24) (Figure 3), but allows higher
accuracies for yield prediction, as low levels of DMP are inversely related to higher proportions of
green plant material. This is consistent with findings by Chen et al. [42], who pointed out that spectral
indicators usually collect data over green vegetation rather than mature and dry vegetation.

Dominant bands of NDSI were mostly located at water absorption bands. This dominance of
water absorption bands can be explained by the strong relationship between biomass and canopy water
content [43,44]. The importance of water absorption bands for estimating biomass is also confirmed
by other investigations [4,45]. Numata et al. [22] found that water absorption features derived from
hyperspectral sensors were better measures for estimating pasture biomass compared to spectral
vegetation indices, such as Normalized Difference Vegetation Index and Normalized Difference Water
Index. In summary, the yield of pastures with complex sward structures could barely be predicted
using sensor measurements exclusively.

4.3. Sensor Fusion

Prediction accuracies of the combined measurements were high in the early stages of the grazing
season. However, sward structures were so complex at later stages of the grazing season, that
even sensor combinations did not produce satisfactory results. Considering the consequences of
these limitations for the implementation of sensor data fusion in precision agriculture, it should be
noted that the productivity of cool-season pastures is usually highest in the first half of the growing
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season [46] when the best results with combined sensor data were obtained. Thus, sensor data fusion
gains more importance in this particular part of the vegetation period, when efficient and timely
estimates of available biomass is most relevant for grazing management decisions. Furthermore,
major management measures (e.g., fertilization, evaluation of botanical sward composition) are also
typically scheduled before summer, when pasture growth is frequently limited by water scarcity or
progressively reduced day lengths.

The fusion of sonar and spectral variables always performed better in predicting yield parameters
than the use of each sensor alone. However, the interactions between the two groups of variables
with the measured vegetation parameter are complex, particularly for situations with high DMP.
Pastures with high cover of dead material might consist of both compacted xeric material leading to
higher yield levels at low sward height and sparse high growing mature shoots reaching higher sward
layers without much contribution to yield. In contrast, at low DMP, NDSI seems to be more closely
linked to pure sward density of green vegetation. The inter-relationship between selective grazing and
species phenology creates a broad variation of sward structures posing an enormous challenge for any
sensor applications.

Comparable to NDSI, WV2 bands also proved to be an effective spectral tool in combination with
USH. This is of particular interest, as this finding points to the potential of the Word View-2 satellite
system to provide large-scale images with an acceptable spatial resolution to assess larger pasture
areas in farming practice. The relatively high prediction accuracy of WV2 bands, particularly in the
major growth period during the first half of the year, opens up a perspective for the development of
future management assistant tools. Continuous biomass monitoring based on advanced multispectral
satellite images with high spatial resolution like WorldView and GeoEye can be used as support for
management decisions such as the planning of grazing time and grazing intervals for cattle on pasture
paddocks, site specific re-sowing or targeted cut of less-preferred sub-areas. However, further research
is necessary to evaluate the availability of reliable images at a high repetition frequency and their
combination with sward height data, as for instance, derived from radar satellites.

5. Conclusions

Mapping the spatio-temporal dynamics of pasture is a necessary prerequisite for making effective
grassland management decisions and ensuring timely actions. In order to understand spatio-temporal
dynamics, accurate measures of grassland characteristics, such as biomass, are needed, which should
preferably be measured in a non-destructive manner. The present study revealed the potential of
ultrasonic and hyperspectral sensor data as a non-destructive measurement method for the prediction
of biomass in pastures characterized by a high structural diversity.

Our new approach of combining ultrasonic and hyperspectral sensor data improved the precision
of biomass estimation when compared to the results gained by each single sensor. In particular,
the combination of ultrasonic sensors with a selected subset of hyperspectral bands increased the
prediction accuracy significantly. This finding may constitute a promising link to practical use because
the identified bands are already implemented on satellite platforms.

