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Abstract: Accurate maps of surface water extent are of paramount importance for water management,
satellite data processing and climate modeling. Several maps of water bodies based on remote
sensing data have been released during the last decade. Nonetheless, none has a truly (90◦N/90◦S)
global coverage while being thoroughly validated. This paper describes a global, spatially-complete
(void-free) and accurate mask of inland/ocean water for the 2000–2012 period, built in the framework
of the European Space Agency (ESA) Climate Change Initiative (CCI). This map results from the
synergistic combination of multiple individual SAR and optical water body and auxiliary datasets.
A key aspect of this work is the original and rigorous stratified random sampling designed for the
quality assessment of binary classifications where one class is marginally distributed. Input and
consolidated products were assessed qualitatively and quantitatively against a reference validation
database of 2110 samples spread throughout the globe. Using all samples, overall accuracy was
always very high among all products, between 98% and 100%. The CCI global map of open water
bodies provided the best water class representation (F-score of 89%) compared to its constitutive
inputs. When focusing on the challenging areas for water bodies’ mapping, such as shorelines, lakes
and river banks, all products yielded substantially lower accuracy figures with overall accuracies
ranging between 74% and 89%. The inland water area of the CCI global map of open water bodies
was estimated to be 3.17 million km2 ± 0.24 million km2. The dataset is freely available through the
ESA CCI Land Cover viewer.

Keywords: water; global; complete; compilation; accuracy; validation; stratified random sampling;
marginal class; Climate Change Initiative; climate modeling community

Remote Sens. 2017, 9, 36; doi:10.3390/rs9010036 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2017, 9, 36 2 of 20

1. Introduction

Fresh surface water is one of the most precious resources on Earth, fulfilling social, economic and
environmental services [1,2]. Climate change and population growth increasingly affect, with large
spatial disparities, water resources’ availability, quality [3], hydrological flows [4] and related
biodiversity [5]. Although access to freshwater is an integral part of the Millennium Development
Goals of ensuring a sustainable environment [6], about 1.2 billion people live in scarce water areas [7].
Reliable assessment of the world water resources is therefore of paramount importance for decision
making, governance and mitigation [8]. Maps depicting the distribution and extent of surface water
also support hydrological simulation analyses, climate modeling and satellite data processing. Maps of
open water bodies allow retrieving key climate variables, such as evaporation, water/land surface
temperature, energy balance, selecting appropriate aerosol algorithms and sharing a common coastline
map between processes.

Traditionally, cartographic methods with the support of Earth observation data have been used to
delineate water bodies. The Global Lakes and Wetlands Database (GLWD) [9] compiled large-scale and
regional sources for lakes, reservoirs and wetlands greater than 0.1 km2 dating prior to 2000. The Global
Insight Plus database [10] contains drainage features represented as lines/polylines at 1:1 Mscale with
a horizontal accuracy below or equal to 2048 m. The major caveats of such data products are the coarse
representation of water bodies, geolocation flaws and the risk of becoming obsolete.

Remote sensing is the primary tool to provide accurate, detailed and up-to-date characterization
of inland water bodies on a systematic basis for any location on Earth. A variety of methods and
datasets have been developed in the last decade to map open water bodies at global or near-global
scale (Table 1), using active radar and passive optical satellite observation, with moderate (250–1000 m)
and high spatial resolution (<30 m).

Table 1. Available water body products and their compliance with the user requirements of spatial
extent, completeness, thematic accuracy, inland water/ocean discrimination and spatial resolution.
GLWD, Global Lakes and Wetlands Database; SWBD, SRTM Water Body Dataset; WBI, Water Body
Indicator; GFC, Global Forest Change; GIW, Global Inland Water; G3WBM, Global 3 Arc-Second Water
Body Map.

Products Global Extent Completeness Thematic Overall Inland Water/Ocean Spatial Resolution
Accuracy <300 m

GLWD [9] no no not reported no no
Global Insight Plus [10] ! ! not reported ! no

SWBD [11] no ! not reported no !

SAR-WBI [12] no no ! no !

MOD44W [13] ! ! not reported no !

Copernicus WB [14] no no not reported ! no
GFC-datamask [15] no ! not reported no !

GIW v1.0 [16] no no not reported no !

G3WBM [17] no ! not reported ! !

The first wall-to-wall map of water bodies for large parts of the globe was obtained with Synthetic
Aperture Radar (SAR) data acquired during the Shuttle Radar Topography Mission (SRTM). The SRTM
Water Body Dataset (SWBD) [11] was obtained as a by-product of the main target of the mission,
i.e., a digital elevation model of all land masses imaged by the SAR. The SWBD has a spatial resolution
of 90 m, is void-free, with river continuity being ensured by a thorough post-processing of the initial
classification from the SAR data [18]. The SWBD map represents the water extent between 11 and
21 February 2000 between 60◦N and 54◦S. More recently, multi-temporal SAR metrics derived from
Envisat ASAR data acquired between 2005 and 2012 were exploited to generate a nearly global
dataset of permanent open water bodies. The dataset referred to as SAR-based Water Body Indicator
(SAR-WBI) covers land masses between 84◦N and 60◦S and has a spatial resolution of 150 m, except in
areas with predominant coarse resolution ASAR data takes (1000 m) [12]. The SAR-WBI was found to
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accurately characterize the spatial distribution of water bodies, primarily in the northern latitudes.
The major caveat of the SAR-WBI is the omission of water along shorelines and the absence of water
features being smaller than twice the pixel size.

The first water bodies dataset based on optical remote sensing data and reported in the literature
is the Global Raster Water Mask at 250-m resolution (MOD44W) [13].This dataset builds on the SWBD,
by filling gaps with MODIS optical data available for years 2000 and 2001. To achieve a truly global
extent, the classification was complemented with water detections from the MODIS data north of
60◦N and with a mosaic of Antarctica land masses [19] south of 60◦S [13]. In regions where water
was detected using MODIS data, water bodies smaller than 2–3 pixels may have been missed [13].
MODIS data at 250- and 500-m resolution were also used in the Global Water Pack methodology to
derive the daily temporal dynamics of water [20], but no product has been released so far. PROBA-V
acquisitions from January 2014 to present at a spatial resolution of 1000 m are used to generate the
Copernicus Global Land Service Collection 2 (Copernicus WB) dataset, consisting of water body maps
every 10 days between 80◦N and 60◦S [14].

