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Abstract: Scene classification plays an important role in the intelligent processing of High-Resolution
Satellite (HRS) remotely sensed images. In HRS image classification, multiple features, e.g., shape, color,
and texture features, are employed to represent scenes from different perspectives. Accordingly, effective
integration of multiple features always results in better performance compared to methods based on
a single feature in the interpretation of HRS images. In this paper, we introduce a multi-task joint
sparse and low-rank representation model to combine the strength of multiple features for HRS image
interpretation. Specifically, a multi-task learning formulation is applied to simultaneously consider
sparse and low-rank structures across multiple tasks. The proposed model is optimized as a non-smooth
convex optimization problem using an accelerated proximal gradient method. Experiments on two
public scene classification datasets demonstrate that the proposed method achieves remarkable
performance and improves upon the state-of-art methods in respective applications.

Keywords: multi-task learning; feature fusion; sparse representation; low-rank representation;
scene classification

1. Introduction

With the rapid development of remote sensing techniques over recent years, High-Resolution
Satellite (HRS) images are becoming increasingly available thus enabling us to study earth observations
in greater detail. However, despite enhanced resolution, these details often suffer from the spectral
uncertainty problem stemming from an increase of the intra-class variance and decrease of the
inter-class variance [1], and the curse of dimensionality problem resulting from the small ratio between
the number of training samples and features [2]. Taking into account these characteristics, HRS
image classification methods have evolved from pixel-oriented methods to object-oriented methods
and achieved precise object recognition [3–5]. Object-oriented feature extraction methods cluster
homogeneous pixels and take advantage of both local and global properties [6]. These successful
developments in feature extraction technologies for HRS satellite images have increased the usefulness
of remote sensing applications in environmental and land resource management, security and defense
issues, and urban planning, etc.
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Scene representation and recognition of HRS satellite images is a challenging task given
the ambiguity and variability of scenes, and has attracted much attention in recent years [7–10].
Scene classification is aimed at automatically labeling an image from a set of semantic categories [11–13].
In this paper, the term “scenes” refers to separated sub-blocks split from a large satellite image.
Scenes often contain multiple land-cover objects having a specific semantic meaning, such as
an agricultural area, residential area, mobile home park, and golf course in a satellite image. These high-
level latent semantic concepts make it difficult to recognize HRS satellite scenes. As a consequence, the
main problem in the HRS satellite scene interpretation is bridging semantic gaps [14]. Semantic-based
scene classification has been widely applied in HRS image scene interpretation [15,16]. It is usually
difficult to understand and recognize scene categories because of the high complexity of spatial and
structural patterns in the massive HRS satellite images [17]. Therefore, feature representation in each
scene is a key step and highly demanded for accurate scene classification.

To obtain the meaningful features for scene classification, many descriptors have been developed in
recent years. Features such as color distributions describing the reflective spectral information [18,19],
textures reflecting a specific and spatially repetitive pattern of surfaces [20,21], and structures containing
macroscopic relationships between objects [22,23] have been widely used in HRS satellite image
classification; however, none of the feature descriptors has the same discriminating power for all classes
of scenes. For example, features based on color information might perform well when classifying forest
and desert, while a classifier for residential areas should be invariant to the actual color of the scenes.
Therefore, instead of using a single modality of feature for all classes, adaptively fusing a set of diverse
and complementary feature modalities might more accurately and precisely discriminate a class from
all others.

There are two general fusion strategies within the machine learning trend to semantic scene analysis,
namely: early fusion and late fusion. The former combines cues prior to feature extraction [11,24], and the
latter first separately extracts features and then combines them at the classifier stage [25,26]. Both early
and later fusion methods can be used to classify an HRS image because satellite scene classes have
multiple features dependency and independency simultaneously [6,27]. Because different features may
have different scales, hard combination methods, such as concatenation, may cause redundancy and
degenerate efficiency and performance. Recent studies on Multiple Kernel Learning (MKL) [28] that
fuse different features through multiple similarity function combinations can effectively improve the
classification performance [29,30]. Several combination methods inspired by MKL have been proposed
varying from linear to nonlinear, and from the same type of kernel to different types of kernels [25,31].

In contrast to this family of work, Yuan et al. [32] proposed a Multi-Task Joint Sparse Representation
and Classification (MTJSRC) framework for visual recognition in a regularized Multi-Task Learning
(MTL) framework. The idea behind MTL is basically that, when the tasks to be learned are similar
or related in some sense, it may be advantageous to take into account these cross-task relations in
the model. Experimental results have demonstrated the effectiveness of such a framework [33,34].
The MTJSRC framework was motivated by the success of multi-task joint sparse linear regression and
the Sparse Representation Classification (SRC) [35] approaches, that have been applied in HRS satellite
image classification and achieve excellent performances [36,37]. Based on the knowledge transferring
mechanism in MTL [38] and the collaborative representation mechanism in SRC [39], MTJSRC can
deal with the “lack of samples” problem for high-dimensional signal recognition [36]. The MTJSRC
method can learn a common subset of features for all tasks through joint sparsity regularization [40] by
penalizing the sum of l2 norms of the blocks of coefficients associated with each covariate group across
different classification problems. From the perspective of linear regression, MTJSRC was inspired
by Multi-Task Joint Covariate Selection (MTJCS) which can be regarded as a combination model of
the group Least Absolute Shrinkage and Selection Operator (LASSO) [41] and multi-task LASSO [42].
Li et al. [36] introduced the MTJSRC paradigm for hyperspectral image classification and achieved
competitive performance. However, the multiple learning tasks in MTJSRC can be coupled using a set
of shared factors possessing low-rank structure [43]. For example, satellite scene images with different
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labels may share similar background under a low-rank structure. Chen et al. [44] demonstrated the
effectiveness of the MTL formulation considering the sparse and low-rank patterns from multiple
related tasks.

