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Abstract: In this study, a new parameterization scheme of evaporative fraction (EF) was developed
from the contextual information of remotely sensed radiative surface temperature (Ts) and vegetation
index (VI). In the traditional Ts − VI triangle methods, the Priestley-Taylor parameter ∅ of each
pixel was interpolated for each VI interval; in our proposed new parameterization scheme (NPS),
it was performed for each isopiestic line of soil surface moisture. Specifically, ∅ of mixed pixels
was determined as the weighted-average value of bare soil ∅ and full-cover vegetation ∅. The
maximum Ts of bare soil (Tsmax) is the sole parameter needed as the constraint of the dry edge. This
has not only bypassed the task involved in the determination of the maximum Ts of fully vegetated
surface (Tcmax), but also made it possible to reduce the reliance of the Ts −VI triangle methods on the
determination of the dry edge. Ground-based measurements taken during 21 days in 2004 were used
to validate the EF retrievals. Results show that the accuracy achieved by the NPS is comparable to
that achieved by the traditional Ts −VI triangle methods. Therefore, the simplicity of the proposed
new parameterization scheme does not compromise its accuracy in monitoring EF.

Keywords: evaporative fraction; Ts − VI triangle method; TVX method; MODIS

1. Introduction

Evapotranspiration (ET), defined as the sum of water lost to the atmosphere from sources such
as the soil, canopy interception and water bodies through evaporation and plant transpiration, is
a primary process driving the energy and water exchange between the atmosphere, hydrosphere
and biosphere. Accurate knowledge of spatially distributed ET is essential for a wide range of
applications including water resources management, hydrometeorological predictions and ecological
applications [1–4]. As opposed to conventional observations of evapotranspiration that only represent
field scale, satellite remote sensing provides an unprecedented global coverage of surface observations
such as radiometric surface temperature (Ts), albedo and vegetation indices (VI), which makes it
recognized as the only viable means to map regional patterns of ET at the earth’s surface in a globally
consistent and economically feasible manner [5–7]. As a result, a large number of ET models have been
developed from remote sensing observations over the past few decades. Overviews of these models
have been provided by a number of authors [8–11]. However, the determination of ET depends on so
many variables that not all of them can be retrieved from remote sensing observations. As a result,
most of these ET models have either adopted meteorological observations as ancillary or assumed
some parameters to be constant over certain scales. This has not only limited the application of these
models but also reduced the accuracy of ET estimates, especially in areas where the meteorological
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observations are scarce. Therefore, accurate characterization of ET distribution based on remote
sensing with little or no ground observations as ancillary is still a challenge task [2,12–14].

A promising method to meet this challenge is to estimate evapotranspiration based on the
evaporative fraction (EF). EF defined as the ratio of latent heat flux to available total energy [15] can be
estimated reasonably using only remote sensing data as inputs. Over the past few decades, a large
number of techniques have been proposed to estimate EF [14,16–20], and a direct estimation of EF
has been shown to work well with various satellite remote sensing datasets [21–23]. Among all these
techniques, the surface temperature-vegetation index (Ts−VI) triangle or trapezoid method developed
by Jiang and Islam [21,24] and improved by Jiang and Islam [25] has widely been used throughout the
world. It derives spatially distributed EF by using a contextual interpretation of a relationship between
easily measured surface variables—radiometric surface temperature (Ts) and normalized difference
vegetation index (NDVI) [26]. Numerous studies have documented and interpreted the advantages
of the Ts − VI triangle method, and its applicability has been demonstrated in various parts of the
world [13,23,26–30].

The success of this method on the estimation of EF depends mainly on the correct choice of the
boundaries of the Ts − VI feature space, especially the dry edge that defines the maximum water
stress. The development of this method in recent studies is mainly focused on the determination of
the dry edge [13,30–34]. In general, the dry edge can be retrieved either from theoretical or empirical
approach. The contrast of these two approaches is presented in Table 1. It is clear that both of
these two approaches have their advantages and disadvantages. Although the observed dry edge
determined by the regression method can be retrieved exclusively from remote sensing data, it is
usually lower than the theoretical dry edge, and is not assigned the minimum ET [23]. Moreover, the
subjectivity involved would also reduce the accuracy of the EF estimates. The theoretical dry edge
determined by land surface energy balance principle can overcome generally all the limitations of
the empirical approach. However, a large number of parameters are needed in the determination
of the theoretical boundaries. This to some extent contradicts with the original intention of the
Ts −VI method, because triangle methods were designed in general to avoid the need for ancillary
surface data and complex parameterization of aerodynamic and surface resistances for water and
heat transfer [18,28,30]. Therefore, there are challenges in the determination of both the observed and
theoretical dry edge, which would limit the application of the Ts − VI triangle method in arid and
semi-arid areas or areas with limit ancillary surface data. Development of a parameterization scheme
of EF that can reduce the reliance of the Ts − VI method on the dry edge is a promising method to
overcome this challenge.

Table 1. Contrast of empirical and theoretical approaches for the determination of dry edge.

Approach Empirical Approach Theoretical Approach

Principle Statistical regression Surface energy balance principle

Advantages It is simple and can be performed based
entirely on remote sensing data.

It is performed through theoretical derivation
and can remove the subjectivity involved; the
theoretical dry edge determined represents the
maximum water stress.

Disadvantages

Establishment of regression models
involves subjectivity; the observed dry
edge determined is not assigned the
maximum water stress.

A large number of parameters are needed such
as air temperature, near surface vapor pressure,
net radiation, aerodynamic resistance.

Besides the Ts − VI triangle method, there are some other significant studies performed
to investigate the relationships between remotely sensed Ts and VI. The method known as the
temperature-vegetation index method (TVX) can be described as a representative, which has been
applied widely to estimate near surface air temperature (Ta) from several satellite sensors [35–40].
According to this method, remotely sensed Ts tends to approach air temperature with increasing
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of vegetation cover, and the radiometric temperature of a full vegetated canopy is in equilibrium
with the temperature of the air within the canopy [39,41]. This provides a meaningful insight in the
interpretation of the Ts −VI triangle method mentioned above.

The objectives of this paper are twofold: (1) By the combination of two remotely sensed Ts −VI
relationships (the Ts −VI triangle method and the TVX method), the Ts −VI space was interpreted
from a new perspective, and a new parameterization scheme of EF based entirely on remote sensing
observations was developed, specifically with the goal of reducing the reliance of the traditional
Ts −VI method on the dry edge; and (2) the new parameterization scheme was compared with the
traditional Ts −VI triangle method, and was validated using in situ EF measurements.