High-resolution (30 m) Landsat time series were intensively exploited in the last few years to
detect water surfaces and monitor water dynamics. The Global Forest Change (GFC) product depicts
forest extent and change from 2000–2012 [15]. The sub-dataset “datamask” (hereafter, GFC-datamask)
includes the class “permanent water bodies” covering all land masses between 80◦N and 57◦S.
The 30-m Landsat Global Land Survey (GLS) data acquired for the 2000 epoch were used to generate
an inland surface water classification between 90◦N and 60◦S referred to as the Global Inland Water
(GIW) v1.0 product [16]. Using multi-temporal GLS images from 1990–2010, [17] produced a map
of permanent and seasonal water bodies referred to as the Global 3 Arc-Second Water Body Map
(G3WBM). The data product spans 90◦N and 60◦S and has a spatial resolution of 90 m. Pan-sharpened
Landsat 7 (14.25 m spatial resolution) imagery circa 2000 was used to generate the Global Water
Bodiesdatabase (GLOWABO), including all lakes larger than 0.002 km2 [21]. More recently, [22]
presented the Deltares Aqua Monitor and [23] the Landsat-based 30-year global surface water dynamics
with a spatial resolution of 30 m.

Most efforts reported in this section were not triggered by requirements expressed by a target
community of users. In the context of the European Space Agency (ESA) Climate Change Initiative,
the climate and remote sensing communities expressed the need for a global (90◦N–90◦S and
180◦W–180◦E), spatially-complete, accurate (maximum 10% error) mask of the open water body
product with a moderate resolution of a minimum of 300 m [24]. Transparency regarding the degree of
quality was required, as well. Distinction between inland water and oceans was requested as an
extra feature.

As shown in Table 1, the data products here reviewed fulfill such requirements only partially.
The extent was not global in most cases. Several data products presented voids (i.e., classes other
than land and water, like “no data”, cloud, snow, etc.), i.e., were not complete. Inland water/ocean
discrimination was seldom reported. The SWBD, the GFC-datamask, the Copernicus WB and the
Global Insight Plus were not thematically validated. Validation of these water body products, when
performed, followed various strategies. Accuracy assessments of the MOD44W [13], the GIW v1.0 [16],
the GLWD [9], the GLOWABO [21] and the G3WBM [17] rely on the comparison of the total water
bodies area between existing products. These methods of comparison are not site-specific, as no
information is provided about the location of disagreements between products. In addition, results are
not validated with reference data. To validate the SAR-WBI, confusion matrices were built over limited
areas using independent maps [12]. Santoro and Wegmüller [12] reported the Overall Accuracy (OA),
Producer Accuracy (PA), User Accuracy (UA) and Kappa indices. The variety of approaches does not
allow comparing strengths and weaknesses of available water body products. In addition, reference
validation datasets cover limited areas and are only used to validate a given product, without making
any performance comparison with other existing ones.
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As part of the land cover component of the ESA CCI, the overall objective of this study has been
to generate the CCI global map of open water bodies at 150 m that fulfills all criteria of the climate
modeling community. The moderate spatial resolution was found adequate for contemporary global
circulation, regional and emerging convection-permitting models that run at a current horizontal
spatial resolution coarser than 150 m [25–27]. Rather than developing new classification schemes,
we focused on the synergistic combination of multiple individual datasets. One key aspect of this
work is represented by an original and rigorous stratified random sampling designed for the quality
assessment of binary classifications where one class is marginally distributed (in this case, water).
This sampling design is used to validate the CCI global map of open water bodies and allows comparing
the performances with its constitutive inputs and key existing products.

This article is structured as follows. The selection of water body and auxiliary datasets relevant for
our objective is first presented (Section 2). Then, the methodology adopted to combine and consolidate
the selected input products is described along with the stratified random sampling design (Section 3).
The CCI global map of open water bodies and its assessment are presented in Section 4 and discussed
in Section 5. Finally, a set of conclusions and future outlooks are included in Section 6.

2. Material

2.1. Potential Products to Build the CCI Global Map of Open Water Bodies

With reference to the water body products listed in the Introduction, the GLWD, the Global Insight
Plus and the Copernicus WB were discarded a priori because they did not fulfill the target requirement
of a spatial resolution of less than 300 m. Furthermore, the MOD44W data product was not considered
due to the MODIS high view zenith angle that implies that individual observations regularly cover
several adjacent grid cells [28]. This effect can significantly increase the actual observation footprint
and reduce the effective spatial resolution. The GLOWABO database [21], the G3WBM [17], the
Deltares Aqua Monitor [22] and the product from [23] were not available at the time of this study.

As a consequence, only the SWBD, the SAR-WBI, the GFC-datamask and the GIW v1.0 dataset
were retained as candidate inputs to build the CCI global map of open water bodies. The SWBD
captured the actual water state of 10 days in February 2000 from the orthorectified SRTM radar
image [11]. Permanent water pixels of the GFC-datamask were selected as having a fraction of
water-flagged observations for all non-cloudy observations greater or equal to 50% of the Landsat
image time series selected during the growing season [29]. A thresholding algorithm was applied to
multi-temporal SAR metrics to map water bodies of the SAR-WBI [12]. In the GIW v1.0, water pixels
were the ones with the highest water/non-water probability calculated on each Landsat scene of the
GLS 2000 collection [16]. Product characteristics are presented in Table 2.

2.2. Auxiliary Datasets

Each of the selected datasets presents local errors related to imperfect delineation of glaciers.
These were corrected with the Randolph Glacier Inventory v3.2 (RGI) [30,31]. The RGI compiles glacier
outlines as a complement to the Global Land Ice Measurements from Space (GLIMS) initiative [30].
The RGI was selected for its wall-to-wall coverage of glaciers and frequent outline improvements.