However, the inter-relationship between selective grazing and species phenology poses an
enormous challenge to sensor applications because it creates highly complex variation in sward
structure. More advanced and complex sensor systems are needed to overcome such limitations
and future studies should therefore aim at further systematically testing a variety of different sensor
applications and their combinations. Purchasing a full range hyperspectral radiometer is still costly
and is, therefore, hardly an economically feasible option for grassland managers. This poses another
challenge for the practical applicability of the presented methods and should be considered in future
studies. However, the increasing use of such sophisticated sensors leads to the assumption that prices
will decrease in the future.
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Appendix A

Table A1. List of pasture species identified in 214 sampling plots in 2013 with their minimum, maximum
and mean values of dry matter contribution estimated according to the Klapp and Stihlin method.
Constancy (Const.) refers to the relative proportion of plots containing the respective species.

Species Min Max  Mean C?,HSL Species Min Max  Mean C(:nst.

(%) (%)
Grasses Herbs
Agrostis stolonifera 0.0 79.4 9.22 54.2 Achillea millefolium 0.0 85.0 0.92 51
Alopecurus pratensis 0.0 95.0 3.83 13.6 Anthriscus sylvestris 0.0 28.0 0.13 0.5
Arrhenatherum elatius 0.0 1.0 0.00 0.5 Bellis perennis 0.0 59.0 0.31 2.3
Bromus mollis 0.0 7.0 0.10 3.7 Centaurea jacea 0.0 1.0 0.00 0.5
Cynosurus cristatus 0.0 59.6 1.77 10.3 Cerastium holosteoides 0.0 4.0 0.23 19.6
Dactylis glomerata 0.0 94.0 25.68 89.7 Cirsium arvense 0.0 40.0 1.14 9.3
Deschampsia caespitosa 0.0 90.0 0.59 0.9 Cirsium vulgare 0.0 15.0 0.30 7.0
Elymus repens 0.0 80.0 5.82 36.9 Convolvulus arvensis 0.0 28.6 0.39 6.1
Festuca pratensis 0.0 85.0 0.71 5.6 Crepis capillaris 0.0 20.0 0.38 6.1
Festuca rubra 0.0 95.4 4.85 21.0 Erophila verna 0.0 4.0 0.04 47
Lolium perenne 0.0 88.6 15.64 70.1 Epilobium spec. 0.0 16.0 0.20 4.7
Phleum pratense 0.0 4.0 0.06 2.3 Galium mollugo 0.0 88.0 9.67 40.7
Poa annua 0.0 1.0 0.01 0.9 Geranium dissectum 0.0 13.0 0.20 13.6
Poa pratensis 0.0 45.0 2.32 27.6 Geum urbanum 0.0 30.0 0.19 3.3
Poa trivialis 0.0 16.0 1.28 25.2 Hieracium pilosella 0.0 0.2 0.00 0.5
Lamium purpureum 0.0 38.0 0.21 23
Legumes Leontodon hispidus 0.0 2.0 0.02 19
Medicago lupulina 0.0 5.0 0.03 0.9 Plantago lanceolata 0.0 35.0 0.56 10.7
Trifolium campestre 0.0 20.0 0.17 19 Plantago major 0.0 3.0 0.01 0.5
Trifolium dubium 0.0 25.0 0.18 3.7 Taraxacum officinale 0.0 83.0 5.89 57.5
Trifolium pratense 0.0 61.0 1.50 17.8 Ranunculus acris 0.0 10.0 0.20 6.5
Trifolium repens 0.0 49.6 2.49 39.7 Ranunculus repens 0.0 71.8 1.35 23.8
Vicia cracca 0.0 1.0 0.00 0.5 Rosa spec. 0.0 5.0 0.04 0.9
Rumex acetosa 0.0 4.0 0.03 14
Urtica dioica 0.0 84.0 1.09 2.8
Veronica chamaedrys 0.0 4.0 0.03 19
Veronica serpyllifolia 0.0 35.0 0.19 19
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