2. Study Area and Materials

2.1. Study Area and Field Measurements

This study was conducted on the Southern Great Plains (SGP) region of the US, which extends
in longitude from 95◦18′W to 99◦30′W and in latitude from 34◦30′N to 38◦30′N. It was chosen as
the first field measurement site by the Atmospheric Radiation Measurement (ARM) Program for
several reasons including homogeneous geography and easy accessibility, wide variability of climate
cloud type and surface flux properties, and large variation in temperature and rainfall. The region
has a relatively flat terrain with heterogeneous land cover, which is characterized by mixed farming,
interrupted forest, tall and short grass (Figure 1). Several studies have been conducted to estimate
the evapotranspiration of the SGP region over the past few years [17,27,42,43]. In this study, Energy
Balance Bowen Ratio (EBBR) stations (Figure 1), maintained by the ARM are used for validation. The
location, altitude and land cover of these stations are presented in Table 2. It should be noted that
since the EBBR measurements are conducted every 30 min, only the EF measured at the time that
approximates most the overpass time of satellite was used in validation. More information about
the EBBR dataset can be found in the research by Wang et al. [17] and at the homepage of the ARM
(www.arm.gov.com).
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Table 2. Location, altitude and land cover of study sites.

Site Latitude Longitude Altitude (Meter) Land Cover

E2 38.306N 97.301W 450 Cultivated crops
E4 37.953N 98.329W 513 Grassland
E7 37.383N 96.18W 283 Pasture
E8 37.333N 99.309W 664 Grassland
E9 37.133N 97.266W 386 Grassland
E12 36.841N 96.427W 331 Grassland
E13 36.605N 97.485W 318 Grassland
E18 35.687N 95.856W 217 Pasture
E20 35.564N 96.988W 309 Grassland
E22 35.354N 98.977W 465 Shrubland
E27 35.269N 96.74W 300 Grassland

2.2. Remote Sensing Data

2.2.1. MODIS Products

The optical and thermal infrared band data from Moderate Resolution Imaging Spectroradiometer
(MODIS) Terra were used to parameterize EF. Specifically, four MODIS land surface and atmosphere
products (version 5) were used in this study: daily Ts product at 1-km resolution (MOD11A1), 16-day
vegetation indices at 1-km resolution (MOD13A2), daily atmosphere profile product at 5-km resolution
(MOD07_L2) and daily cloud product at 1-km resolution (MOD06_L2). In order to get rid of the
atmosphere-contaminated data points and replace them through temporal interpolation, the 16-day
NDVI extracted from MOD13A2 was time series smoothed by the LACC (locally adjusted cubic spline
capping) method [44]. Here it was linear interpolated to the daily value. As a result, mathematically
smooth capping curves of NDVI were produced to fit the rapid seasonal change. Then following the
squared relationship between fractional vegetation cover ( fc) and NDVI proposed by Gillies et al. [45],
fc was calculated. Two parameters defining the NDVI values of bare soil and full-cover vegetation
are required in this transformation. Specifically, NDVImax, defining the NDVI value of full-cover
vegetation, can be selected as the highest NDVI value within the scene [46,47], and NDVImin, defining
the NDVI value of bare soil, can be inferred from the historical lowest NDVI value within the scene [48].
In our research, the highest NDVI value (0.94) within the scene was used to define NDVImax, while
the popular published NDVImin value of 0.05 was used to define NDVImin [48]. MOD06_L2 and
MOD07_L2 products were mainly used in the estimation of Ta. Specifically, MOD06_L2 product was
used to retrieve land surface temperature, while MOD07_L2 product was used to retrieve atmosphere
temperature profiles and surface air pressure. Details about these two products were given by
Zhu et al. [49].

2.2.2. Selection of Clear Sky Day Images

In order to monitor surface soil moisture status in the SGP region, daytime images for 21 days in
the year 2004 with cloud cover less than 20% were selected by Sun et al. [50]. The same 21 days were
selected in our study to parameterize EF: DOY (Day of Year) 10, 22, 51, 67, 81, 92, 118, 152, 175, 202,
213, 239, 310, 332, 337, 339, 347, 348, 349, 355 and 360. A two-step procedure was conducted to further
exclude the cloud-contamination pixels. Firstly, as Batra et al. did in their research, a cloud masking
threshold (Ts < 273 K and NDVI < 0) was applied to remove cloudy pixels [27]. Then cloud fraction
(CF) data was extracted from MOD06_L2 product, and only pixels with CF = 0 were determined as
clear pixels for a given image.



Remote Sens. 2017, 9, 26 5 of 25

3. Methodology

3.1. Parameterization Scheme of EF Using the Traditional Ts −VI Triangle Method

Based on an extension of the Priestley-Taylor equation [51] and the definition of EF, Jiang and
Islam [21,24] proposed that the Ts −VI triangle/trapezoid space could be used to parameterize EF
as follows:

EF = ∅
∆

∆ + γ
(1)

where ∅ is a dimensionless parameter that accounts for aerodynamic and canopy resistances,
∆ (k·PaK−1) is the slope of saturated vapor pressure (SVP) at air temperature (K) and γ (k·PaK−1)
is the psychrometric constant. ∆ and ∅ are the only two unknown parameters that are needed
for the estimation of EF. As shown by a number of studies [13,17,21], the sensitivity of ∆/(∆ + γ)

on the variation of temperature is very small, so parameter ∆ is usually calculated directly from
remotely sensed Ts. The parameter ∅ in Equation (1) seems the same as α in the original version
of the Priestley-Taylor equation, but there exists a significant difference in their physical meaning.
α in the Priestley-Taylor equation is generally defined as the ratio of actual evaporation to the
equilibrium evaporation, while ∅ in Equation (1) is interpreted as the actual surface resistance to
evapotranspiration.

