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Abstract: Several methods exist for extracting plant phenological information from time series
of satellite data. However, there have been only a few successful attempts to temporarily match
satellite observations (Land Surface Phenology or LSP) with ground based phenological observations
(Ground Phenology or GP). The classical pixel to point matching problem along with the temporal
and spatial resolution of remote sensing data are some of the many issues encountered. In this study,
MODIS-sensor’s Normalised Differenced Vegetation Index (NDVI) time series data were smoothed
using two filtering techniques for comparison. Several start of season (SOS) methods established in
the literature, namely thresholds of amplitude, derivatives and delayed moving average, were tested
for determination of LSP-SOS for broadleaf forests at a site in southwestern Germany using 2001-2013
time series of NDVI data. The different LSP-SOS estimates when compared with species-rich GP
dataset revealed that different LSP-S50OS extraction methods agree better with specific phases of GP,
and the choice of data processing or smoothing strongly affects the LSP-SOS extracted. LSP methods
mirroring late SOS dates, i.e., 75% amplitude and 1st derivative, indicated a better match in means
and trends, and high, significant correlations of up to 0.7 with leaf unfolding and greening of late
understory and broadleaf tree species. GP-SOS of early understory leaf unfolding partly were
significantly correlated with earlier detecting LSP-SOS, i.e., 20% amplitude and 3rd derivative.
Early understory SOS were, however, more difficult to detect from NDVI due to the lack of a high
resolution land cover information.

Keywords: broadleaf forests; understory; phenology; start of season (SOS); leaf unfolding; match in
LSP and GP

1. Introduction

Phenology, the science of periodic events in plant and animal life cycle, has been widely studied
and well documented for many decades (e.g., [1-3]). It has been a core parameter for demonstrating
and studying the impact of climate change on terrestrial ecosystems. However, the major drawback of
traditional phenological observations (hereafter referred to as Ground Phenology (GP)) is the fact that
they are labour intensive, localised and lacking global coverage, and cover only a limited number of
species. The advent of modern remote sensing techniques provides a promising alternative and new
opportunities for phenological studies [4], a departure from the traditional ground based observations
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of phenology. In comparison to GP, remote sensing techniques provide a global coverage of data at
various temporal and spatial scales, which can support the study of trends in phenology and its drivers.

Satellite based determination of vegetation phenology (hereafter referred to as Land Surface
Phenology (LSP)) has been an active research area since the past two decades. Many studies have
been conducted at global and local scales, which provide an ensemble of techniques and algorithms to
handle varied spatial resolution and temporally discontinuous satellite data [5-10]. Though several
methods exist for extracting phenological information or LSP from time series of satellite data, there
have been only a few successful attempts to temporarily match GP with LSP [11-14]. Studies of such
kind are known to be plagued with temporal and spatial resolution issues, where spatially continuous
and pixel based or area averaged LSP-SOS have to be matched with spatially discontinuous and
point-based, mostly species-specific GP. A further cause of mismatch in GP and LSP is the inherent
difference in their respective definitions of phenology. GP is the visual interpretation of species-specific
phenological phases such as bud-burst, leafing, flowering, etc., whereas LSP is defined in terms of
area averaged intensity of dominant vegetation or canopy greenness and cover, including background
such as soil and understory [6,15]. Moreover, the minute differences in phenology observed by ground
volunteers might not be sufficient to produce changes in satellite measured reflectance of vegetation
due to temporal and spectral limitations of satellite data [4,16]. Apart from differences in definition, LSP
estimates are also known to be influenced by the methods used for corrections, smoothing, phenology
detection [8,17], and the accuracy or homogeneity of land cover data analysed [18]. Despite the
mentioned limitations, satellite data nevertheless may provide valuable and spatially continuous
information about the LSP [19-21].

Among various available methods for determination of LSP, distinctions cannot be made to select
a single best technique as such a decision would differ for various study areas, data and species
studied [22-24]. Often various LSP-SOS have been matched with GP in form of leaf unfolding or a
phenology index of vegetation [11-14] and past research has shown variability among various LSP
measures. The selection of a LSP method for deriving or matching a specific GP event is therefore not
so straightforward and more research is needed to attribute ecological meanings to various LSP-SOS
methods [25].