Inspired by the existing works in these fields, we present a Multi-Task Joint Sparse and Low-rank
Representation and Classification (MTJSLRC) for HRS images. In this paper, the term “multi-task”
means that several linear representation models are simultaneously estimated through regularization
on parameters across all the models. For example, when classifying scenes, we obtain K different
linear representation models from K different visual features (e.g., texture, shape, and color). The joint
sparsity and low-rank structures are enforced by imposing the l1,2-norm penalty as proposed by [38,40]
and trace norm penalty as previously developed approaches in [45,46]. The objective in MTJSLRC is to
determine a squared reconstruction error term and two convex but non-smooth (l1,2-norm and trace
norm) regularization terms. We deform the model and then use the Accelerated Proximal Gradient
(APG) method [47] to solve this non-smooth convex optimization problem. Similar to MTJSRC,
classification is ruled in favor of the class that has lowest total reconstruction error accumulated from
all the tasks [32]. Extensive experiments show that our method takes advantage of multiple features
and thus overcomes the over-fitting problem produced by the hyper-dimensional stacked feature space
and “lack of samples.” In our framework, a low-rank constraint is applied to reduce redundancy and
correlation in highly correlated tasks for HRS satellite image classification.

The contribution of this study lies in the combination of multiple features based on MTL, SRC,
and low-rank representation. We found that the multi-task joint sparse and low-rank representation is
a simple yet effective way to combine multiple complementary features to improve the HRS image
classification accuracy. We overcome the problem of incoherent sparse and low-rank patterns by
considering multiple related features, and decomposing model parameters as a joint sparsity-inducing
component and a low-rank component. Specifically, we employ a l1,2-norm regularization term to
enforce group sparsity in the model parameter, and identify the essential discriminative features
for effective HRS image classification; meanwhile, we use a trace-norm constraint to encourage the
low-rank structure, capturing the underlying relationship among the tasks for improved generalization
performance. We employ the APG method to solve this as a non-smooth convex optimization problem.

The remainder of this paper is organized as follows: Section 2 briefly introduces the basic theory
of sparse representation. Section 3 describes the proposed MTJSLRC framework for HRS image
classification. The experimental results and analysis are presented in Section 4. In Section 5, some
concluding remarks and prospects for future work close the paper.

Notations: For any matrix X ∈ Rm×n, let xij be the entry in the i-th row and j-th column of X; XT

denotes the transpose of X; ‖X‖0 denotes the l0-norm which counts the number of non-zero entries

in X; let ‖X‖1 denote the l1-norm and ‖X‖1 = ∑m
i=1 ∑n

j=1
∣∣aij
∣∣; let ‖X‖F =

√
∑m

i=1 ∑n
j=1
∣∣aij
∣∣2; let ‖X‖∗

denote the nuclear norm which is the sum of absolute value of all the singular values.

2. Related Work

In this section, we briefly review the SRC and MTJSRC methods in scene classification. The working
mechanism of the MTJSRC method is depicted in Figure 1. The MTJSRC method can combine a set of
diverse and complementary modalities of features to discriminate each class better from all other classes.
Instead of extracting multiple feature modalities, the MTJSRC method reduces to the SRC method when
using a single modality of feature.
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Figure 1. Flowchart of the Multi-Task Joint Sparse Representation and Classification (MTJSRC) approach
for High-Resolution Satellite (HRS) scene classification. Multiple feature modalities for all the training
images from each of the classes are extracted in the preprocessing stage. Given a testing image, all features
that are exactly the same as training images are abstracted. Each feature is represented as a linear
combination of the corresponding training features in a joint sparse way. Once the representation
coefficients are estimated, the category can be decided according to the overall reconstruction error of the
individual class.

2.1. Sparse Representation Classification

Previous studies have shown that the sparse representation model is discriminative and
particularly useful for robust multi-class classification [32]. Assuming that we have J distinct classes,
we define Xj ∈ Rd×nj as a stack of nj columns of d-dimension feature vectors from training images

labeled as class j ∈ {1, · · · , J}, and n = ∑J
j=1 nj Each sub-dictionary Xj can model a convex set for

a specific class, and the collaborative dictionary X ∈ Rd×n, made up of all the sub-dictionary Xj, maps
each feature vectors into a new dimensional space corresponding to the dictionary. Given a testing
image feature y ∈ Rd, the optimization problem of the sparse linear representation model is described
as follows:

ŵ = min
w
‖w‖0, s.t. ‖y− Xw‖ ≤ ε, (1)

where ε denotes the noise level parameter. The problem Equation (1) is NP-hard, but previous
research results [48] show that under mild assumptions, this problem can be relaxed as the following
objective function:

ŵ = min
w
‖w‖1, s.t. ‖y− Xw‖ ≤ ε, (2)