Parameterization of ∅ is realized though the Ts −VI triangle method (Figure 2). As mentioned
above, the dry and wet edges of the trapezoid space represent two limiting cases of EF for each
fractional vegetation cover ( fc): the dry edge represents minimum EF in each fc class, and the wet edge
represents maximum EF in each fc class. However, it should be noted that there are two kinds of dry
edge in the traditional Ts −VI triangle/trapezoid method [30]. The first one is called the theoretical
dry edge, which is determined using the surface energy balance principle. The latent heat flux along
the theoretical dry edge is assumed to be zero. As a result, the Priestley-Taylor parameter ∅ along
the whole theoretical dry edge is equal to zero, just as it is presented in Figure 2. Another kind of dry
edge is called the observed dry edge, which is determined using statistical regression method (Table 1).
The original parameterization scheme of EF proposed by Jiang and Islam [21,24] is developed under
the constraint of the observed dry edge, in which the parameter ∅ along the dry edge is assumed to
be varying linearly from 0 to 1.26 with the increase of fc. The actual EF for each pixel in this Ts −VI
space is derived using a two-step linear interpolation scheme, which is described as follows:

(1) When significant advection and convection are absent, latent heat flux cannot excess available
total energy, and hence ∅ has a limited range between 0 and (∆ + γ)/∆. Thus, the global minima and
maxima of ∅ can be easily determined by ∅min = 0 for Point A ( fc = 0, Ts = Tsmax) in the dry edge,
and ∅max = (∆ + γ)/∆ for Point D ( fc = 1, Ts = Tw) in the wet edge.

(2) Given these two bounds ( fc = 0, ∅min = 0), ( fc = 1, ∅max = (∆ + γ)/∆) and the range of fc,
the minimum ∅min,i for each vegetation class fc,i can be interpolated linearly as follows

∅min,i = ∅max fc,i (2)

The maximum ∅max,i for each vegetation class fc,i is assumed to be a constant, and is always
equal to ∅max.

(3) After the lower and upper bounds of ∅ values for each fc class have been determined, the ∅
value for each pixel within this fc class is interpolated as follows:

∅ =
Tsmax,i − Ts,i

Tsmax,i − Tsmin,i
(∅max,i −∅min,i) + ∅min,i (3)

In which
Tsmax,i = Tsmax + fc,i(Tcmax − Tsmax) (4)

Tmin,i = Tw (5)
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where Tsmax, Tcmax and Tw are the y-axis of Point A, C, and D, respectively. Tsmax,i and Tsmin,i are the
maximum and minimum Ts for a given fractional vegetation cover fc,i, and Ts,i is the land surface
temperature for each pixel within this fc class.
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Figure 2. A conceptual sketch of the theoretical trapezoid Ts − fc feature space. Upper red line
represents the dry edge under extreme water stressed conditions. Horizontal blue lines represents the
wet edge under maximum soil moisture availability. Slanting green lines enclosed by the boundaries
represent superimposed isopleths of soil moisture availability. Point A ( fc = 0, Ts = Tsmax) represents
the driest bare soil surface with the Priestley-Taylor parameter ∅ equal to zero, point B ( fc = 0,
Ts = Tsmin) represents the wettest bare soil surface with ∅ equal to 1.26, point C ( fc = 1, Ts = Tcmax)
represents the driest fully vegetated surface with the Priestley-Taylor parameter ∅ equal to zero, and
point D ( fc = 1, Ts = Tcmin) represents the wettest fully vegetated surface with the Priestley-Taylor
parameter ∅ equal to 1.26.

3.2. Proposed New Parameterization Scheme of EF

3.2.1. Basic Framework

The proposed new parameterization scheme of EF was conducted by the combination of the
Ts − VI triangle method and the TVX method. The temperature-vegetation index (TVX) method,
proposed by Nemani and Running [52] and Goward et al. [53], was mainly used to estimate near
surface air temperature (Ta) in previous studies. It is assumed that because of the combined impact
of vegetation cover on the average surface thermal characteristics and on the evaporative control
of energy portioning, remotely sensed land surface temperature tends to approach air temperature
with increasing vegetation cover, and the radiometric temperature of a full vegetated canopy is in
equilibrium with the temperature of the air within the canopy [39,41]. Other assumptions involved in
the TVX method are that both uniform atmospheric forcing and soil moisture conditions must take
place [38]. It should be noted that the uniformity of atmospheric forcing is also the assumption of the
Ts −VI triangle method, and is considered to be fulfilled on clear sky days when both the retrieval of
Ts and VI is possible, while the assumption of uniform soil moisture is just presumably fulfilled in
the isopleths of soil surface moisture within the trapezoid space. Thus, it is possible to combine these
two Ts − VI relationships together. In fact, as the study conducted by Sandholt et al. [54] revealed,
the isopleths of soil surface moisture within the Ts −VI trapezoid space can be regarded as several
superimposed TVX lines (Figure 2).
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There have been other significant studies performed to derive further the information contained
in the Ts −VI trapezoid space. Based on the studies conducted by Carlson [28] and Moran et al. [55],
Long and Singh [30] concluded that pixels along the same isopleth of soil surface moisture has the
same soil surface temperature (Tsoil,i) and also the same surface temperature of the fully vegetated
surface (Tc,i), and Ts of a mixed surface is a weighted sum of vegetation and soil temperatures. On the
basis of this conclusion and by the combination of the Ts −VI triangle method and the TVX method,
the proposed new parameterization scheme of EF was performed as follows. Figure 3 is a flowchart of
this parameterization scheme. Five steps are demonstrated using different colors.
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Step 1 is the calculation of the surface temperature of bare soil (Tsoil,i), which is marked with
green color. According to the assumption of the TVX method, for each pixel (Ts,i, fc,i) in Figure 2,
the remotely sensed Ts tends to approach its air temperature (Ta,i) with increasing of vegetation cover
under the same soil moisture conditions, and the radiometric temperature of a full vegetated canopy
(Tc,i) is in equilibrium with the temperature of the air within the canopy. Thus, Tc,i = Ta,i. Variation in
Ts for the same isopleth of soil surface moisture results essentially from the variation in fc, and the
remotely sensed Ts,i is a weighted sum of vegetation and soil temperatures [30], which is defined as:

Ts,i = fc,iTc,i + (1− fc,i)Tsoil,i (6)

For a mixed pixel, Tc,i and Tsoil,i is the surface temperature of full vegetated canopy and bare soil,
respectively. Therefore, the surface temperature of the bare soil (Tsoil,i) corresponding to the isopiestic
line which the given pixel (Ts,i, fc,i) belongs to can be deduced as the intercept of this function.

Step 2 is the calculation of a simplified land surface dryness index (Temperature-Vegetation
Dryness Index, TVDI) proposed by Sandholt et al. [54], which is marked with yellow color. According
to Sandholt et al. [54], the TVDI for each pixel in the Ts −VI triangle space can be retrieved as:

TVDI =
Ts,i − Tsmin,i

Tsmax,i − Tsmin,i
(7)

where Tsmax,i and Tsmin,i is the maximum and minimum surface temperature of each fc class,
respectively (Figure 2). For bare soil ( fc = 0), TVDI can be defined:

TVDIsoil =
Tsoil,i − Tsmin

Tsmax − Tsmin
(8)
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It is clear that there is negative correlation relationship between TVDI and soil surface moisture
status. TVDI ranges from 0 to 1 with soil moisture availability decreasing from the wet edge to the
dry edge.