To fill the data gap that would occur south of 60◦S when combining the input water body datasets,
the Scientific Committee on Antarctic Research Antarctic Digital Database (SCAR ADD) [32] was
selected. The SCAR ADD is a seamless compilation of coastline and topographic data for the continent
of Antarctica. The aim of SCAR ADD is to provide the best currently available data over Antarctica
with a maximum offset of 1000 m with respect to the true coastline [32].

Distinction between inland and ocean water relied on the Global Self-consistent, Hierarchical,
High-resolution Shoreline (GSHHS) dataset [33]. The GSHHS combines the World Vector Shorelines
(WVS) and the CIA World Data Bank II [33]. The WVS is the basis for shorelines with a working scale
of approximately 1:100,000. The GSHHS database considers rivers as inland water bodies limited by
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a straight line located inland at no more than 1.85 km from the river mouth [34]. The GSHHS dataset
was selected because of its global coverage and the accurate delineation of coastlines [33].

Table 2. Characteristics of the water body data products selected to compile the CCI global map of
open water bodies.

SWBD SAR-WBI GFC-Datamask GIW v1.0

Sensor/
mission

Shuttle Radar
Topography Mission Envisat ASAR Landsat Landsat

Data
source

Interferometric C- and
X-band observations

Multi-temporal SAR
backscatter observations Landsat time series

Global Land Survey
2000, collection of
Landsat images

Spatial
resolution 90 m (public release)

150 m or 1000 m
depending on ASAR

acquisition mode
30 m 30 m

Time frame
of EO data 11–22 February 2000 2005–2012 2000–2012 1999–2002

Legend 3 classes: water,
non-water, no data

3 classes: potential WB,
land, no data

3 classes: no data,
mapped land surface,

permanent water bodies

6 classes: no data,
land, water,

snow/ice, cloud
shadow and cloud

Spatial
extent 60◦N/56◦S 84◦N/60◦S 80◦N/57◦S 90◦N/60◦S

3. Method

The flowchart describing the compilation of the CCI global map of open water bodies is illustrated
in Figure 1. First, a qualitative assessment of quality of input datasets was necessary to identify their
strengths, weaknesses and potential synergies (Section 3.1). These were formalized in fusion rules
with the aim of achieving a truly global extent and a void-free dataset (Section 3.2). A consolidation
step was then implemented to remove macroscopic errors, ensure the completeness and eliminate
temporary water bodies (Section 3.3). The consolidated map was finally spatially resampled to the
target spatial resolution of 150 m (Section 3.4), and inland water was distinguished from ocean water
(Section 3.5). As a complement, a tool was developed to adapt format and projection according to user
needs (Section 3.6). All maps forming the CCI global map of open water bodies and the final product
were quantitatively assessed. The validation methodology is described in Section 3.7.

Figure 1. Flowchart outlining the compilation of the CCI global map of open water bodies. RGI,
Randolph Glacier Inventory; SCAR-ADD, Scientific Committee on Antarctic Research Antarctic Digital
Database; GSHHS, Global Self-consistent, Hierarchical, High-resolution Shoreline.
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3.1. Qualitative Assessment of Input Water Body Maps

The qualitative assessment of the SAR-WBI, the GFC-datamask, the GIW v1.0 and the SWBD was
guided by the following user requirements: completeness, quality and spatial resolution. None of
these products fulfilled the requirements on global extent and inland/ocean water delineation.

The completeness of each product was assessed by calculating the percentage and location of
no data values or thematic classes different from land or water. The GIW v1.0 included the highest
proportion of invalid data (9%), spread over land masses. Invalid data belong to classes “no data”,
“snow/ice”, “cloud shadows” and “clouds”. Invalid data in the SAR-WBI and GFC-datamask were
localized in contiguous areas and summed up to 3% and 7% of the total number of land pixels,
respectively. None of the three products include Antarctica, and only ocean water close to coast was
explicitly mapped. Islands in the North of Canada, Greenland, Svalbard, Northern Russia and the
islands in the Pacific Ocean were not included in the GFC-datamask. The northernmost latitudes and
Svalbard were not included in the GIW v1.0 dataset. No classification could be obtained in the SAR-WBI
for south Panama, north Australia and several isolated islands due to a lack of ASAR observations.
In addition, a 1-degree longitudinal belt between 84◦N and 83◦N was removed because of permanent
sea ice, systematically classified as land. Classification was not undertaken for the Greenland ice sheet
because permanent water bodies are not included [12]. The SWBD was complete between 54◦S and
60◦N. As a result of this investigation, missing information was not systematically located over the
same areas among all products so that their fusion could contribute to achieve completeness.

The quality of the products was assessed in terms of errors and their location. Errors were related
to misclassifications of temporary water events as permanent water (e.g., snow or ice melt, floods),
incorrect coastline delineation, icebergs classified as land, confusion between water and dark landscape
features, such as black lava or shadows in mountainous terrain, classification of wetlands or irrigated
fields as permanent water, processing-induced artifacts (e.g., seams) and defective sensors.

With regard to the spatial resolution, the best characterization of water bodies was observed in the
GFC-datamask and GIW v1.0 products. The 30-m resolution indeed better ensured river connectivity
and delineation of small water bodies, such as thermokarst lakes and narrow tributaries. The analysis of
these two products furthermore revealed their complementarity in the sense that errors and omissions
were not systematic in both (Section 4.1). Despite the coarser spatial resolution, the spatial distribution
of water bodies in the SWBD and the GFC-datamask was similar. The added value of the SWBD in
this context is the presence of islands, which were not included elsewhere. Because of the coarser
resolution (150 m), the delineation of water bodies in the SAR-WBI was less accurate compared to the
30-m data products. Nevertheless, the very high density of observations by ASAR [35] resulted in
a more precise characterization of coastlines, lakes and river systems. In addition, some artificial lakes
created during the last decade were detected in the SAR-WBI only.

3.2. Combination of Water Body Products

The GFC-datamask was selected as the primary source of information due to the 30-m resolution,
the high quality of the water body delineations and the tendency to map the minimum water extent.
The GFC-datamask was supplemented with the GIW v1.0 water class, which brought additional spatial
details to the water characterization and increased the spatial completeness. The SWBD was used to
replace water in correspondence to islands missing in the GFC-datamask and the GIW v1.0 datasets.
Finally, the water and land classes from the SAR-WBI, resampled at 30 m, filled remaining voids north
of 68◦N.