Therefore, the central aim of this study is to test the hypothesis that different LSP-SOS correspond
to specific GP-SOS observations. This is done by comparing and correlating various phases of GP with
different measures of LSP obtained from two of many relevant smoothing algorithms (i.e., weighted
Gaussian and Double Log) and using an ensemble of LSP-SOS detection methods established in the
literature. Since GP and LSP have different definitions, an absolute match in terms of specific day of
year is unlikely to occur. However, the general behaviour of trends in start of season from ground and
satellite observations can be assumed to be fairly related, since both observe various starting points in
the vegetation growth cycle [13,26]. Therefore in order to match GP and LSP, a three step validation
was carried out as: (a) match in seasonality or mean onset dates; (b) match in climate change impacts
in terms of temporal trends using linear regression techniques; and (c) match in inter-annual variation
using correlations (see Section 2 for details).

In absence of reliable and high resolution land cover information, a successful match in LSP
and GP might just be a matter of chance. In such a case there are higher chances of tracking species
with similar behaviour, and it might be difficult to make any assumptions about the distribution of
specific species in the study area as mentioned in Rodriguez-Galiano et al. [14]. In our study, GP-SOS
are therefore used as reference points, and a higher correlation between LSP-SOS and GP-SOS only
indicates the phenological similarity between pixel level LSP and species-specific GP during 2001-2013.
This present study therefore calls for close scrutiny of studies comparing GP and LSP and addressing
several important concerns. The first issue is the choice and reliability of data used, and compromising
between spatial and temporal resolution of remote sensing data. The second is the choice of data
processing and smoothing function used, which has to be decided according to data properties and can
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affect the LSP estimates. The third important decision is regarding the ways of assessing the agreement
between intrinsically different measures of SOS, i.e., GP and LSP.

2. Materials and Methods

2.1. Study Area and Data

The rural area east of Stuttgart (Figure 1) in the southwest of Germany covering an area of
approximately 150 km? was selected for this study. The reason for choosing this particular site was
the availability of a very detailed GP dataset. Data from various sources such as remote sensing
Normalised Difference Vegetation Index (NDVI), land cover information (CORINE) and ground
phenological data were used. The corresponding data sources are briefly described as below:

2.1.1. Remote Sensing Data

The Normalised Difference Vegetation Index (NDVI) data from the Moderate Resolution Imaging
Spectrometer (MODIS) MOD13Q1 product was used for this study. These data are maximum value
composites of 16 day and available at 231.65-m resolution. The NDVI and its corresponding pixel
reliability information were downloaded from the MRT Web application of the United States Geological
Survey website (https://mrtweb.cr.usgs.gov/) for 2001-2013.

2.1.2. Land Cover Data

The CORINE land cover (CLC) 2006 vector dataset was obtained from the European Environment
Agency website [27] for determination of broadleaf forests in the study area. The CLC data for year
2006 has a reported 85% thematic and 100 m geometric accuracy.

2.1.3. Ground Phenological Data (GP)

The ground phenological (GP) observations for 2001-2013 were made at one single site east
of Stuttgart, Germany, with surrounding agricultural areas and woods (48.73°N/9.26°E, elevation
410 m a.s.l.). Records were made by a highly dedicated naturalist, who also served as a phenological
observer for the German Meteorological Service (DWD) for decades. He recorded the phenological
development of numerous species 2-3 times a week following a permanent transect. Depending on
the season and weather conditions, the entire transect took approximately 2-3 h by foot and a distance
of 8-10 km was covered. For each species, onset dates of several phenological development stages
were recorded. We used the phenophases leaf unfolding and forest greening-up of 8 and 13 common
deciduous tree species, respectively, as well as leaf unfolding of 97 common understory species for
our analysis. The leaf unfolding dates of 4 common conifer evergreen species were also included
into the analyses (see Supplementary Figures S5 and S6 and Table S1 for complete details of GP).
The leaf unfolding phase corresponds to the appearance of the first leaf (5%-10%) and the greening-up
is the date when all leaves are out at their final size. This GP information was used for validation
of the various satellite start of season estimates (LSP-SOS). Since the exact location of GP was not
known, the GP was temporally linked with LSP (see Section 2.4 for details). From a limited ground
survey in our study area, it was observed that the overstory of the forest stand marked as broadleaf
species in CORINE cover were dominantly deciduous with presence of few conifer- evergreen tree
species. The various GP observations were further grouped into understory comprising of Herbaceous
Annuals, Herbaceous Perennials and Woody Perennials. The overstory species were grouped into
coniferous- evergreen and deciduous species.
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Figure 1. Study area and CORINE land cover map showing the distribution of broadleaf forests.
(NDVI image is for day of the year (DOY) 145 in 2001). Inset: Location of study area in Germany.