Step 3 is the calculation of the Priestley-Taylor parameter of bare soil (∅s,i), which is marked with
blue color. For unsaturated soil, a parameterization scheme of EF was proposed by Komatsu [56] from
the soil moisture status as follows:

EF = α[1− exp(−θ/θc)]
∆

∆ + γ
(9)

where α = 1.26 is the Priestley-Taylor parameter, θ is the surface soil moisture, and θc is a parameter
that depends on soil type and wind speed. Similar to TVDI, θ/θc is also a dimensionless parameter
ranging from 0 to 1, which represents relative soil moisture status, but there is negative correlation
relationship existing between TVDI and θ/θc [57]. Combing Equations (1) and (9) and replacing θ/θc

with (1− TVDIsoil), the parameter ∅ in Equqtion (1) can be written as

∅s,i = α[1− exp(TVDIsoil − 1)] (10)

The subscript “s” indicates that the parameter ∅ is only valid for bare soil.
Step 4 is the calculation of the Priestley-Taylor parameter of full vegetated canopy (∅c,i), which

is marked with orange color. At the same isopiestic line corresponding to ∅s,i, the parameter ∅ of
the full vegetated canopy ( fc = 1) is calculated as ∅c,i = (∆ + γ)/∆, just as Jiang and Islam did in
Section 3.1 [16,19]. However, it should be noted that ∆ in Jiang and Islam’s parameterization scheme is
calculated by using the constant Tw as input, while ∆ in our new parameterization scheme is calculated
by using Ta,i as input, and varies with isopleths of soil surface moisture.

Step 5 is the calculation of the Priestley-Taylor parameter of a mixed pixel (∅i), which is marked
with red color. Along each isopiestic line, because of the invariance of soil moisture, the parameter ∅ is
only determined by the variation of vegetation cover, and increases from ∅s,i to ∅c,i with the increasing
of fc. After the lower and upper bounds of ∅ values for each isopiestic line have been determined, the
∅ value for each pixel within this isopiestic line is interpolated as follows:

∅i = (∅c,i −∅s,i) fc,i + ∅s,i (11)

Similar to the parameterization scheme developed by Jiang and Islam [21,24], the proposed new
parameterization scheme was also performed based on an extension of Priestley-Taylor equation. The
parameter ∅ for each pixel within the trapezoid space was interpolated linearly from the established
upper and lower bounds in both of these two schemes. What is different is that the interpolation
procedure in Jiang and Islam’s parameterization scheme was performed for each fc interval, while in
the proposed new parameterization scheme it was performed for each isopiestic line of soil surface
moisture. As for the determination of the limiting bounds, there is not much difference in the
determination of the upper bound (∅max,i in Jiang and Islam’s scheme and ∅c,i in our scheme). Both
of them are calculated as (∆ + γ)/∆. However, ∆ in Jiang and Islam’s parameterization scheme is
calculated by using the constant Tw as input, while ∆ in our new parameterization scheme is calculated
by using Ta,i as input. Therefore, ∅max,i is a constant in the traditional approach, while ∅c,i varies with
isopleths of soil surface moisture in the NPS. Besides, because ∆ increases with the increase of Ta,i, the
pixels with more stressed soil moisture conditions have a lower value of ∅c,i. Therefore, compared with
the constant ∅max in Jiang and Islam’s scheme, the variable ∅c,i in the new parameterization scheme is
more reasonable, because it accounts for the impact of soil moisture conditions partly. In Jiang and
Islam’s parameterization scheme, the determination of the lower bound (∅min,i) for each vegetation
class fc was interpolated linearly as ∅min,i = ∅max fc,i. According to the research conducted by
Stisen et al. [23], the weakness of this parameterization of ∅min,i, where evaporative fraction is not
zero along the observed dry edge, is that it does not allow for the presence of water stressed full
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cover vegetation. In our proposed new scheme, the lower bound (∅s,i) for each isopiestic line was
determined under bare soil conditions based on the TVDI proposed by Sandholt et al. [54] and the
parameterization scheme proposed by Komatsu [56]. This is an alternative way to bypass the water
stress involved in the mixed surface (vegetation/bare soil), and thus can overcome the weakness
involved in the parameterization of ∅min,i. Another great advantage of the new parameterization
scheme is that both the maximum surface temperature of the bare soil and fully vegetated canopy is
required in the parameterization scheme proposed by Jiang and Islam [21,24], while only the maximum
surface temperature of the bare soil (Tsmax) is indispensable in the new parameterization scheme, and
thus the reliance of the Ts −VI triangle method on the dry edge has been reduced significantly.

3.2.2. Estimation of Near Surface Air Temperature

In the proposed new parameterization scheme, the isopiestic lines of soil surface moisture were
assumed to be several superimposed TVX lines [54]. Besides remotely sensed Ts and VI, near surface
air temperature (Ta) is another variable needed to determine the TVX lines. A simple and operational
algorithm was developed by Zhu et al. [49] to retrieve the instantaneous Ta for the Southern Great
Plains (SGP) of the United States of America. They find that the systematic errors caused by near
surface air temperature (Ts

a ) retrieved from MOD07_L2 product and Ts retrieved from MOD06_L2
product are in completely different directions. This means that these errors can balance each other
out by the combination of Ts

a and Ts, especially when the absolute values of the errors caused by
them are similar to each other, which is just the case in our study. Therefore, the instantaneous Ta

under clear sky conditions was estimated as the average of near surface air temperature (Ts
a ) retrieved

from MOD07_L2 product and land surface temperature (Ts) retrieved from MOD06_L2 product.
The validation results are shown in Figure 4. Specific statistical measures used in the validation are
shown in Table 3. The coefficient of determination (R2), MAE, RMSE, RRMSE and B are 0.94, 2.28 K,
3.02 K, 0.01 and 1.72 K, respectively. Ta of the same 21 days in the SGP region was also estimated by
Sun et al. [50] using an empirical method proposed by Zaksek and Schroedter-Homscheidt [58] with a
R2 of 0.91, and RMSE of 3.1 K. Therefore, the accuracy of the algorithm developed by Zhu et al. [49]
applied in the SGP is acceptable.
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Table 3. Statistical measures. Note: Pi is predicted, Oi is observed and n is the number of samples.