This optimization problem is convex and the optimal solution ŵ can be efficiently solved. Then, for
classification, the class of the image feature y can be determined by minimizing the reconstruction
error rj (error between y and the linearly reconstructed result from the training images in the j-th class)
as follows:

class(y) = ĵ = arg min
j∈{1,··· ,J}

rj(y) = arg min
j∈{1,··· ,J}

‖y− Xjŵj‖2, (3)

where ŵj denotes the components of ŵ corresponding to class j. In the study of face recognition,
the SRC is expressed as the model Equation (2) and the decision rule Equation (3).
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2.2. Multi-Task Joint Sparse Representation Classification

The SRC model was originally developed for a single feature, and the MTJSRC model extended
it to multiple features and instances-based visual recognition. Suppose K modalities of features for
all the training samples with M classes, and the Xk ∈ Rdk×n is the training feature matrix for each
modality index k = 1, · · · , K. Then, we denote Xk

j ∈ Rdk×nj as the nj columns of Xk associated with

the j-th class. For a testing image, let y =
{

ykl ∈ Rdk k = 1, · · · , K, l = 1, · · · , L
}

be the ensemble
of L different instances (e.g., multiple transformation of a HRS scene) with same K modalities of
features as training images. For each testing image feature ykl , we suppose the representation vector

as Wkl =

[(
Wkl

1

)T
, · · · ,

(
Wkl

J

)T
]T

, which Wkl
j ∈ Rnj restricts on class j. We define the coefficients

associated with class j as Wj = [W11
j , · · · , WKL

j ] ∈ Rnj×KL. Thus, the multi-task joint covariate selection
model in sparse learning [40] seeks to solve the following optimization problem:

Ŵ = arg min
W

f (W) + αP(W), (4)

where the expressions of f (W) and P(W) are defined respectively as

f (W) =
1
2 ∑K

k=1 ∑L
l=1 ‖y

kl − XkWkl‖2
, (5)

P(W) = ∑J
j=1 ‖Wj‖F, (6)

This optimized problem can be solved by the APG method [47]. Given the optimal coefficient
matrix Ŵ, we can approximately recover each testing feature ykl as XkŴkl . The class can be decided
with the lowest reconstruction error accumulated over all the K× L tasks:

class(y) = arg min
j∈{1,··· ,J}

∑K
k=1 ∑L

l=1 rj

(
ykl
)
= arg min

j∈{1,··· ,J}
∑K

k=1 ∑L
l=1 ‖y

kl − Xk
j Ŵkl

j ‖
2
, (7)

The model Equation (4) together with decision rule Equation (7) is known as MTJSRC in the study
of visual classification [32].

3. The Proposed Method

In this section, we describe the MTJSLRC method that makes use of sparse and low-rank learning.
We also present details of the optimization method based on the APG algorithm [32,47] resorting in
our method.

3.1. Sparse and Low-Rank Representation

The MTJSRC model described in the previous section considered the sparse patterns from
multiple related tasks (multiple features and instances). However, in the HRS image classification,
the underlying predictive classifiers lie in a hypothesis space of some low-rank structure for the
redundancy and correlation in highly correlated tasks. In this paper, we consider both the sparse
and low-rank patterns for multiple features and instances-based HRS image classification to improve
performance. Figure 2 shows the intuition of the sparse and low-rank representation. We represent
each modality of testing features as a linear combination of the corresponding training features per
class by encouraging sparsity and low-rankness among features. Thus, we focus on the usage of
the sparse penalty and low-rank constraint to enforce joint sparsity and low-rank structure across
representation tasks.
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Figure 2. Intuition of the sparse and low-rank representation. (a) All modalities of features in a testing
image; (b), (c), and (d) are examples of coefficient sets considering sparse (MTJSRC), low-rank, and
sparse + low-rank (MTJSLRC) respectively. The coefficient sets learnt by MTJSLRC are jointly sparse,
and a few (but the same) training features are used to represent the testing features together, which
renders the coefficients consistent and more robust to noise.

3.2. Class-Level Joint Sparse and Low-Rank Regularization

In the MTJSRC method, the formulation of problem Equation (4) improves the independent
learning model Equation (2) to a joint learning model by imposing a class-level sparsity-inducing term.
It can be useful to represent a testing image by a few training samples under the common class for
the multi-class classification. To encourage the low-rank structure in the model coefficient, we impose
a class-level rank-constraint term to capture the underlying relationship among the tasks for improving
generalization performance. Therefore, the representation of multiple features and instances may
share certain class-level sparse and low-rank patterns.

To consider the low-rank structure within class j, we apply rank constraint over Wj. We employ
l1-norm across the rank constraint of Wj to reduce the redundancy in highly correlated tasks for HRS
image classification. We denote the class-level rank constraint term as follows:

Γ(W) = ‖
[
rank(W1), · · · , rank

(
WJ
)]
‖1 = ∑J

j=1 rank
(
Wj
)
, (8)

We propose to solve the following multi-task joint sparse and low-rank representation model:

Ŵ = arg min
W

f (W) + αP(W) + βΓ(W), (9)

where the expressions of f (W), P(W), and Γ(W) are given in Equations (5), (6) and (8) respectively,
and α and β are the regularization coefficients to balance the strength of the general loss component
and regularization terms. The problem Equation (9), however, is non-convex and the solution may not
be unique due to the rank-constraint in Γ(W), which can be regarded as l0-norm of its singular value
matrix. To make the problem tractable, we relax the rank operator with nuclear norm, and rewrote the
model as follows:

Ŵ = arg min
W

f (W) + αP(W) + βQ(W), (10)

where Q(W) is the following l1-norm across the nuclear norm:

Q(W) = ‖
[
‖W1‖∗, · · · , ‖WJ‖∗

]
‖1 = ∑J

j=1 ‖Wj‖∗, (11)

The classification rule of our model, therefore, is identical with MTJSRC. We call the model
Equation (10) together with the decision rule Equation (7) MTJSLRC, namely multi-task joint sparse
and low-rank representation and classification.
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3.3. Optimization Algorithm

The objective function Equation (10) consists of a squared reconstruction error term f (W),
a non-smooth l1,2-norm regularization term P(W), and a non-smooth l1-norm across low-rank
regularization term Q(W). The problem is intractable for the two non-smooth convex regularization
terms P(W) and Q(W). Considering a general minimization problem of the objective composing
a smooth convex term and a non-smooth convex term, Nesterov et al. [47] proposed the APG method
achieving O

(
1/t2) rate of convergence. Chen et al. [49] applied a nearly unified treatment using existing

APG methods to group/multi-task joint sparse learning. Similar to [49], Yuan et al. implemented an
APG optimization procedure for MTJSRC [32]. In this paper, we solve the problem (10) by transforming
it to a combination of a smooth convex term and a non-smooth term. Then, we can apply the APG
algorithm as used in MTJSRC to optimize our objective function.

We adopt the Moreau Proximal Smoothing [50] on the nuclear norm regularization term in Q(W).
More formally, the nuclear norm β‖Wm‖∗ is approximated by Moreau approximation

Φµ

(
Wj
)
= min

G
(

1
2µ
‖Wj − G‖2

F + β‖Wj‖∗), (12)

where µ is the smoothing parameter. The Φµ

(
Wj
)

is convex and smooth with respect to Wj, and the
gradient can be computed as

∇Φµ

(
Wj
)
= β

(
Wj − G∗

(
Wj
))

, (13)

where G∗
(
Wj
)
= arg min

G
( 1

2µ‖Wj − G‖2
F + β‖G‖∗) The closed-form expression of G∗

(
Wj
)

can be

determined using the soft-threshold operation on the singular values of Wj [46], and the gradient can
be denoted as

∇Φ
(
Wj
)
= β

(
Wj −UΣλVT

)
, (14)

where Wj = UΣVT is the singular value decomposition of Wj, Σλ is diagonal with (Σλ)ii =

max(0, Σii − λ), and λ = β/µ. Therefore, we apply the following smoothing function to the class-level
rank constraint term Q(W), and the approximation is:

Ω(W) = ∑J
j=1 Φµ

(
Wj
)
, (15)

The Ω(W) is convex and smooth due to Φµ

(
Wj
)

is convex and smooth, and the gradient is:

∇Ω(W) = ∑J
j=1 Φµ

(
Wj
)
, (16)

We replace the nuclear norm with its Moreau approximation in model Equation (12) and obtain
the approximated objective with only one non-smooth term.

Ŵ = arg min
W

f (W) + αP(W) + βΩ(W), (17)

We define the smooth component in Equation (17) as H(W) = f (W) + βΩ(W). The objective
function can be seen as the summation of a smooth term H(W) and a non-smooth l1,2-norm
regularization term αP(W).

Ŵ = arg min
W

H(W) + αP(W), (18)

Then, we can use the APG optimization algorithm to solve problem Equation (18).
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Algorithm 1 summarizes the details of optimization and classification. As MTJSRC in [32],
each iteration consists of the generalized gradient mapping step and the aggregation forward step.
The difference between MTJSRC and MTJSLRC is the gradient calculation in generalized gradient
mapping step. We update the W(t+1) using current matrix V(t+1) in the generalized gradient mapping
step as follows:

W(t+1) = arg min
W

H(V(t)) + 〈∇H(V(t)), (W −V(t))〉+ 1
2λ
‖W −V(t)‖

2
F + α‖W‖1,2, (19)

where λ is the step-size parameter. The solution of problem shown in [51] is:

U(t) = V(t) − λ∇H
(

V(t)
)

, (20)

W(t+1)
j = max(0,

1− αλ

‖U(t)
j ‖

) ·U(t)
j , (21)

Then, we apply the aggregation forward step to update V(t) as follows:

V(t+1) = W(t+1) +
θt − 1
θt+1

(W(t+1) −W(t)), (22)

θt+1 =
1
2
(1 +

√
1 + 4θ2

t ) (23)

Algorithm 1: MTJSLRC Algorithm

Inputs:
The training image feature matrices, {Xk, k = 1, . . . , K};
All testing image features, {ykl , k = 1, 2, · · · , K, l = 1, 2, · · · , L};
The regularization parameters, α > 0, β > 0;
The step-size parameter, λ > 0;
The maximum number of iteration, T;

Output:
The representation coefficients, W(t);
The predicted labels for testing image scenes, ĵ;

Initialization:
W0 = V0 = 0, θ0 = 1, t = 0

1: repeat:
2: Calculate U(t) = V(t) − λ∇H

(
V(t)

)
, in which ∇H

(
V(t)

)
is given by

∇H
(
Vt) = ∇ f

(
V(t)

)
+ β∇Ω

(
V(t)

)
, (24)

[∇ f
(

V(t)
)
]
kl
= −(Xk)

T
ykl + (Xk)

T
Xk
[
V(t)

]kl
, (25)