2.2. Pre-Processing and Smoothing of Satellite Time Series Data

The times series of 16-day NDVI raster data from MODIS sensor for the years 2001-2013 were
first layer stacked to obtain a time series of data for each pixel. The CORINE land cover mask was
used to restrict the study to the broadleaf forests pixels only; 278 broadleaf forests pixels were finally
assessed. In the NDVI time series of each pixel, data marked as good or marginal (in the corresponding
pixel reliability information) were retained and those labelled as contaminated with snow or cloud or
missing were removed. Thus, a raster stack of NDVI time series with reliable and uncontaminated
values but with gaps was obtained. In order to create a complete NDVI time series, filling of gaps
was done in two steps: (a) filling of winter gaps; and (b) linear interpolation of the remaining short
gaps in 16-day data. The winter gaps of a pixel occurring in the months of December and January of
each year were filled with the average of the available and uncontaminated winter NDVI from the
same months in other years as in Beck et al. [7], Clerici et al. [28], and Forkel et al. [10]. Even though
spurious NDVI values were removed, the time series still contained values supposed to be outliers
due to high differences to the precedent and subsequent values. To cope with these “sudden spikes”,
a weighted Gaussian filter (the weighted Gaussian filter is explained in the Supplementary Material
Equation (S1)) was applied to the time series. Deviations of raw NDVI from the Gaussian filtered data
were z-transformed and values beyond two standard deviations were considered outliers and removed
from the raw data, and replaced with the mean of the two neighbouring raw values. This outlier
removed NDVI data were again smoothed using the weighted Gaussian filter. Alternatively, a double
logistic smoothing function [7,29] was also applied to the outlier removed NDVI time series for testing
one of the frequently used NDVI smoothing algorithms. In conclusion, the raw NDVI time series was
initially filtered for obvious outliers using the Gaussian filter and then smoothed again using Gaussian
or Double Log function to remove undetected outliers. A similar two-step process of outlier detection
and consequently smoothing is also mentioned in [13,30]. All pixels in this study were treated in the
same manner. An example of both smoothing methods is presented in Figure 2. The Gaussian and
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Double Log smoothed NDVI time series were then spline and linearly interpolated to daily values,
respectively. Different interpolations were used in order to retain much of the original shape of the
16-day smoothed NDVI for determination of LSP-SOS as described in Section 2.3.
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Figure 2. Illustration of smoothing of a pre-processed and outlier removed NDVI time series using
Gaussian and Double Log functions. Note: In comparison to the Double Log smoothed NDVI, the
Gaussian smoothed NDVI shows lower residuals in the winter troughs. The residuals in the non-winter
period are almost similar for both the smoothing techniques.

2.3. Determination of Satellite Start of Season (LSP-SOS)

It has been observed by many researchers in the past [22,24,31,32] that different LSP-SOS
derivation methods provide different results and therefore no single method can be claimed to
best describe the phenology from satellite NDVI data. In this context Schwartz et al. [26] notes,
“though all (methods of LSP-SOS are) assessing the start of spring vegetation growth in some fashion, are
effectively measuring different processes”. Hence, an ensemble of methods established in literature was
used to determine several LSP-SOS in this study. The various start of season methods used for this
study can be classified into three broad categories, namely thresholds of amplitude, delayed moving
average (DMA) and rates of change (derivatives). The 20% [33,34], 50% [8,13,35], 60% and 75% [36]
thresholds of amplitude determines the specific day of the year on which the smoothed NDVI time
series crosses 20%, 50%, 60% and 75% of the NDVI amplitude of a given year. The delayed moving
average [6,9,26,28] method used in this study is established from auto regressive moving average
(ARMA) models that compare the NDVI time series with its moving average to determine the start of
season. The derivatives, namely 1st [37-39], 2nd [38,40] and 3rd derivatives [32,38], determine the start
of season as the date of the maximum increase in the respective NDVI derivative curve. As explained
by Tan et al., 2011 [38], the local maxima of 1st derivative corresponds to the maximum rate of increase
of green up phase, whereas, the local maxima of 2nd and 3rd derivative corresponds to the beginning
of green up. In particular the SOS from 2nd derivative indicates the timing when the majority of pixel
is turning green and 3rd derivative indicates where the change of green up rate is greatest (first flush
of greenness on the ground). For ecological and detailed interpretation of these approaches, we refer
to the cited literature.
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2.4. Methods of Matching Satellite (LSP) and Ground (GP)-SOS