Statistical Measure Formula

Mean absolute error MAE = 1
n

n
∑

i=1
|Pi −Oi|

Root mean square error RMSE =

√
1
n

n
∑

i=1
(Pi −Oi)

2

Relative root mean square error RRMSE = RMSE
Oi

Bias B = Pi −Oi

Coefficient of determination R2 =
∑n

i=1(Pi−Oi)
2

∑n
i=1(Oi−Oi)

2

Correlation coefficient r = ∑n
i=1(Oi−Oi)(Pi−Pi)√

∑n
i=1(Oi−Oi)

2
√

∑n
i=1(Pi−Pi)

2

3.2.3. Determination of the Dry and Wet Edges

Scheme proposed by Jiang and Islam [21,24] and the proposed new parameterization scheme were
performed within the triangle/trapezoid framework (Figure 2). Different algorithms for determining
the dry and wet edges of the triangle/trapezoid were developed in previous studies [13,21,23,24,30,32].
In this study, the observed dry edge was determined using a simple algorithm, which was described
in detail by Tomas et al. [59]. In simple terms, the Ts pixels are firstly split into a number of bins using
a NDVI step size of 0.01. Then the maximum Ts value is found for each bin. After removing all the
maximum Ts values located to the left in the triangle graph (with corresponding lower NDVI value),
a linear fit is performed through the remaining Ts maximum values and the corresponding NDVI bin
values, and the fit is adopted as the dry edge.

In general, there are mainly three methods in the determination of the wet edge. (1) In traditional
triangle approaches, the minimum Ts value in an image or the mean of the minimum Ts values for
each NDVI bin is adopted as the wet edge [54,59]. (2) Some typical pixels of an image are taken as the
wet edge. These pixels are often characterized by relatively low Ts and high EF, such as inland water
bodies and dense vegetation stands [18,24,60]. (3) Numerous studies show that observed near surface
air temperature can be used to represent the lowest Ts over study area. For example, one principle of
the TVX method is that the radiometric temperature of a fully vegetated canopy is in equilibrium with
the air temperature within the canopy [39,41,45,61]. Even some Ts −VI triangle/trapezoid models
that were performed based on theoretical boundaries also assumed that the near surface Ta could be
taken as the horizontal wet edge [30,32,50]. Thus, in this study we adopted the minimum Ta estimated
over the whole SGP region in Section 3.2.2 as the wet edge, and set Tsmin = Tcmin = Tw = Tamin.

4. Results and Discussion

4.1. Accuracy of EF Estimates

For simplification purpose, the parameterization scheme of EF proposed by Jiang and Islam [21,24]
is called the traditional parameterization scheme (TPS) and that proposed in this paper is called the
new parameterization scheme (NPS). As Batra et al. [27] and Venturini et al. [42] interpreted, there are
no generally accepted methodologies to compare and validate the spatial distribution of EF over large
areas because of the scale mismatch between the estimated EF map and point measurements from
the ground. Nonetheless unfiltered point observations seem to be an appropriate mean to validate
remote sensing applications [21,22,27,42,62]. The estimated EF for the two parameterization schemes
is illustrated in Figure 5a,b, respectively, and statistics are listed in Table 4. Overall, similar accuracy is
achieved in these two parameterization schemes. Both of them could capture the seasonal variation
of EF with R2 higher than 0.55, although a higher standard deviation (STD) is found in the ground
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observations. Judging from the magnitude, the MAE, RMSE, RRMSE and B obtained in TPS are 0.11,
0.14, 0.33 and −0.03, respectively, which are just the same as those obtained in NPS. This means that
EF is underestimated in both of these two schemes. In order to further investigate the difference in
EF estimates between these two parametrization schemes, the scatterplots between EF retrieved from
the TPS and that retrieved from the NPS are shown in Figure 6. It is clear that good agreements are
observed with correlation R2 as high as 0.98 and bias B as low as 0.00. The low values of the MAE and
RMSE also indicate that there is little difference in the EF retrieved from these two parameterization
schemes. The validation results of these two parameterization schemes for 11 sites are also presented
in Table 4. Compared with the overall performance, significant differences are observed in the accuracy
obtained in different sites. For most of the sites (E2, E4, E9, E12, E13, E18, E20, E22, E27), the accuracy
obtained in both schemes is similar to or even better than that obtained for the whole study area.
However, the errors obtained for E7 and E8 are much larger than those obtained for the remaining.
There exists serious underestimation of EF for these two sites, and the bias B obtained in both schemes
are −0.14 (E7) and −0.10 (E8), respectively.
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4.2. Temporal Variation of EF 

The temporal variations of the observed EF versus EF retrieved from these two 
parameterization schemes for each site are shown in Figure 7. In general, there are no significant 
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broader than those retrieved from either the TPS or the NPS, which is especially obvious for sites E2, 
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4.2. Temporal Variation of EF

The temporal variations of the observed EF versus EF retrieved from these two parameterization
schemes for each site are shown in Figure 7. In general, there are no significant differences between
EF retrieved from TPS and that retrieved from NPS. Both can reflect the temporal variations of EF
effectively for most of the sites (E2, E4, E7, E9, E12, E18, E20, E27). However, when compared with
the value range of observed EF, neither of these two schemes can represent effectively the amplitude
of the variation. The value range of the observed EF is much broader than those retrieved from
either the TPS or the NPS, which is especially obvious for sites E2, E9, E12, E13, E18, E20 and E22.
The reasons involved can be found by investigating the minimum and maximum values of EF for
each site. As Figure 7 shows, for most sites the observed minimum EF is much smaller than those
retrieved from these two schemes, while the differences in the maximum EF are not very significant.
Thus, the big differences in the value range are mainly caused by the overestimation of the minimum
EF. It should be noted that for site E7 and E8, although accurate estimates of both the maximum
and minimum EF are obtained in these two schemes, the comparison of mean values shows that EF
of these two sites are underestimated most seriously. This is mainly caused by the large errors in
TVDI estimates, because the research conducted by Sun et al. shows that the correlation coefficient (r)
between TVDI and soil moisture for site E7 and E8 is 0.10 and 0.33, respectively, which means there is
almost no correlation [50].