[∇Ω
(

V(t)
j

)
]
kl
= (∇Φµ

(
V(t)

j

)
)

kl
, (26)

l = 1, . . . , L, k = 1, . . . , K, j = 1, . . . , J
3: Calculate W(t+1)

j as

W(t+1)
j = max(0,

[
1− αη

‖U(t)
j ‖

]
)·U(t)

j , j = 1, . . . , J

4: Set θt+1 = 1
2 (1 +

√
1 + 4θ2

t )

5: Update V(t+1) = W(t+1) + θt−1
θt+1

(
W(t+1) −W(t)

)
6: Set t← t + 1
7: until converges or t > T;
8: Calculate ĵ = arg min ∑K

k=1 ∑L
l=1 ‖ykl − Xk

j Wkl
j ‖

2
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Since the convergence is not necessary for the good classification performance, we take the account
of the maximum number of iterations which is denoted as T in Algorithm 1.

3.4. Time Complexity Analysis

Due to the iterative characteristic of MTJSLRC, the computational complexity depends on
two factors, the number of iterations before convergence and the time consumed at each iteration.
As MTJSRC, the objective of our proposed model also is to minimize the reconstruction error of
a testing image; therefore, it is not necessary to execute the algorithm until convergent for the best
recognition performance. Therefore, we consider the dominant computational cost at each iteration of
Algorithm 1, which comes from the calculation of Equations (25) and (26) in step 2. As the gradient
estimation in [34], the first term −(Xk)

Tykl in Equation (25) can be pre-computed. Assume T be the
average number of iterations for the running of Algorithm 1, then the total Floating-point operations
(Flops) for gradient estimation of Equation (25) in step 2 is O(KLndk + 2TKLndk) as estimated in [32].
The time-consuming part of Equation (26) are SVD of matrix V(t)

j and the UΣλVT in ∇Φµ(V(t)
j ).

The costs of the two terms are typically O(s) and O(2(KL)2nj) Flops, respectively, where s is the

average computation time for the SVD of V(t)
j . The total Flops consumed by gradient estimation in

Equation (24) are typically O(KLndk + T(2KLndk + Js + 2J(KL)2nj)). The time consumed in the other
steps is negligible in comparison to that of gradient estimation in step 2.

4. Experiments and Analysis

In this section, we provide the experimental setup, and discuss the results on two public datasets.
We conducted several groups of experiments to evaluate the capability and effectiveness of MTJSLRC
for HRS image classification.

4.1. Experimental Setup

We evaluated our proposed MTJSLRC method on two public land-use scene datasets, which were:

• UC Merced Land Use Dataset. The UC Merced dataset (UCM) [10] is one of the first ground truth
datasets derived from a publicly available high resolution overhead image; it was manually
extracted from aerial orthoimagery and downloaded from the United States Geological Survey
(USGS) National Map. This dataset contains 21 typical land-use scene categories, each of
which consists of 100 images measuring 256× 256 pixels with a pixel resolution of 30 cm in
the red-green-blue color space. Figure 3 shows two examples of ground truth images from
each class in this dataset. The classification of UCM dataset is challenging because of the high
inter-class similarity among categories such as medium residential and dense residential areas.

• WHU-RS Dataset. The WHU-RS dataset [52] is a new publicly available dataset wherein all the
images are collected from Google Earth (Google Inc. Mountain View, CA, USA). This dataset
consists of 950 images with a size of 600× 600 pixels distributed among 19 scene classes. Examples
of ground truth images are shown in Figure 4. It can be seen that, as compared to the UCM
dataset, the scene categories in the WHU-RS dataset are more complicated due to variations in
scale, resolution, and viewpoint-dependent appearance.
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Figure 3. Two example ground truth images of each scene category in UC Merced (UCM) dataset.

Figure 4. Example ground truth images of each scene category in WHU-RS dataset.
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For the testing image, we utilize four types of transform to obtain multiple instances as follows: zoom
it in 1.2, flip it left to right, and rotate it five degrees clockwise and counterclockwise. Therefore we utilized
L = 4 instances for each testing image in the MTJSRC and MTJSLRC models. We give an overview of the
features used in our experiments, and refer to the corresponding publications for more details:

• Bag of Visual Words (BoVW). We extracted Scale-Invariant Feature Transform (SIFT) descriptors [18]
using a dense regular grid on the image with image patches at a 16× 16 pixel size over a grid with
spacing of eight pixels [22]. The visual vocabulary containing 600 entries was formed by k-means
clustering of a random subset of patches from the training set.

• Multi-Segmentation-based correlaton (MS-based correlaton) [8]. SIFT descriptors were extracted
on a regular grid with a spacing of eight pixels and at 16× 16 pixel grid size. The segmentation size
was set at six and the number of segments were

{
22, 23, 24, 25, 26, 27}. The MS-based correlograms

were quantized in 300 MS-based correlatons using k-means.
• Dense words (including PhowGray, PhowColor) [11]. The PhowGray was modeled using

rotationally invariant SIFT descriptors computed on a regular grid with the step of five pixels at
four multiple scales (5, 7, 9, 12 pixel radii), zeroing the low contrast pixels. Then the descriptors
were subsequently quantized into a vocabulary of 600 visual words that were generated by
k-means clustering. The PhowColor is the color version of PhowGray that stacks SIFT descriptors
for each HSV color channel.