The objective of matching GP- and LSP-SOS was studied based on SOS obtained from a single
regionally averaged NDVI time series as well as individual pixel SOS at native MODIS resolution
of 231.65 m. The SOS from the regional averaged NDVI was compared with the SOS averaged
from native resolution NDVI in order to check whether an spatially or regionally averaged NDVI
could track the general behaviour of the local area phenology as mentioned in Atzberger et al. [41].
A three step validation between GP and LSP-SOS was carried out in this study as: (a) match in
seasonality or mean onset dates; (b) match in climate change impacts (temporal trends) using linear
regression analysis, where the slope of linear regression between time and SOS was used to compare
the resulting trends; and (c) match in inter-annual variation of SOS using a Spearman’s rank correlation
measure. Correlations with p < 0.05 were considered to be significant for this study. Since the exact
location and sub-pixel proportion of species was not known, each pixel in reality could be anything
between a homogenous stand to a mixture of several species. Therefore each pixel LSP-SOS time
series was correlated to each of the species-specific GP-SOS as mentioned in [13,14]. Our study
uses specific GP-SOS records as reference points, and intends to show similarity in phenological
behaviour of pixels (LSP) marked as broadleaf forests in CORINE land cover and species-specific GP
during 2001-2013. The means and trends of LSP-SOS for individual pixels (analysis at native MODIS
resolution of 231.65 m) were also checked for spatial dependence using a two-tailed correlation analysis.
Finally, correlation strength among GP of species was also measured to examine the inter-species
similarity with respect to inter-annual GP-SOS behaviour.

3. Results

3.1. Intra- and Inter-Annual Variability of LSP-SOS

Figure 2 shows the Gaussian and Double Log smoothed NDVI time series. It can be seen that the
Gaussian filter was able to follow the winter troughs better than the Double Log function. In addition
the variance of start of season dates and their annual means obtained from different methods was
better described using the Gaussian smoothed NDVI (Figure 3). The different LSP-SOS methods
showed more variability and differentiation when applied for the Gaussian smoothed series, whereas
the Double Log did not differentiate well among the derivatives. Hence, the Gaussian smoothed time
series is selected for further discussion in this paper (please refer to the Supplementary Figures S3
and 5S4 for Double Log smoothed results). The years 2007, 2009 and 2011 reveal relatively early mean
LSP-SOS and on visual inspection they strongly correspond to the GP observations (see Supplementary
Figure S5 for species specific GP-SOS time series). The year-to year variability in SOS reflects the
different spring weather patterns. Overall the trends for LSP-SOS obtained from both smoothing
methods show higher variability in the 2nd and 3rd derivatives, and lower variability for the 50%,
60% and 75% amplitudes and the 1st derivative (Figure 3). On average, the trends for 20% amplitude
and 3rd derivative were positive, and the rest of the LSP-SOS methods provided negative trends,
indicating an advance in onset over time.
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Figure 3. LSP-SOS from (a) Gaussian and (b) Double Log smoothed NDVI for broadleaf pixels using
various methods (spatially averaged SOS for specific years as filled-coloured circles and one standard
deviation as error bars). Overall mean is the mean SOS (2001-2013), which is a temporal and spatially
averaged measure of LSP-SOS. The temporal trends in days/year (right y-axis) for all pixels” LSP-SOS
are given as means and respective one standard deviation during 2001-2013. The year-to year variability
in SOS reflects the different spring weather patterns.

3.2. Mean LSP-SOS and Their Trends

The spatial heterogeneity of LSP-SOS of broadleaf pixels in the study area is well captured
in Figure 4a,b. The figure show the time averaged LSP-SOS (2001-2013) and the respective linear
trends of the broadleaf pixels in the study area. However, no significant spatial correlation (at
p < 0.05, two-tailed) was found between each mean LSP-SOS and its respective trends for any of the
different methods.
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Figure 4. (a) Mean LSP-SOS (day of year) for the broadleaf pixels in the study area; (b) Linear trends of
LSP-SOS (days/year) for the broadleaf pixels in the study area.