In general, the time series curves produced by the parameterization schemes are more similar to
a smooth sinusoidal curve, while those produced by the observations have a rougher shape, which
takes on a more significant seasonal variation. However, a definitive conclusion from this comparison
should be avoided because of the lack of long-term comparison. In addition, there are issues of mixed
pixel and registration error between the remotely sensed pixel and ground observations [27]. Random
measurement error arises at some points in these stations on account of varied usage of sensors,
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measurement techniques and system calibration methods [21]. The measurement errors should also
kept in mind while doing such comparisons.Remote Sens. 2017, 9, 26  13 of 25 
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4.3. Spatial Comparison of EF Retrieved from the TPS and NPS

Although the accuracy of EF estimated by the TPS and NPS as well as their temporal variations
were compared in Sections 4.1 and 4.2, respectively, further studies are still needed to investigate the
spatial differences between these two parameterization schemes. Because it is difficult to evaluate the
reliability of model output using point observations at a handful of sites, in this section EF retrieved
from the two parameterization schemes was compared at pixel scale for the whole SGP region. Because
of its low cloud cover, here only the day of DOY 239 was taken as an example. The spatial distribution
of EF retrieved from these two parameterization schemes as well as their differences (EFNPS − EFTPS)
are shown in Figure 8. In general, similar spatial pattern of EF was achieved. Both of these two
schemes indicate that there are obvious distinctions in EF between the west and east part of the SGP
region. Specifically, EF retrieved from the TPS ranges from 0.16 to 0.96 with a mean of 0.68 and STD
of 0.15, and EF retrieved from the NPS ranges from 0.19 to 0.99 with a mean of 0.67 and STD of 0.15.
The scatterplots of EF retrieved from the TPS and NPS for all the pixels are presented in Figure 9.
There is a good agreement of EF retrieved from these two parameterization schemes with R2 as high as
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0.96. Similar to the results obtained at site scale (Figure 6), small values of the MAE, RMSE and B are
also achieved at regional scale, which are 0.03, 0.04 and −0.02, respectively.
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In order to further analyze the spatial distribution of the differences in EF retrieved from these
two parameterization schemes, the scatterplots of (EFNPS − EFTPS) against NDVI and Ts are presented
in Figure 10a,b, respectively. Positive correlations are observed in both of these two scatterplots. This
means that there is complementary relationship exiting between the EF retrieved from these two
schemes. For pixels with small values of NDVI and Ts (in the lower-left corner of the Ts −VI trapezoid
space), the NPS tends to underestimate the EF retrieved from the TPS, while for pixels with large values
of NDVI and Ts (in the upper-right corner of the Ts −VI triangle space), the NPS tends to overestimate
the EF retrieved from the TPS. These findings make a great sense because it means that the errors
produced by these two parameterization schemes have a distinct pattern. As a matter of fact, the
application of the Ts −VI triangle approaches has been recently questioned when the climatic controls
for evapotranspiration are different. For example, the research conducted by Garcia et al. [63] showed
that the application of the TPS should be restricted to water-limited sites excluding energy-limited
regions. Considering the complementary relationship presented in Figure 10, further studies can be
performed to evaluate the applicability of the TPS and NPS under different climatic controls.

In order to make a more comprehensive evaluation of the difference in EF retrieved by these
two schemes, Figure 11 presents the spatial quantile statistics of EF retrieved from these two
parameterization schemes as well as the spatial quantile statistics of their differences (EFNPS − EFTPS)
on each of the 21 days. In general, good temporal agreements are observed in the spatial quantile
statistics of EF retrieved by these two schemes. R2 calculated for the 25th percentile, median and
75th percentile is 0.95, 0.97 and 0.97, respectively. Judging from the seasonal variation, both of these
two schemes show that the spatial median values of EF over the SGP region increases first and then
deceases with increasing of time. The peak values of EF estimated by the TPS and NPS are 0.71 and
0.68, respectively (on DOY 239). As for the difference of EF retrieved by these two schemes, the
median values shows that the NPS can either underestimate or overestimate the TPS. Specifically,
the TPS is overestimated by the NPS during 11 days of the 21 days; during the rest 10 days, the TPS
is underestimated.
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4.4. Comparison with Previous Studies

Although the accuracy of the parameterization scheme developed in this paper has been evaluated
in the above section, the comparison of its accuracy with previous studies is still necessary to
understand its advantages.

Table 5 presents the summary of relevant EF estimation studies conducted based on the TPS.
As mentioned in the introduction, the method adopted in previous studies for the retrieval of dry
edge can be classified as theoretical and empirical approaches. In order to be consistent with the
regression method used in this study, all the studies presented in Table 5 were performed within the
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observed dry edge determined by empirical approach. It is clear that the accuracy of EF estimates
in previous studies varies significantly with study location and satellite sensor used. Coincidently,
there are two studies in which the traditional parameterization scheme was applied to the same study
location as ours. EF over the SGP region was also retrieved from MODIS product in the year 2004 by
Wang et al. [17], although the sixteen days selected by them for validation were not the same as
ours. In their study, the MAE and B obtained were 0.14 and −0.03, which were then reduced to 0.12
and −0.02 by the introduction of the thermal inertia method. Similar results were obtained by Jiang
and Islam [25], but EF over the SGP region in their study was retrieved from AVHRR product. The
RMSE, B and R2 reported were 0.12, −0.08 and 0.30, respectively. Besides the SGP region, the TPS has
been applied to a wide range of other locations [22,23,26,59,64,65]. According to Long et al. [33] and
Tomas et al. [59], the performance of triangle method depends heavily on the resolution of satellite
images. Therefore, just judging from the accuracy produced by MODIS product in Table 5, it is
concluded that the accuracy achieved by the NPS in our work has reached a level comparable with
those obtained by the TPS in previous studies.

Table 5. Summary of relevant EF estimation studies based on the Ts −VI triangle method.