• Self-SIMilarity features (SSIM). SSIM descriptors [12] were extracted on a regular grid at steps
of five pixels. We acquired each descriptor by computing the correlation map of a 5× 5 pixels
patch in a window of radius 40 pixels, quantizing it in 3 radial bins and 10 angular bins. This way,
we obtained a pack of 30 dimensional descriptor vectors. These descriptors were then quantized
into 600 visual words.

We computed all but the MS-based correlaton features in a spatial pyramid as proposed in [22].
A pyramid representation consists of several levels obtained by partitioning the image into increasingly
fine non-overlapping sub-regions and computing histograms of features found inside each sub-region.
The features of each level were concatenated to build the final descriptor. We computed a three-level
pyramid of spatial histograms for each feature channel. In the experiment, we divided the dataset
10 times to obtain reliable results, and all the final results, as well as the classification accuracy rate for
categories were recorded as the mean and standard deviation of these 10 runs.

The features were computed using open source code [53]. All experiments in this work are
implemented var Matlab 8.0/Windows 10, and run on a workstation equipped with 4 Intel quadcore
3.3 GHz CPUs with 16 GB memory.

4.2. Experimental Results

4.2.1. Explanation of Feature Combination

We applied the UCM dataset to demonstrate the feature combination capability of MTJSLRC.
For each image, we set K = 2 for feature combination, including the SSIM and BoVW features. These two
features are complementary in terms of co-occurrence of local patches and appearance. We used L = 4
instances for each testing image by transformation, and obtained K× L = 2× 4 representation tasks.
The number of training images was varied using Nm = {10, 20, 30, 40, 50, 60, 70, 80, 90} per category for
training and the remaining images for testing.
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Figure 5 shows the classification accuracy results of individual features by SRC and their combination
with MTJSRC and MTJSLRC. The MTL-based models including the MTJSRC and MTJSLRC models
improved the performance by feature combination. We can see that the performance improved as the
training ratio increased since more data became available for model training. Moreover, the average
accuracy approached 80% as the number of training images per category was 20. This indicates that the
SRC and MTL can handle the “lack of samples” problem in HRS image recognition. Compared with
the MTJSRC model, our MTJSLRC method improved classification accuracy slightly for a low number
of tasks. The low-rank structure had no significant effect on the MTJSRC whereas the class-level
coefficient rank(Wm) was less than or equal to the number of tasks.

Figure 5. Classification results on the UCM dataset. The MTL-based models, MTJSRC and MTJSLRC
models, outperformed each single-task SRC model. The gap in performance between MTJSLRC

and MTJSRC models is small because the low number of tasks makes rank
(

Wj

)
in Equation (8)

inherently small.

4.2.2. Parameter Effect

We investigated the effect of iteration on classification performance (Figure 6). As stated in [32], the
APG algorithm has been shown to be convergent to global minimum at the optimal rate O

(
1/t2), but

this algorithm does not guarantee a monotonic decrease in objective value. Fortunately, the convergence,
which may need several hundred iterations, is not necessary for good classification performance.

The results displayed in Figure 6 show that the performance can achieve a sufficient classification
performance within just a few iterations. The best performance on the two datasets consistently occurs
at about 10 iterations. As proposed in [32], the MTJSRC and our proposed methods both are aimed
at addressing minimal reconstruction error on a testing image, while those classifier training-based
methods directly optimize the classification error on training data.

There are two other parameters that affect the classification performance, including the
regularization coefficients for class-level sparsity and low-rank constraint. We analyze the effects of
the parameters on the classification accuracy to choose the optimal parameters. These regularization
coefficients determine the strength of the loss and regularization terms. Intuitively, there is actually
a trade-off between the sparse structure and low-rank structure. Let us consider several special cases
of our formulation: when α = 0, the problem degenerates to a model with only a low-rank structure
that learns a small number of shared features among tasks; when β = 0, the problem degenerates



Remote Sens. 2017, 9, 10 13 of 21

into a model with only a sparse structure term among tasks. To take advantage of both properties,
we adjust α and β to balance the sparse and low-rank structures.

Figure 6. Classification performance of MTJSLRC against the times of iterations on the UCM and
WHU-RS datasets.

We tested a series of α and β on the UCM and WHU-RS datasets, and the classification
results are shown in Figure 7. The sparse regularization parameter was selected from the range
α ∈ {0, 0.1, 0.2, . . . , 1}, and the low-rank regularization parameter β ∈ {0, 1, 2, . . . , 30} was selected
for these two datasets. From Figure 7, we can observe that MTJSLRC achieves the best results
at most of settings for these two datasets. This verifies the capability and benefits of MTJSLRC
when simultaneously learning low-rank and sparse structures from multiple tasks. For the low-rank
regularization coefficient, the classification accuracy on the UCM and WHU-RS datasets takes on an
overall trend that first improves, then comes to its maximum, and begins to gradually decrease. The
optimal low-rank regularization coefficient was around 25 to the UCM dataset and 20 to the WHU-RS
dataset for most of the sparse regularization parameter. This demonstrates the significance of the
low-rank structure for these multiple feature combination tasks based on MTL and SRC. The variation
of performance to the sparse regularization parameter αwas relatively smooth in comparison to the
low-rank regularization coefficient. The overall optimal α was both around 0.1 for these two datasets.