3.3. Comparison of Means and Trends of LSP-SOS and GP-SOS

The means and linear trends of GP and LSP were compared to analyse the effect of choosing
different LSP-SOS extraction methods from NDVI (Figure 5). The various methods of LSP extraction
revealed a wide range of SOS annual means and trends with major overlaps for both axes in
particular for trends. Among all the methods of LSP-SOS extraction, the 20% amplitude, and 2nd
and 3rd derivative SOS occur earliest in the calendar year and match better with the mean GP-5OS
of understory species; however, there was a large disagreement in their respective observed mean
trends. The other methods to determine LSP-SOS (50%, 60% and 75% of amplitude and 1st derivative)
matched better with GP-SOS, both in trends and mean of broadleaf unfolding and greening, which
occur in the later spring of the calendar year.
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Figure 5. Comparison of LSP-SOS from Gaussian smoothed NDVI (mean LSP-SOS as special symbols
in black and one standard deviation as error bars) and various species-specific GP-SOS (as filled and
coloured circles, refer to Supplementary Table S1). Numbers are given in order of increasing mean SOS.
Codes for GP: HA (herbaceous annuals), HP (herbaceous perennials) and WP (woody perennials) refer
to understory leaf unfolding dates; U (Conifers leaf unfolding); LU (leaf unfolding) and G (greening) of
broadleaf species (see Supplementary Table S1 for complete details of species-specific information).

3.4. Inter-Annual Variations of GP-SOS and LSP-SOS

The match in inter-annual variations of GP-SOS and LSP-SOS was assessed by non-parametric
Spearman’s rank correlation. Since the exact location and sub-pixel proportion of species was not
known, each pixel LSP-SOS time series was correlated to each of the species-specific GP-SOS. Some of
the species” SOS are higher correlated with specific methods of LSP extraction (see Supplementary
Figure S2 for details). Figure 6 displays Spearman’s rank correlations coefficients (at p < 0.05, one-tailed
positive) between selected GP-SOS of understory /broadleaf species and selected LSP-SOS for all pixels
in the study area. In general, leaf unfolding of understory species was found to be well correlated with
LSP-S0S derived by methods covering the earlier part of the calendar year such as 20% amplitude and
3rd derivative, when the understory is believed to be dominant and the canopy cover of broadleaves is
still minimal. LSP-SOS methods covering the later part of the year (i.e., 50% and 75% amplitude, and
1st derivative) strongly correlated with leaf unfolding and greening, when the canopy of the broadleaf
tree species or overstory is mature and full.

GP-SOS of late understory species were better described by LSP-SOS methods providing onset
dates of the later part of the year (namely 75% amplitude and 1st derivative). This behaviour of
late understory phenology was similar to that of broadleaf phenology and was also mirrored in the
correlations between the various species-specific GP in Figure 7. This correlation matrix revealed
two phenological clusters, one for early understory and a second for late understory and broadleaf
species. The early understory GP was, however, very different from the second cluster and was best
(i.e., most significantly correlated pixels) described by early LSP-SOS methods such as 20% amplitude
and 3rd derivative. For example, the raster maps in Figure 6 revealed higher significant correlations
for: (1) early understory, i.e., Myosotis sylvatica (mean SOS = 70.5) with early LSP methods such as
20% amplitude and 3rd derivative; and (2) late understory, i.e., Lathyrus niger (mean SOS = 102.7) and
broadleaf greening, i.e., Fagus sylvatica (mean SOS = 120.9) with 75% amplitude and 1st derivative.
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Figure 6. Maps showing Spearman’s rank correlations (p < 0.05, one-tailed positive) between LSP-5OS
and GP-SOS for selected understory and broadleaf tree species. MS, Myosotis sylvatica (leaf unfolding);
LN, Lathyrus niger (leaf unfolding); and FG(G), Fagus sylvatica (greening), with mean SOS of 70.5, 102.7
and 120.9 day of year, and species ID/No. 12, 95 and 119, respectively. Note: The mean correlations of
each species GP-50S over the study area are shown in Figure S2 in supplement. Refer to Table S1 for
details of GP-SOS.