3.3. Consolidation

Consolidation of the combined product obtained with the procedure outlined in Section 3.2 served
to improve it in terms of completeness and accuracy. The SCAR ADD Antarctica layer was added
to extend the data product to 90◦S. The RGI was used to fill gaps on glaciers and correct for water
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commission errors. At this stage, the data product presented voids only over oceans, which were
manually corrected to water to reach completeness.

Macroscopic errors due to imperfections in each of the input products were finally corrected for.
To this end, the land surface was divided into a regular grid of cells of 1 × 1 degree inside which the
individual datasets were compared. Hotspots of disagreement were furthermore cross-checked with
high spatial resolution imagery from Bing Maps and Google Earth. Confirmed errors were manually
delimited and removed. With the aim of correcting for water omissions, the SAR-WBI was introduced
south of 68◦N.

3.4. Spatial Resampling

The nearest neighbor algorithm was chosen for resampling the combined data product to the final
spatial resolution of 150 m. The 150-m spatial resolution was chosen as the final spatial resolution as
this is the lowest resolution of the data layers used to generate the CCI water body product. This choice
will be discussed in Section 5. To compensate for the artificial increase of water bodies after resampling,
the percentage of water mapped at 30 m in the target 150-m grid cell was computed as a separate layer.

3.5. Differentiation of Inland/Ocean Water

The main constraint in defining the land/water boundary was to maintain the detailed coastline
from the input water bodies while including the rivers flowing into the ocean in the inland water class.

Around river mouths, the GSHHS was used to define the limit between the inland section of the
rivers and the ocean. Due to discrepancies between the coastline of the input water bodies and the
one defined by the GSHHS database, a positive buffer of 0.033 degrees (~3.6 km at the Equator) was
applied to ensure extracting rivers from oceans without affecting the coastlines of the global map of
open water bodies. Since the GSHHS database considered rivers as inland water bodies limited by
a straight line located inland at no more than 1.85 km from the river mouth, the resulting rivers are
represented as inland water bodies limited by a straight line located inland at no more than ~5.45 km
from the river mouth. Elsewhere, the coastline is defined by the water detection implemented in the
input water body products.

3.6. User Tool

The CCI global map of open water bodies is delivered at 150-m spatial resolution in a Plate-Carrée
projection. To support a wide range of communities requesting a different spatial resolution and/or
projection, a stand-alone software tool was developed to allow sub-setting, re-scaling and re-projection
(Table 3). Re-scaling generates the fractional area of each class in the target cell and the class value
with the largest fractional area.

Table 3. Set of options included in the user tool.

Sub-Setting Predefined regional subset
Free specification of regional subset (4 corner coordinates)

Re-Scaling Original resolution
0.250, 0.500, 1.000, 1.875 degree

Re-Projection Original projection (Plate-Carrée)
Gaussian grid
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3.7. Quantitative Thematic Assessment

3.7.1. Sampling Scheme

Differently than traditional accuracy assessments relying on simple random sampling, a two-fold
stratified random sampling was used to avoid undersampling rarely occurring map classes, such as
“water” [36].

The first level of stratification was geographic in order to obtain a homogeneous distribution
of validation samples everywhere. It generated 21 “Level-1” strata (open oceans and polar areas
excluded) defined by bioclimatic and remote sensing criteria [37]. The number of samples per Level-1
strata was proportional to their area.

Good practices of accuracy assessment suggest that class-based stratification reduces standard
errors of class-specific accuracy estimates [38]. However, because inland water corresponds to
a marginal class with respect to global land cover, using water and land as strata would be obviously
beneficial for the user accuracy, but could result in optimistic producer accuracy results due to
the reduced probability to sample water omissions. The second level of stratification was therefore
developed based on the a priori confidence of correctly representing map classes. This confidence-based
stratification was categorized into three Level-2 strata: high confidence in correctly mapping the land
class (Stratum 1), high confidence in correctly mapping the water class (Stratum 2) and error-prone
areas (Stratum 3). The combination of the MOD44W [13], the GLWD [9] and the Global Insight Plus
water layer [10] was used to obtain the three strata. Stratum 1 corresponded to land agreement between
the three maps, Stratum 2 to water agreement and Stratum 3 to discrepancies between at least two
of the three maps. The surface of Stratum 3, i.e., error-prone areas, corresponded to 76% of the total
surface of inland water.

The sample size, S, was optimized with regard to the expected accuracy of the CCI global map of
open water bodies, and the confidence interval was derived according to the binomial distribution [39]:

S =
p × (1 − p)

(
E

Zα
)2

(1)

where E is the allowable error in the sample (half of the confidence interval), Zα is the critical value
drawn from the normal distribution for a given level of confidence and p is the targeted accuracy of
the product. A confidence interval of 4% with a confidence level of 95% (Zα = 1.96) was chosen.

Our assumption is that the accuracy of water classification is lower where different maps disagree,
while water bodies are usually classified with high to very high overall accuracy in areas of agreement.
The targeted accuracy was therefore set to be at least 85% in the error-prone area, which corresponds
to approximately 1200 samples. An additional 1200 samples were distributed equally to the other two
strata, where the targeted accuracy was at least 93%.

3.7.2. Generation of the Validation Database

The sampling unit was the pixel materialized with a footprint of 150 m × 150 m. These samples
were visually interpreted independently from the product using high resolution Google Earth
imagery. Careful attention was paid to interpret and record the permanent, as well as the temporary
character of snow and water evenly across the globe by extensive use of historical imagery.
According to the photo-interpretation practices building on the convergence of evidence [40,41], it was
possible to identify water presence at the time of imaging, but also surfaces that can be seasonally
flooded. In particular, these surfaces concern dry river beds, flood-prone areas, irrigated agriculture,
mangroves/inundated forests, ephemeral streams, salt pans and snow packs. Samples were labeled
as water when at least half of the sample was covered with open surface water. Samples showing
temporary snow or water were labeled as land, but the temporal aspect was also recorded. For all
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samples, the date of the high resolution imagery was recorded. In addition, wetlands and swamps
were also recorded.