To better visualize this phenomena, we selected α = 0.1 to distinguish effects of the low-rank
regularization parameter β on these two datasets. As shown in Figure 8, the trend in the classification
accuracy is not easy to see. This is probably because the convergence of our objective function to
minimizer is no guaranteed, and the objective value does not monotonically decrease. On the whole,
however, the performance first improves and then gradually drops with the increase of β, and the best
performance occurs at β = 24 for the UCM dataset and β = 18 for the WHU-RS dataset. The results
show clearly that the multiple tasks in MTJSLRC share one low-dimension feature space assumed as
low-rank structure in this paper. The low-rank regularization parameter β indeed had a substantial
impact on final performance, and overlooking the low-rank structure for these two datasets would
have negatively compromised the results.
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Figure 7. Classification performance of MTJSLRC against regularization parameters α and β. The x-axis
(left) represents α, the y-axis (right) represents β, and the z-axis (vertical) is average classification
accuracy. (a) Effect on the UCM dataset; (b) Effect on the WHU-RS dataset.

Figure 8. Classification performance of MTJSLRC against low-rank regularization parameter βwhile
sparse regularization parameter α = 0.1. The x-axis represents low-rank regularization coefficient β,
and the y-axis is average classification accuracy.
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4.2.3. Classification Results

We applied the MTJSLRC to HRS image classification on the UCM and WHU-RS datasets.
In addition, to further illustrate the effect of our method, we compared our MTJSLRC method with the
following methods:

1. Feature combination based on independent SRC. This method can be seen as a simplification of
the MTJSLRC method without the joint sparsity and low-rank structure across tasks. Thus, the
coefficients Ŵ are independently learned by SRC.

2. Feature combination based on MTJSRC. This method enforces the joint sparsity across tasks but
ignore the low-rank structure in the multiple feature space.

3. The representative multiple kernel learning method. The kernel matrices are computed as
exp

(
−χ2(x, x′)/µ

)
, where µ is set to be the mean value of the pairwise χ2 distance on the

training set.

The classification accuracy of our MTJSLRC along with baselines and results from several
representation methods on the UCM dataset are shown in Table 1. The results on single feature
are listed in Table 1(a). We can observe that SRC-based methods yield comparable accuracies to
SVM on single features. The results by feature combination methods are tabulated in Table 1(b).
It can be seen that all feature combination methods dramatically improve classification performance,
but our MTJSLRC-based algorithm is slightly better than the SRC-based combination method, the
MTJSRC-based method, and the MKL method. The independent SRC combination, a simplification
of MTJSRC or the MTJSLRC-based method, competes with the MKL. By considering the joint
sparsity across different tasks, the MTJSRC-based algorithm is superior to the independent SRC
combination methods, even better than the MKL, but slightly inferior to our MTJSLRC method that
takes into account the low-rank structure from multiple tasks. Like the SRC-based combination and
MTJSRC-based methods, our MTJSLRC method does not require any classifier training procedures.
Thus it is flexible in practice, and novel reference samples can be introduced without additional efforts
to update the classifier.

Table 1. Accuracy (mean ± std %) performance on the UCM dataset.

(a) Single Features

Features SVM SRC

BoVW 80.21 ± 1.6 79.92 ± 0.83
PhowColor 87.46 ± 1.7 86.99 ± 0.85
PhowGray 85.87 ± 1.75 86.35 ± 0.59

SSIM 80.95 ± 1.26 80.38 ± 1.27
MS-based Correlaton 81.73 ± 1.15 81.12 ± 0.86

(b) Feature Combination Methods

Methods Accuracy

SRC 90.03 ± 0.78
MKL 90.15 ± 0.96

MTJSRC 90.45 ± 0.53
MTJSLRC 91.07 ± 0.67

The HRS image classification results on the WHU-RS dataset are listed in Table 2. Table 2(a) lists
the results on a single feature, which indicate that SRC methods are competitive to SVM for single
features on this dataset. Table 2(b) shows the results from feature combination methods. We can see
that our algorithm performs comparably to the MKL method, and superior to the independent SRC
combination and MTJSRC methods.
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Table 2. Accuracy (mean ± std %) performance on the WHU-RS dataset.

(a) Single Features

Features SVM SRC

BoVW 85.68 ± 1.07 85.85 ± 0.95
PhowColor 86.84 ± 1.39 88.04 ± 1.32
PhowGray 85.05 ± 1.48 84.04 ± 0.96

SSIM 84.9 ± 2.18 82.32 ± 1.02
MS-based Correlaton 87.72 ± 1.42 87.12 ± 1.7

(b) Feature Combination Methods

Methods Accuracy

SRC 91.2 ± 1.03
MKL 91.67 ± 0.95

MTJSRC 91.45 ± 0.98
MTJSLRC 91.74 ± 1.14

The classification performances of individual classes on the UCM and WHU-RS datasets using
our proposed MTJSLRC method with the optimal parameters as previously described are shown in the
confusion matrices shown in Figure 9. As observed, there is some confusion between certain scenes in
the UCM dataset. The identified positive samples for the storage tanks display the greatest confusion
because their color information, spatial information, and texture information are likely to be confused
with those of baseball diamond, buildings, intersections, forests, golf courses, airplane fields, and
mobile home parks. The most confusing pairs were median residential and dense residential with
the misclassification rate reaching 12% because of the strong similarity of these scenes. Therefore, the
features used in our research were not sufficient for separating these scenes, and additional features
must be included in our future work.

Figure 9. Confusion matrix for the MTJSLRC method on the UCM dataset.