U
Early Understory ynderstory LU G

Figure 7. Spearman’s rank correlation matrix for selected species-specific GP-SOS; the heatmap
confirms that the phenology of many late understory species is highly correlated with broadleaf tree
phenology. Note: Species are arranged in increasing order of their mean SOS; refer to Supplementary
Table S1 for details of species-specific information.
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3.5. Analyses Based on Spatially Averaged NDVI Time Series

The analyses of LSP-SOS at the native MODIS resolution of 231.65 m revealed the spatially
heterogeneous behaviour of broadleaf pixels in the study area. Hence, an analysis at a regional
scale was also undertaken by averaging the daily NDVI of the pixels. This spatially aggregated or
regionally averaged NDVI time series was expected to capture the general phenological behaviour of
the broadleaf pixels of the region. LSP-SOS by the different methods were then estimated from this
averaged NDVI time series as described earlier. The annual LSP-SOS from this regionally-averaged
NDVI time series strongly agreed with the annual averaged LSP-SOS obtained from the native MODIS
scale with R? = 0.9 (Figure 8). The agreement was worse in the early part of the year when the NDVI
is expected to be a mixture of understory, broadleaf and other background, e.g., soil.
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Figure 8. Comparison of LSP-SOS time series (day of year) obtained from spatially or regionally
averaged NDVI for the broadleaf pixels in the study area (y-axis) and SOS averaged from

single/individual pixels SOS (x-axis). Note: SOS time series as coloured unfilled circles and its
mean as coloured crosses.

In order to analyse the match in inter-annual variability annual LSP-SOS from the spatially or
regionally-averaged NDVI and GP-SOS time series were correlated by Spearman’s rank correlations
(Figure 9). Most of the significant and high coefficients (at p < 0.05, one-tailed positive) were revealed
for broadleaf unfolding and greening. However, leaf unfolding of very few early understory species
such as Geranium robertianum, Myosotis sylvatica and Alliaria petiolata displayed significant and high
correlations for 20% amplitude method. Leaf unfolding of late understory as well as greening of
broadleaf tree species showed significant and higher correlations with LSP-SOS by 75% amplitude or
1st derivative. This indicates that the choice of LSP method should be governed by the species and the
phenophase under study.
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Figure 9. Spearman’s rank correlation coefficients between GP-SOS and selected LSP-SOS based on a
regionally averaged NDVI for broadleaf pixels during 2001-2013. Region above dotted horizontal red
line comprises significant correlation coefficients, p < 0.05. Note: Species on the x-axis are grouped
according to traits (Early Understory = leaf unfolding of early understory, Late Understory = leaf
unfolding of late understory, U = leaf unfolding of conifers, LU = leaf unfolding of broadleaf species
and G = greening of broadleaf species) and arranged in order of increasing mean GP-SOS; the x-labels
are species ID number (see Supplementary Table S1 for complete details of GP).

4. Discussion

4.1. The Choice of Data Processing Technique

The smoothing of NDVI time series by two methods revealed considerable differences in the final
smoothed NDVI (Figure 2) and eventually the LSP-SOS estimates from each method (Figure 3), as it has
also been mentioned in Jonsson and Eklundh [17], White et al. [8] and Atkinson et al. [30]. Especially the
winter troughs were better fitted by the Gaussian filter than the Double Log function (Figure 2). Since in
the study area winters are not too long and continuous, the retention of winter troughs for broadleaf
forests may still provide meaningful information. In addition, pre-processing before smoothing, e.g.,
outlier removal and gap filling of NDVI data, equally affect LSP-SOS estimates [28]. This indicates
that each step of data processing and smoothing adds some uncertainty to the original data, and
thus should be wisely decided by the researcher. The Double Log function used in this study was
proposed by Beck et al. [7] for modelling of vegetation cycles in higher northern latitudes where the
vegetation is completely inactive during the long winters. He therefore estimated the missing winter
NDVI from the maximum value of first/last snow free winter NDVI values in the time series and then
assumed it to be constant through all the winters. In another study by Tan et al. [38], first the growing
season was defined by a minimum temperature threshold and values below this were removed, and
connected by a line. Some studies substituted all gaps, winter or summer with the seasonal mean
obtained from the time series [10,28,35]. However, in this present study winter and summer gaps were
treated differently (see Section 2.2). The identification of outliers, their removal and subsequent filling
is debatable, and has been handled by different authors in varied ways [13,17,28,42]. From a review of
literature, the absence of agreement among researchers in gap filling is evident and this disagreement
persists in the other steps of data handling. Since several ways have been proposed to handle noisy
data, the choice of data processing should therefore be governed by the properties of the data, amount
of noise and the area under study.
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4.2. Mean of LSP- and GP-SOS