3.7.3. Accuracy Assessment

The CCI global map of open water bodies, the SAR-WBI, the GIW v1.0 dataset and the
GFC-datamask were validated against the reference samples of the validation database, assuming that
these represent the true Earth surface state. The SWBD was not validated given its minor contribution
to the CCI global map of open WB (0.69% of the total inland water surface). Here, accuracy was
assessed at three levels. One assessment included all samples and took into account all strata. A second
assessment exclusively focused on the error-prone stratum of Level-2. A third assessment focused on
the samples recorded as temporary water. Herewith, it was intended to evaluate whether seasonal
water bodies affect the water body product.

The assessment was quantified in terms of confusion matrices built by comparing each class of
the map (ni) to the reference sample classes (nj). Each confusion matrix reported the Overall Accuracy
(OA), the User’s Accuracy (UA), the Producer’s Accuracy (PA) [42] and the F-score. A McNemar
test [43] is applied to evaluate if performances are significantly different between confusion matrices.
OA represents the proportion of all cases correctly classified (Equation (2)) with n being the total
number of samples and q the total number of classes (water and non-water). Because the sampling
probability was different among the three Level-2 strata, global index values were weighted according
to the sampling probability.

OA =
3

∑
s=1

ws

q

∑
k=1

nkks
ns

(2)

In Equation (2), ws is the weight of the stratum, which is inversely proportional to the sampling
effort. The weights are computed for each stratum based on Equation (3).

ws =
Ss/ns

3
∑

s=1
Ss/ns

(3)

where Ss is the area of the stratum and ns is the number of sample points in the stratum.
UA corresponds to the probability that a randomly-selected pixel from the map is classified as

correct in the reference sample. PA corresponds to the probability that a reference sample is correctly
classified in the map. Therefore, UA is related to the commission error while PA informs about the
omission error. They are calculated following Equations (4) and (5) inside each stratum and thereafter
weighted using the same method as for the global overall accuracy.

UAi =
nii
ni+

(4)

PAj =
njj

n+j
(5)

The F-score (Equation (6)) represents for a class k the harmonic mean of the user and producer
accuracies and ranges between 0 and 1.

F − score = 2 ∗ UAk ∗ PAk
UAk + PAk

(6)

A McNemar test [43] was applied to evaluate if the values reported in the confusion matrix for
each individual product were significantly different.



Remote Sens. 2017, 9, 36 10 of 20

4. Results

4.1. The CCI Global Map of Open Water Bodies

The CCI global map of open water bodies is illustrated in Figure 2. This global, void-free
dataset consists of two separate layers: an inland water/ocean repartition at 150-m spatial resolution
and an inland water fraction, in percent of the 150-m grid cell. The total inland water area is
3.41 million km2.

Figure 2. The CCI global map of open water bodies.

The complementarity of the GFC-datamask and the GIW v1.0 products was key to obtain an
exhaustive detection and delineation of water bodies. Figure 3 illustrates the increase of river continuity
brought by the GIW v1.0 (Figure 3a,b), compensations for water body omissions present in the
GFC-datamask (Figure 3c) and “no data” filling by the GFC-datamask (Figure 3d). The SAR-WBI
contributed significantly north of 68◦N (Figure 3e). In addition, it contributed to updating the
classification based on the Landsat data in areas with more recent artificial basins. Figure 3f illustrates
the Indira Sagar Dam commissioned on May 2005, where neither was included in GIW v1.0, nor in
the GFC-datamask.

Excluding Greenland, Antarctica and islands south of 60◦S, the consolidation affected 29% of the
inland water class. Figure 4 illustrates a few examples of the a posteriori consolidation aided by the
auxiliary datasets and manual corrections of macroscopic errors. Macroscopic commission errors along
the Ob River in the GIW v1.0 dataset were manually removed and replaced with the classification of
the GFC-datamask (Figure 4a). Black lava in Saudi Arabia was misclassified by both the GIW v1.0
and the GFC-datamask; manual correction was applied here (Figure 4b). Land contamination and
incompleteness in the GIW v1.0 dataset could be corrected for with the aid of the SWBD (Figure 4c).
Water commission over glaciers was corrected with the aid of the RGI dataset (Figure 4d).
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Figure 3. Examples illustrating the complementarity of selected input data sources to the CCI
global map of open water bodies: (a) the lack of continuity in the GIW v1.0 river network was
complemented by the GFC-datamask; (b) the lack of continuity in the GFC-datamask river network
was complemented by the GIW v1.0; (c) artifacts from the Scan Line Corrector-off issue in Landsat ETM+
in the GFC-datamask were compensated with inclusion of water from the GIW v1.0. (d); GIW v1.0
unprocessed or atmospherically-contaminated areas were filled with the GFC-datamask; (e) detections
in the SAR-WBI in areas north of 68◦N, not included in other water body products; (f) map updating
with the SAR-WBI for more recent water bodies.
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Figure 4. Effects of consolidation of input water bodies: (a) removal of commission errors in the GIW
v1.0 dataset due to seasonal water events; (b) removal of commission errors due to black lava detected
as water in the Landsat-based products; (c) replacement of the GIW v1.0 dataset with the SWBD in
case of incomplete characterization of islands; (d) removal of water commission over glaciers with the
RGI dataset.

4.2. Accuracy Assessment

The reference database included 2400 samples spread over land masses with the exclusion of polar
areas (Figure 5). Of these, 2121 corresponded to valid data in each of the datasets used to generate
the CCI water body product. Eleven samples were further discarded either because of cumbersome
interpretation of the Google Earth imagery due to cloud coverage, unavailability of images or uncertain
interpretation. For the 2110 samples, 1030 samples were included in the error-prone stratum of Level-2,
and 234 corresponded to temporary water bodies like ephemeral streams, beaches, irrigated cultures
and salty lakes.

Figure 5. Location of the 2110 samples (area of 150 m × 150 m) selected for the validation of the water
body products. For each sample, the Level-2 stratum is specified (land agreement, water agreement
and discrepancies).