Remote Sens. 2017, 9, 10 17 of 21

The classification results on the WHU-RS dataset are illustrated in Figure 10. Based on the fusion
of the visual effect, deserts, football fields, parks, ponds, mountains, and viaducts achieve the best
results at over 97%; residential areas are mixed with commercial, and industrial areas are mixed with
residential. This may result from the strong similarity of these scenes and intuitively, give rise to
weak performance.

Figure 10. Confusion matrix for the MTJSLRC method on the WHU-RS dataset.

4.2.4. Running Time

In this experiment, we analyzed the running times for different models on the UCM and WHU-RS
datasets. As shown in Table 3, the per query times of our method were 0.37 s for the UCM dataset and
0.378 s for the WHU-RS dataset, while per query times were 0.09 s and 0.096 s for the SRC combination
method, and 0.119 s and 0.122 s for the MTJSRC method. The running time of the MKL method was
much longer than the others on account of the required training phase.

Table 3. Running time comparison (total/per-image in seconds).

Methods
UCM WHU-RS

Training Testing Training Testing

SRC 0 94.27/0.09 0 45.42/0.096
MKL 992.18/0.945 1.07/0.001 345.24/0.727 0.64/0.001

MTJSRC 0 124.98/0.119 0 58.17/0.122
MTJSLRC 0 389.2/0.37 0 179.57/0.378
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5. Discussion

HRS image classification plays an important role in understanding remotely sensed image. In our
work, we built a multi-task joint sparse and low-rank representation for HRS image classification.
Our objective is to improve the classification accuracy by fusing multiple features and instances.
Experimental results on the UCM and WHU-RS datasets indicate that the proposed MTJSLRC model
is competitive with other feature combination methods for HRS image classification.

From the experiments on feature combination illustrated in Figure 4, we observe that the multi-task
joint sparse representations method is a simple yet effective way to fuse multiple complementary
visual features and instances to improve the accuracy. By considering the low-rank structure, our
MTJSLRC model achieved slightly more accurate results than the MTJSRC model for multiple
tasks. The performance was competitive even when the number of samples for learning was small.
This benefits from MTL as it transfers knowledge from one task to another.

We tested three important parameters of the MTJSLRC method in experiments. As shown
in Figure 6, we found that the convergence is not necessary and the algorithm can achieve good
classification performance with a few iterations. This means that our proposed method requires less
time overall and hence is very competitive. We see from Figures 7 and 8 that the two regularization
parameters for the sparse structure and low-rank structure impact the final performance. It shows
improvement at first and then a gradual dropping performance trend with an increasing low-rank
regularization parameter. The variation of performance along with the joint sparse regularization
parameter is relatively stable for two datasets as discussed in this paper. Our experiments show that
the low-rank regularization parameter ranging from 20 to 25 is suitable for the best accuracy. The joint
sparse regularization parameter as 0.1 is sufficient to result in good performance. Tables 1 and 2
show that our method can fuse multiple complementary visual features and instances to improve
classification accuracy. The proposed MTJSLRC method achieves better classification results than the
MTJSRC method, which ignores the low-rank structure across tasks, and is slightly superior to MKL.

The proposed MTJSLRC method performs quite competitively with several representative
approaches by fusing multiple complementary features and instances, thus considering the sparse and
low-rank structure across tasks. However, our MTJSLRC method is inferior in terms of computational
speed when compared to other representative methods since the SVD algorithm is used in the optimal
solution. By considering the computational complexity, we only use four transformed instances for
each testing image. In future work, we plan to improve MTJSLRC by elaborating on optimal schemes
with increased instances to add more robustness and cope with variations in scales, translation and
rotation, thereby making it more efficient.

6. Conclusions

This paper presents the Multi-Task Joint Sparse Representation Classification (MTJSLRC)
algorithm for High-Resolution Satellite (HRS) image scenes classification. In the Multi-Task Learning
(MTL) framework, both sparse and low-rank structures are important but quite different in nature.
We argue that the multi-task joint sparse and low-rank representation is a simple yet effective way
to fuse multiple complementary features and instances. Compared to the MTJSRC method that only
considers sparse structure, our proposed method can improve classification performance by learning
low-rank and sparse structures simultaneously. Experiments on the UC Merced (UCM) and WHU-RS
datasets indicate that our method performs quite competitively with several representative approaches.
Similar to the SRC and MTJSRC methods, our proposed method is free of classifier training, which
is convenient to introduce novel reference samples and classifier updates. On the whole, multi-task
joint sparse and low-rank representation is a promising method for scene classification with multiple
features and/or instances in terms of accuracy and computational cost. In future work, we will
incorporate additional texture, shape, or structural features that are more appropriate for HRS image
scene classification, especially integrating various deep convolutional neural networks for better
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representation. In addition, another practical research direction would be to accelerate the speed of
the algorithm.
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Abbreviations

The following abbreviations are used in this manuscript:

HRS high resolution satellite
MKL multiple kernel learning
MTJSRC multi-task joint sparse representation and classification
MTL multi-task learning
SRC sparse representation classification
MTJCS multi-task joint covariate selection
LASSO least absolute shrinkage and selection operator
MTJSLRC multi-task joint sparse and low-rank representation and classification
APG accelerated proximal gradient
Flops floating-point operations
BoVW bag of visual word
SIFT scale-invariant feature transform
MS-based correlaton multi-segmentation-based correlaton
SSIM self-similarity features
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