The inter-annual pattern of mean LSP-SOS (Figure 3) obtained from both the smoothing methods
matched strongly with the GP-SOS records (see Supplementary Figure S5). The years 2007, 2009 and
2011 indicate a relatively early mean SOS for the majority of species, where these years also show
higher preseason (March—April) temperatures, confirming the temperature dependence of vegetation
SOS [1,2,43]. This general match in inter-annual pattern of mean SOS obtained from different LSP
methods and GP was also reported by Schwartz et al. [26]. For the sake of brevity, the results from
the Gaussian smoothed NDVI time series are discussed here forth (refer to Supplementary Figures S3
and 54 for results of Double Log smoothing results). The various mean LSP-SOS estimates (Figure 5
and Supplementary Figure S1) indicate that each method corresponds to a particular region of the
seasonal NDVI growth curve and therefore mirrors specific seasonal occurring GP-SOS observations.
In this present study, among all the methods of LSP-SOS extraction, a few such as 20% amplitude,
2nd and 3rd derivative SOS that occur earliest in the calendar year, and match better with the mean
GP-50S of understory species. The other methods of LSP-SOS (50%, 60% and 75% of amplitude and
1st derivative) match very strongly with mean GP-SOS of broadleaf unfolding and greening, and occur
later part in the year.

4.3. Trends in LSP- and GP-SOS

In this study, the GP-SOS observations reveal a positive trend for understory, i.e., leaf unfolding of
understory species occurring later over the last 13 years, and a weaker positive and even some negative
(earlier) trends for broadleaf species which were observed in later spring (Figure 5). In contrast,
although LSP-SOS dates spread over the whole spring season depending on the method applied
as found by Studer et al. [12], Hird and McDermid [44] and White et al. [8], their temporal trends
were quite uniform indicating almost no change over the study period. In contrast to Fu et al. [24]
who reported stronger advancing trends of GP-SOS than of LSP-SOS (2000-2011) in central Europe,
our study for southwestern Germany (2001-2013) sees for early season events stronger advancing of
LSP-SOS than of GP-SOS of understory species.

It is therefore important to attribute specific LSP methods to specific GP, as also noted by some
previous studies [25,26]. In general, the earliest LSP-SOS dates based on 2nd and 3rd derivative equally
revealed positive trends for 42% and 52% of the pixels, respectively. The last LSP-SOS dates, i.e., based
on the 60% and 75% amplitude, revealed negative trends for 59% and 63% of pixels, respectively.
On average, trends for 20% amplitude and 3rd derivative were positive and the rest of the LSP-50S
methods revealed negative trends. The largest mismatches in trends from GP-5OS and LSP-SOS (2nd,
3rd derivatives and 20% amplitude) occurred in the early part of the year, i.e., the early understory leaf
unfolding occurring before the 90th day of the year.

4.4. Inter- and Intra-Annual Variability in LSP- and GP-SOS

The correlation analyses between GP-SOS and LSP-SOS confirmed these findings, since GP-SOS
of specific species matched better with specific LSP-SOS methods (Supplementary Figure S2).
Different categories of GP, i.e., early understory, late understory and broadleaf species dictated the
different best performing LSP method. The early understory species (e.g., Geranium robertianum,
Myosotis sylvatica, Alliaria petiolata) were better correlated with the earliest detected LSP-SOS
method such as the 3rd derivative and 20% amplitude. Alternatively, leaf unfolding of broadleaf
species (e.g., Fagus sylvatica, Quercus petraea, Fraxinus excelsior) and greening (e.g., Fagus sylvatica,
Quercus robur, Prunus padus) significantly corresponded to the later detected LSP-SOS methods such
as the 75% amplitude and 1st derivative. The understory species with late GP-SOS (Vinca minor,
Lathyrus niger and Rhamnus cathartica), however, were significantly related to LSP-SOS based on the
75% amplitude and 1st derivative. This similarity in the phenological behaviour of late understory and
broadleaf species was also revealed by the two clusters obtained from correlation analysis between
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GP-S0S observations comprising two phenologically similar clusters, first for early understory and
second for late understory and broadleaf species. In addition, we also correlated GP-SOS and LSP-50OS
with mean SOS and trends of corresponding pixels (not shown). Although no clear pattern was
observed, there was an indication of earlier LSP-SOS mirroring early understory GP-SOS and the later
LSP-SOS pixels corresponding strongly with broadleaf phenology.