The overall accuracy was always very high, between 98 and 100% (Table 4). This was
a consequence of the overwhelming proportion of the land class at the global scale compared to
the marginal water class. Yet, water surfaces were not identified with high accuracy in any of the input
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datasets (Table 4). The PAs of water were always lower compared to the values obtained for the CCI
water body map, with considerable differences among the the individual input datasets. The PA of the
CCI global map of open water bodies (92%) outperformed the best PA of the input datasets by 13%.
On the contrary, the UA of the GFC-datamask was higher (97%) compared to the UA of the CCI global
map of open water bodies (86%). The CCI global map of open water bodies overestimated water, while
the GFC-datamask underestimated it. The underestimation of water of the GFC-datamask was also
a result of the qualitative assessment and justified the introduction of the class water from the GIW
v1.0 in the consolidation. The GFC-datamask water omissions were found typically along lake banks,
shallow water and dams. The GFC-datamask minimum water extent is probably due to its definition
of water using a strict threshold greater or equal to 50% of water detections in the Landsat image in
the time series [29]. Commission errors are marginal and occur along some lakes and over black lava
rocks (e.g., Ethiopia).

Table 4. Input water body maps and CCI water body map with their accuracy estimates in percent (%)
based on an evaluation of 2110 samples.

Products Extent OA
Non-Water Water

PA UA F-Score PA UA F-Score

SAR-WBI * 84◦N–60◦S 98 99 99 99 62 84 71
GIW v1.0 * 90◦N–60◦S 98 99 99 99 78 77 77

GFC-datamask * 80◦N–57◦S 99 100 99 100 79 97 87
CCI global map of 90◦N–90◦S 99 99 100 100 92 86 89open water bodies

Sources marked with * have a limited completeness: SAR-WBI: 97%; GIW v1.0: 91%; GFC-datamask: 93%;
CCI global map of open WB: 100%.

The F-score of the CCI global map of open water bodies (89%) was significantly higher than
the value obtained for the GFC-datamask. The F-score of the SAR-WBI was the lowest of all values
(71%) mainly due to an underestimation of water (low PA). Omission errors were located mainly
along coastlines, water body boundaries and in mountainous areas [12]. In areas where the SAR-WBI
was based primarily on data with a spatial resolution of 1000 m, water bodies were either missed,
imprecisely delineated or only partially detected in fragments. Most commission errors corresponded
to temporary water (e.g., inundated areas, floodplains, deserts and salars) and to a lesser extent to
coastlines, irrigated croplands and mountainous areas [12].

The second accuracy analysis focused on error-prone areas (Table 5). Compared to the accuracy
figures of Table 4, the PAs and UAs for this stratum were substantially lower (on average, 14% and
21%, respectively).

Table 5. Accuracy results, in percent (%), for the error-prone Stratum 3 (1030 samples).

OA
Non-Water Water

PA UA F-Score PA UA F-Score

SAR-WBI 74 90 79 84 23 43 30
GIW v1.0 86 92 90 91 67 72 70

GFC-datamask 89 98 89 93 61 89 73
CCI global map of open water

bodies 89 93 92 93 75 78 77

The trend in OA and the PA of the non-water class in the SAR-WBI and the GIW v1.0 datasets did
not differ when restricting the analysis to error-prone areas only (see Tables 4 and 5). On the contrary,
the PA and the F-score of the water class of the SAR-WBI were substantially lower. This was due to the
frequent omission of water in the SAR-WBI; however, since water represented a small proportion of
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the classes being mapped, the effect of omission was not visible in the statistics derived for the overall
assessment.

Similarly, the GFC-datamask and the CCI global map of open water bodies gave identical trends
in the results for OA and F-scores for the class non-water (see Tables 4 and 5). The GFC-datamask
was prone to water omission and the CCI global map of open water bodies to water commission.
The underestimation of water in the GFC-datamask (PA of 61%) was exacerbated in error-prone areas
that include a high proportion of shorelines, lakes and river banks. The PA of the CCI global map of
open water bodies reached 75%, indicating that the large omissions of the GFC-datamask and of the
GIW v1.0 were effectively compensated for.

The OA obtained with the third accuracy analysis based on the 234 samples corresponding to
temporary water was 79%, 89%, 94% and 99% for the SAR-WBI, the GIW v1.0, the CCI global map
of open water bodies and the GFC-datamask, respectively. This ranking was in line with the results
highlighted in Table 4. The GFC-datamask tended to map a minimum water extent and always showed
low rates of water commission (high UA). These results will be discussed in the next section.

4.3. Assessing Total Water Surface

According to the CCI global map of open water bodies, inland water covers an area of
3.41 million km2. Following [38], this area was corrected by weighting the actual area of the land and
water classes in each Level-2 stratum by the corresponding UA figures of the accuracy assessment
using all samples. The maximal error on this area was calculated by taking into account the actual error
of each class of each Level-2 stratum. This actual error is derived using Equation (1) with the actual
number of samples within each class of each Level-2. It resulted in an inland water area estimation of
3.17 million km2 ± 0.24 million km2.

The CCI global map inland water area is in the range of 3.05–4.57 million km2 reported by [44] for
a series of global Earth observation products with spatial resolutions from 30 m–1000 m. Estimations
provided by [16] for the GIW v1.0, by [13] for the MOD44W, by [17] for the G3WBM and by [45] were
also in agreement with this range. However, an area of ~5 million km2 was reported by [21] for the
lakes of the GLOWABO product.

5. Discussion

This study demonstrated that the combination and consolidation of existing water body products
leads to a global map of open water bodies that meets the climate modelers needs of adequate spatial
resolution, maximal spatial extent and completeness along with high accuracy.

The 150-m spatial resolution of the CCI global map of open water bodies was found adequate
for contemporary climate models that run at a current horizontal spatial resolution, which is, by far,
coarser than 150 m. Global circulation models typically range between 250 and 600 km [25], and
regional models provide so-called “high resolution” simulations at 10–20 km [26]. Climate modeling
using convection-permitting models are now emerging and provide more reliable climate information
on regional to local scales [27]. Those models operate on the kilometer scale up to 0.5 km [46].