Study Study Location Sensor Used Accuracy Reported

Jiang and Islam [25] Southern Great Plains, USA AVHRR RMSE of 0.12, bias of −0.08,
R2 of 0.30

Nishida et al. [22] Continental USA MODIS RMSE of 0.17, bias of 0.01,
R2 of 0.71

Venturini et al. [26] South Florida, USA MODIS, AVHRR
RMSE varied from 0.08 to 0.19
(mean value 0.13) and R2 ranged
from 0.40 to 0.71 (mean value 0.58)

Wang et al. [17] Southern Great Plains, USA MODIS MAE of 0.14, bias of −0.03,
R2 of 0.52

Stisen et al. [23] Senegal River basin,
West Africa MSG-SEVIRI RMSE of 0.16, bias of −0.04,

R2 of 0.35

Tang et al. [64] Audubon Ranch and Kendall
Grassland, southwest of USA MODIS RMSE varied from 0.10 to 0.12 and

bias ranged from 0.04 to 0.07

Kim and Hogue [65] San Pedro River basin,
Arizona MODIS

MAE varied from 0.06 to 0.22,
RMSE ranged from 0.11 to 0.25
and R2 ranged from 0.01 to 0.64

Tomas et al. [59] Henares River basin, Spain
Landsat5-TM,

Envisat-AATSR/MERIS,
MSG-SEVIRI

RMSE varied from 0.11 to 0.23 and
R2 ranged from 0.24 to 0.77

This study Southern Great Plains, USA MODIS MAE of 0.11, RMSE of 0.14,
bias of 0.03, R2 of 0.58

It should be noted that although both the TPS and NPS are conducted within the dry edge
determined in Section 3.2.3, a careful inspection of the proposed new parameterization scheme shows
that unlike the parameterization scheme proposed by Jiang and Islam [21,24], Tcmax of the dry edge
is not used in the NPS. Specifically, both Tsmax and Tcmax are needed in the TPS for the retrieval of
dry edge [30,32], while only Tsmax is indispensable in the NPS for the definition of the maximum
water stress. Therefore, the reliance of the Ts −VI triangle method on the dry edge has been reduced
significantly by the NPS. Combining with the accuracy it produced (Table 5), it is reasonable to
conclude that the simplicity of the proposed new parameterization scheme does not compromise
its accuracy in monitoring EF. The independence of the NPS from Tcmax also means that it can be
performed independent from the determination of the dry edge. This makes sense in the following
two aspects: (1) As mentioned in the introduction, because of the limitations of the observed dry edge,
theoretical dry edge has been widely used in recent studies [30,32,50], in which both the values of
Tsmax and Tcmax are determined based on the surface energy balance principle. The introduction of
the NPS has not only bypassed the task involved in the determination of Tcmax, but also reduced the
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uncertainty of the Ts −VI trapezoid method, because the mechanism involved in the surface energy
balance principle over the bare soil is much simpler. (2) As presented in Figure 2, the dry edge of the
Ts −VI trapezoid can be regarded as a special isopleth of the soil surface moisture. Thus, it can also be
determined as other isopiestic lines based on the TVX method, in which Tsmax can be retrieved. This
means that by the combination of the Ts − VI triangle method and the TVX method, the proposed
new parameterization scheme can determine the boundaries that are needed by itself, and get rid
of the constraint imposed by the Ts −VI trapezoid framework. Details on this are presented in the
following section.

4.5. Extension of the Proposed New Parameterization Scheme

The comparison with previous studies shows that although the new parameterization scheme
has no superiority in accuracy over the traditional parameterization scheme, the alternative option
it provides makes it possible to be performed independent from the determination of the dry edge.
Regarding the dry edge of the Ts −VI feature space as a special isopleth of the soil surface moisture, it
can be retrieved just the same as the retrieval of other isopleths. Specifically, the Tsmax was determined
by selecting the pixel with the maximum Ts in an image. Given Ts, fc and Ta, Tsmax of the selected
pixel was calculated using Equation (6). Although Tcmax is not indispensable in the proposed new
parameterization scheme, it can be assumed as Ta of the selected pixel according to the TVX method.
The comparison of Tsmax and Tcmax determined above with those determined in Section 3.2.3 is shown
in Figure 12a,b, respectively. Although good temporal agreements are observed in both of these
two parameters with r equal to 0.98 and 0.96, respectively, there are significant differences in the
errors achieved. For Tsmax, there is little difference in the values estimated by these two methods.
The MAE, RMSE and B are 1.08 K, 1.57 K and −0.06 K, respectively. This means that it is feasible to
determine the constraint (Tsmax) that are needed in the NPS by the combination of the Ts −VI triangle
method and the TVX method. However, significant differences are observed for the estimation of Tcmax.
The MAE, RMSE and B are 6.92 K, 7.67 K and −5.83 K, respectively. The near surface air temperature
of the selected pixel is generally lower than Tcmax determined by the regression approach.

The accuracy of EF retrieved from the TPS and NPS within the dry edge determined above are
presented in Table 6. Compared with the results in Table 4, there is little difference in the accuracy
obtained by the NPS. The R2, MAE, RMSE and B obtained are 0.56, 0.11, 0.14 and −0.02, respectively,
which are almost the same as those presented in Table 4. This is reasonable considering the little
difference in Tsmax presented in Figure 12a. The R2, MAE, RMSE and B obtained by the TPS are 0.58,
0.12, 0.15 and −0.05, respectively. All of the four statistics show that the accuracy achieved by the
new dry edge is a little lower than that achieved in Table 4. Since there is little difference in Tsmax,
the decline of the accuracy is mainly caused by the difference in Tcmax. The comparison shows that
the need of another parameter Tcmax brings in more uncertainty to final parameterization of EF, which
partly demonstrates the robustness of the proposed new parameterization scheme, since the NPS can
be performed independent of the determination of Tcmax.

Table 6. Accuracy of EF retrieved from TPS and NPS within the dry edge determined by the
TVX method.

Site
EF Retrieved from NPS EF Retrieved from TPS

R2 MAE RMSE B R2 MAE RMSE B

E2 0.66 0.11 0.13 0.00 0.74 0.10 0.12 −0.05
E4 0.62 0.08 0.10 0.05 0.53 0.09 0.11 0.03
E7 0.69 0.15 0.19 −0.14 0.69 0.16 0.21 −0.16
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Table 6. Cont.

E8 0.16 0.16 0.20 −0.10 0.17 0.17 0.21 −0.10
E9 0.75 0.10 0.14 −0.04 0.71 0.09 0.14 −0.05
E12 0.75 0.13 0.16 0.06 0.74 0.11 0.15 0.04
E13 0.20 0.13 0.16 0.03 0.39 0.11 0.14 −0.01
E18 0.81 0.08 0.11 0.02 0.75 0.11 0.12 −0.03
E20 0.75 0.09 0.12 −0.04 0.75 0.11 0.14 −0.08
E22 0.39 0.11 0.12 −0.09 0.28 0.13 0.15 −0.12
E27 0.73 0.09 0.10 −0.03 0.71 0.11 0.12 −0.06

Total 0.56 0.11 0.14 −0.02 0.58 0.12 0.15 −0.05
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4.6. Sensitivity of the NPS to Input Parameters