According to the survey conducted by [24], a resolution finer than 300 m is also of interest for
a broader land cover and “climate-related” communities. In 20% of the answers, the current global
standard spatial resolution (300–1000 m) would even be sufficient. Finally, a spatial resolution of 150 m
was found to be suitable for communities studying large-scale global dynamics and monitoring of
the Earth’s surface at 250 m or coarser with satellite data observations like MODIS, Envisat MERIS,
PROBA-V and their continuity ensured by Sentinel-3 [47].

Achieving maximal spatial extent and completeness required up to seven different water bodies
and auxiliary products. The fusion of various products with differences in periods of data acquisition
and quality can cause inconsistencies in the water body representation, but the high accuracy of
the CCI map of open water bodies proved that the methodology adopted overcame this issue.
The fusion methodology gave priority to high resolution and minimum water extent mapping and
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the consolidation helped remove macroscopic errors and include recent water bodies. However,
the major drawback of such interactive, systematic and very comprehensive consolidation is the lack
of repeatability.

It is expected that the joint and systematic use of Sentinel-1 (S1) every 6–12 days with a 10–20-m
spatial resolution [48], Sentinel-2 (S2) 10-m multispectral data every five days (S2-A and S2-B) [49] and
synergies between SAR and optical data [50,51] will greatly contribute to improving the consistency
and allow updating the CCI global map of open water bodies in the future. The Sentinels’ high revisit
time will provide completeness and reduce manual and time-consuming post-editing by confirming
water detection in space and time. A true global extent at 20-m spatial resolution might be achieved as
S2 spatial coverage between latitudes 56◦ S and 84◦ N [49] could be extended to polar environments
with S1 monitoring.

5.1. Confidence-Based Stratification

In this study, we proposed a rigorous stratified random sampling designed for the quality
assessment of a binary classification where one class is marginally distributed. It is also interesting to
evaluate to what extent the random sampling scheme is representative of the correctly and incorrectly
classified pixels of the validated product as it highlights the actual precision of accuracy indices. Table 6
gives the probability to sample pixels, correctly or incorrectly classified as water or land, according
to the results of class distribution for the three different random sampling schemes. With the simple
random sampling, there is an equal probability to sample any pixel of the map. The two other sampling
schemes, which are stratified, first distribute the sample points according to a given value of the map.
For the commonly-used class-based stratified sampling scheme, half of the sampling pixels would
have been randomly selected inside the water class of the CCI global map of open water bodies, and
the other half would fall in the land class. Our proposed sampling scheme used three strata resulting
from the combination of independent global water datasets: half of the samples have been selected in
the error-prone areas (Stratum 3), while both areas with high confidence in correctly mapping land
(Stratum 1) or water (Stratum 2) received one quarter of the samples.

The probability to capture incorrectly classified pixels in any of the random samples schemes was
low when the overall accuracy was large (OA of 99%). Compared with a simple random sampling and
a class-based stratified random sampling, the probability of 3.5% to sample cases of water omissions
allowed us to verify a posteriori that the use of a confidence-based stratification improved the precision
of the producer accuracy estimation. Indeed, while the class-based stratified sampling allowed
sampling more in the marginal class (50%), it further reduced the probability to detect water omissions.
The stratification using confidence-based strata increased the probability to sample the two types of
incorrectly classified pixels. The samples’ distribution in cases of water omission and commission was
dependent on the datasets used in the stratification.

The proposed stratification relied on independent datasets that are not always available.
This can be an obstacle for the assessment of individual maps, but in the case of a comparison
between products, the area of discrepancy could also be derived from the difference between
products. Congalton and Green [52] also suggested that the rarity of one class could be compensated
by strata defined by expert-based knowledge. For instance, in the validation of land cover change,
they used a buffer surrounding the change mask or land cover classes where change was more likely
to occur in order to stratify the sampling of a change/no change map.
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Table 6. Probability, in percent (%), to sample correctly and incorrectly classified pixels depending on
the sampling scheme.

Random
Sampling Scheme

Land
Correct

Water
Correct

Water
Omission

Water
Commission

Water Correct and
Incorrect

Simple 96.5 2.8 0.2 0.5 3.3

Class-based
stratified 49.9 42.7 0.1 7.3 50

Confidence-based
stratified 59.4 33.5 3.5 3.6 37.1

5.2. Comparison with the Global 3 Arc-Second Water Body Map

The accuracy of the G3WBM, unavailable at the time of the CCI global map of open water bodies
compilation, was evaluated with the same validation reference database used in Section 5.1. For the
sake of consistency, original classes were grouped as follows: “land”, “land (no Landsat observation)”,
“snow”, “wet soil/wet vegetation/lava”, “salt marsh” and “temporal flooded area” were merged into
one “land” class, while classes “permanent water”, “permanent water (added by SWBD)” and “ocean
(given by external land/sea mask)” as “water”. G3WBM global accuracy figures weighted by the
actual surface of the land and water classes and accuracy figures focused on error-prone areas (Table 7)
are compared to the results of Tables 4 and 5, respectively.

Table 7. G3WBM accuracy values for the global and error-prone area samples (Stratum 3), in
percent (%).

OA
Non-Water Water

PA UA F-Score PA UA F-Score

Global 99 100 99 100 77 94 85
Error-prone area only 88 96 90 93 66 82 73

The global assessment revealed that the OAs were not significantly different between the G3WBM
and the CCI global map of open water bodies. However, the types of errors were not evenly distributed
in each database. The UA of G3WBM was larger than for the CCI global map of open water bodies,
while the CCI global map of open water bodies had a larger PA. The CCI water body map minimized
the omission errors, while the G3WBM minimized the commission errors. The same conclusion was
obtained for the error-prone area, where the CCI map of open water bodies was 1% (not significantly)
better. The proportion of correctly-classified pixels using the 234 samples related to temporary water
was 93%. Class “permanent water added by the SWBD” contributed to 16% of these errors.

These results prove that two different methods, one of harmonization and consolidation of existing
water bodies and one of the classification of multi-temporal images, produced water bodies maps with
similar high accuracies.

5.3. Permanent versus Temporary Water Bodies

According to the Food and Agriculture Organization Land Cover Classification System [53],
identified as the most appropriate land cover classification system [54], non-perennial, i.e., temporary
or seasonal, water corresponds to a surface covered with water during less than three months a year.

In the reference validation database, the use of the historical imagery of Google Earth and the
interpretation of the context enabled recording information on temporary water. Yet, a threshold of
three months could not strictly be verified due to the lack of historical imagery, regularly spread along
the year. However, according to the photo-interpretation practices building on the convergence of
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evidence [40,41], it was possible to identify water presence at the time of imaging, but also surfaces
that can be seasonally flooded according to water availability.

Currently, no water body product provides an LCCS-compatible definition of the water status,
i.e., temporary or permanent. Yet, water body products, including the SAR-WBI, GIW v1.0 and the
GFC-datamask, define water using thresholds on the water detections generated on multi-temporal
series of images (Section 2.1).

Differentiating permanent from temporary water bodies could not be achieved in the the GIW
v1.0 using the GLS data collection for the 2000 epoch only. Based on the 234 validation samples
corresponding to temporary water, 11% were mapped as water in the GIW v1.0 (Section 4.2). This issue
of water seasonality was already mentioned [16], and the area of temporary water included in the
GIW v1.0 was evaluated as 0.17 million km2 [17]. In addition, the number and time spread of the GLS
images limited the GIW v1.0 completeness to 91% of the terrestrial surface.

Although both the GFC-datamask and the SAR-WBI relied on multi-temporal images over
several years, the GFC-datamask was more representative of permanent water. The reason is that the
GFC-datamask definition of water is based on a stricter threshold on the number of water detections in
the image time series. Nevertheless, the GFC-datamask missed water bodies created towards the end
of the time interval covered by the Landsat data. These water bodies are permanent, but have a minor
contribution to the water frequency in the multi-temporal dataset. For the CCI map of open water
bodies, the occurrence of temporary water bodies classified as permanent was seldom because of the
consolidation steps adopted to minimize temporary water and account for missing water bodies.

6. Conclusions

A global map of open water bodies was built within the European Space Agency Climate Change
Initiative (ESA CCI) by combination and consolidation of existing nearly global water body and
auxiliary datasets. The CCI global map of open water bodies is tailored to the climate modeling
community by providing a complete land/inland water and ocean classification for any location of the
Earth surface at 150-m spatial resolution. An inland water fraction in percent of the 150-m grid cell is
delivered as a separate layer for use within a broader land cover community. Both layers are freely
available at: http://maps.elie.ucl.ac.be/CCI/viewer.

The inland water area of the CCI global map of open water bodies was estimated as
3.17 million km2 ± 0.24 million km2. It is in the range of 3.05–4.57 million km2 reported by [44].
Estimations for the GIW v1.0 [16], the MOD44W [13], the G3WBM [17] and reported by [45] were also
in agreement with this range.

The CCI global map of open water bodies and its constitutive inputs were thoroughly validated
against an independent reference database of 2110 samples spread over all land masses, excluding polar
regions. This research proposed an original sampling scheme for a better documentation of product
quality and a better differentiation among them. A confidence-based stratified random sampling was
developed to avoid undersampling rarely occurring map classes, such as “water”. The stratification
was based on the a priori confidence of correctly representing map classes as defined by independent
water body maps. It resulted in three strata corresponding to land agreement between the maps
(Stratum 1), to water agreement between the maps (Stratum 2) and to discrepancies between the maps
(Stratum 3). Using all samples, overall accuracy was always very high among all products, between
98% and 100%. The CCI global map of open water bodies provided the best water class representation
(F-score of 89%) compared to its constitutive inputs, but it tended to slightly overestimate the water area
(user accuracy of 86%). When focusing on the challenging areas for water bodies mapping (Stratum 3),
such as shorelines, lakes and river banks, all products yielded substantially lower accuracy figures
with overall accuracies ranging between 74% and 89%. The CCI global map of open water bodies’
producer accuracy for class water (75%) was higher than the producer accuracies of its constitutive
inputs ranging between 23% and 67%. This indicated that the large omissions of its input products

http://maps.elie.ucl.ac.be/CCI/viewer
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were effectively compensated for by their combination. The OA obtained based on the 234 samples
corresponding to temporary water was 94% for the CCI global map of open water bodies.

The update and improvement of the CCI global map of open water bodies is foreseen with
Sentinel-1 and Sentinel-2 by taking the best advantage of the synergy between SAR and optical
acquisitions with high frequency of revisit, while targeting a global coverage. Such product will
fulfill the needs of the broader land cover community and the next generation of climate models at
high resolution.
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50. Malenovskỳ, Z.; Rott, H.; Cihlar, J.; Schaepman, M.E.; García-Santos, G.; Fernandes, R.; Berger, M. Sentinels
for science: Potential of Sentinel-1, -2, and -3 missions for scientific observations of ocean, cryosphere,
and land. Remote Sens. Environ. 2012, 120, 91–101.

51. Nizalapur, V. Land cover classification using multi-source data fusion of ENVISAT-ASAR and IRS p6 LISS-III
Satellite data: A case study over tropical most deciduous forested regions of Karnataka, India. Int. Arch.
Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 329–334.

52. Congalton, R.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices;
Mapping Science Series; CRC Press: Boca Raton, FL, USA, 2009.

53. Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual: LCCS; Food and
Agriculture Organization of the United Nations: Rome, Italy, 2005.

54. Herold, M.; Mayaux, P.; Woodcock, C.; Baccini, A.; Schmullius, C. Some challenges in global land cover
mapping: An assessment of agreement and accuracy in existing 1 km datasets. Remote Sens. Environ. 2008,
112, 2538–2556.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons by Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Material
	Potential Products to Build the CCI Global Map of Open Water Bodies
	Auxiliary Datasets

	Method
	Qualitative Assessment of Input Water Body Maps
	Combination of Water Body Products
	Consolidation
	Spatial Resampling
	Differentiation of Inland/Ocean Water
	User Tool
	Quantitative Thematic Assessment
	Sampling Scheme
	Generation of the Validation Database
	Accuracy Assessment


	Results
	The CCI Global Map of Open Water Bodies
	Accuracy Assessment
	Assessing Total Water Surface

	Discussion
	Confidence-Based Stratification
	Comparison with the Global 3 Arc-Second Water Body Map
	Permanent versus Temporary Water Bodies

	Conclusions