The sensitivity analysis includes the following two aspects. A comparison of these two
parameterization schemes of EF shows that four temperature related parameters are required in
both of these two schemes. For the TPS, they are land surface temperature (Ts), maximum surface
temperature of bare soil (Tsmax), maximum surface temperature of full cover vegetation (Tcmax) and
surface temperature of the wet edge (Tw), respectively. For the NPS, besides Ts, Tsmax and Tw, near
surface air temperature (Ta) is required. Thus, firstly, the sensitivity of EF estimates to these four
parameters was tested. A set of values with a step of 1 K were adopted here to define the variation
of temperature. The strategy used for sensitivity analysis is to compare EF estimates with only one
input variable changed to those without any change in inputs. The results are shown in Figure 13.
Except Ts, positive feedback effects between EF retrievals and the rest three variables are observed in
both of these two parameterization schemes. Any increase (decrease) in the parameters (Tsmax, Tcmax,
Tw and Ta) will induce the increase (decrease) in the final estimates of EF. In contrast, the correlation
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relationship between EF retrievals and Ts is negative. Results show that EF estimates are most sensitive
to the variation of Tsmax and Ts. Logarithmic relationships between the bias B and the variation of
Tsmax are observed in both of these two schemes. It means that the sensitivity of EF retrieval decreases
with the increase of Tsmax. Taken the new parameterization scheme as an example, a change of +6 K in
Tsmax causes an increase of 0.10 in EF, while a change of −6 K in Tsmax results in a decrease of EF as
high as 0.26. The comparison between the NPS and TPS indicates that the TPS is more sensitive to the
variation of Tsmax than the NPS. It should be noted that the validation results in Figure 5 show that EF
was underestimated by both the TPS and the NPS. The underestimation in EF may be partly caused by
the underestimation of Tsmax, since the observed dry edge is usually lower than the theoretical dry
edge. In contrast to Tsmax, the sensitivity of EF retrievals increases with the increase of Ts. For the NPS,
a change of−6 K in Ts causes an increase of 0.13 in EF, while a change of +6 K in Ts results in a decrease
of EF as high as 0.30. The comparison shows that the sensitivity of these two parameterization schemes
to Ts is different when the variation of Ts is in the opposite directions. The TPS is more sensitive to
the variation of Ts than the NPS when the variation of Ts is negative. However, when the variation
of Ts is positive, the NPS is more sensitive to the variation of Ts than the TPS. Compared with Tsmax

and Ts, the sensitivity of EF retrievals to the rest three parameters is not very significant. In general,
a ±6 K change of these three parameters results in only ± 0.07 change of EF, but the sensitivity of the
TPS to Tw increases significantly with the increase of Tw. It has even exceeded the sensitivity to Tsmax

when the variation of temperature is beyond +5.5 K. The results presented in Figure 4 indicate that
Ta over the SGP region is estimated with the accuracy of a RMSE as 3.02 K. Figure 13 shows that a
change of ±3.02 K in Ta results in only ± 0.03 change in EF. Therefore, although Ta is needed in the
NPS, given the high accuracy achieved in Ta estimates and the insensitivity of EF estimates to Ta, it is
reasonable to conclude that the uncertainty brought in by Ta is very little. Besides these five temperate
related parameters, the fractional vegetation cover ( fc) is another indispensable parameter for the
retrieval of EF. A set of values with a step of 0.02 were adopted in Figure 14 to define the variation of
fc. Positive linear correlation relationships between EF retrievals and fc are observed in both of these
two schemes. An increase (decrease) of 0.02 in fc will result in an increase (decrease) of 0.011 and 0.013
in EF, respectively.
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5. Conclusions

In order to reduce the reliance of Ts−VI triangle method on the dry edge, a new parameterization
scheme of EF was developed in this paper by the combination of the traditional Ts−VI triangle method
and the TVX method. For validation purpose, it was demonstrated over the SGP region and compared
with the traditional parameterization scheme proposed by Jiang and Islam [21,24].

Results show that similar accuracy is achieved by these two parameterization schemes. The R2,
MAE, RMSE, RRMSE and B obtained by the NPS are 0.58, 0.11, 0.14, 0.33 and −0.03, respectively, and
those obtained by the TPS are 0.59, 0.11, 0.14, 0.33 and −0.03, respectively. A further comparison with
other relevant EF estimation studies also shows that the accuracy achieved by the proposed NPS is
comparable to that produced by the TPS in previous studies. Although there is little difference in
the accuracy produced, there are three advantages of the proposed new parameterization scheme,
which means that it can be used more widely and simply. (1) The maximum surface temperature of
the full cover vegetation (Tcmax), a key parameter of the dry edge in the TPS, is not needed in the NPS.
Thus, the proposed new parameterization scheme can be performed independent of the determination
of the dry edge, and only the maximum surface temperature of the bare soil (Tsmax) is indispensable.
Consequently, this has not only bypassed the task involved in the determination of dry edge,
but also reduced the uncertainty brought in by Tcmax. (2) Compared with the TPS, the Priestley-Taylor
parameter ∅ of a mixed pixel in the NPS is retrieved through the differentiation of soil and vegetation
components. The parameter ∅ the full vegetated canopy and bare soil is estimated, respectively.
It means that two-source ET models can be developed from the new parameterization scheme. (3) By
regarding the dry edge of the Ts −VI trapezoid space as a special isopleth of the soil surface moisture,
the proposed new parameterization scheme can determine the constraint Tsmax by itself, which can
even be extended as the dry edge of the Ts −VI trapezoid space. The results of validation show that
for the NPS, similar accuracy is achieved by using Tsmax determined above as the constraint. Thus,
the simplicity of the proposed new parameterization scheme does not compromise its accuracy in
monitoring EF.

The disadvantages of the new parameterization scheme mainly lie in the uncertainty it involves.
The NPS is developed by the combination of the Ts − VI triangle method and TVX method, so
the uncertainty in both of these two methods would be introduced to the final estimates of EF.
The uncertainties involved in the TVX method are mainly concentrated in the linearization of the
isopiestic lines of soil moisture. Specifically, the radiometric temperature of a full vegetated canopy is
assumed to be in equilibrium with the temperature of the air within the canopy. Strictly speaking, this
assumption only holds true under optimal soil moisture conditions. Investigation on the uncertainty
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caused by this assumption needs further studies based on soil moisture observations. As for the
Ts −VI triangle method, besides the empirical approaches used to determine the extreme values of
EF along each isopiestic line, the linear interpolation of Priestley-Taylor parameter ∅ also brings in
some uncertainty [66]. Moreover, considering the sensitivity of EF estimates to Tsmax, additional work
based on the surface energy balance principle may be required to calculate the Tsmax of the theoretical
dry edge.
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