In general, the inter-annual variability in GP-SOS decreased as the season progressed in time
(Supplementary Figure S6), which also corresponds well to LSP-SOS based on the different methods
operating in the various regions of the NDVI curve (Figure 3). Apart from the mean GP-SOS and its
trends, the early detecting LSP-SOS in form of 20% amplitude and 3rd derivative were also able to
capture the high inter-annual variability of early species GP-SOS (understory) occurring before 90th
day of the year (Supplementary Figure S6). These early species are limited by the frost period and
hence show higher response to temperature fluctuations and therefore a higher inter-annual variability
in their SOS [45,46]. The lower correlations of early understory species” GP-SOS with LSP-SOS could
be due to the short time series of data or may be due to artefacts introduced in smoothing of early
season NDVI. In comparison, species with later GP-SOS, however, had lower variability in their SOS,
which was also evident in the corresponding LSP-SOS such as 75% amplitude and 1st derivative.
The broadleaf species with later GP-SOS showing higher correlations with the mentioned LSP-SOS
(75% amplitude and 1st derivative) can be classified as either climax or intermediate species according
to their successional strategy [47].

As discussed before, previous research has provided a variety of LSP-SOS methods for detection
of start of season, which in turn has been analysed for matching with GP. However, our study
clearly demonstrates that specific LSP methods are tightly linked to specific GP phases. Our study
also indicates that in order to match LSP estimates with GP, a complete knowledge of the species
composition of the landscape is required. Since in heterogeneous landscapes the satellite green-up
might actually capture the understory green-up that occurs several weeks earlier than broadleaf
overstory greening. In absence of detailed land cover information, it is difficult to attribute the changes
in NDVI profile (for estimating LSP-SOS) to changes in either overstory or understory [4,18].

4.5. Does the Regionally Averaged NDVI Capture the General Behaviourof Local Area Phenology?

To tackle the issue of heterogeneity of LSP at individual pixel level and due to the lack of detailed
ground-truth information for each pixel, the pixel based NDVI was averaged to a daily measure for
the broadleaf pixels in the study area. It was expected to capture the general trend of the broadleaf
forests’” phenology, though losing the specific behaviour of the pixels. The LSP-SOS obtained from this
regionally averaged-NDVI was found to have a strong linearity (R? = 0.99) with the averaged LSP-SOS
obtained from individual pixels (Figure 8). The maximum departure in the LSP-SOS pairs occurred
in the early part of the calendar year, which covers understory growth period. Here, the NDVI is
expected to be a contribution of understory and/or dormant overstory and/or background (e.g., soil).
The positive trends for the early understory in the pixel based LSP-SOS were lost in the LSP-5OS
obtained from averaged NDVI. As mentioned earlier we emphasize the importance of having a reliable
land cover classification at high resolution for both understory and broadleaf forests. In absence of such
reliable land cover information, the uncertainty in NDVI is higher, especially in the earlier part of year
and thus also increasing the uncertainty in the LSP-SOS extracted. However, in the later part of the year,
when the broadleaf canopy is mature and full, the uncertainty in NDVI is expected to decrease since
NDVI predominantly provides broadleaf canopy reflectance, though the information about specific
species within the pixel would still be lacking. The correlation measure of the regionally-averaged
NDVI SOS and the species-specific GP-SOS yield similar results as with the pixel level-native resolution
LSP-SOS. In general, it was observed that GP of early understory species were highly correlated with
earliest LSP methods such as 20% amplitude or 3rd derivative, whereas the GP of late understory
and broadleaf were strongly correlated with later occurring LSP methods such as 75% amplitude or
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1st derivative (Figure 9). There were, however, only a few species of early understory corresponding
to LSP-SOS, indicating the general difficulty in detecting their phenology.

4.6. Detecting Specific GP in NDVI Curves

The success in matching LSP-SOS with GP is most likely linked as whether the understory species
can be seen as typical for the broadleaf forest communities. Then, their phenology of explicitly covering
the spring gap before full canopy maturity is adjusted to the climax species” phenology and therefore
might be mirrored in the respective NDVI curves. Additionally, the possibility of finding an important
phenological event in the interpolated period of NDVI would only increase the uncertainty of LSP-SOS
estimates along with the sub-pixel heterogeneity issue [28,42]. For example, bud break, the first
noticeable swelling of the buds is traditionally a phase recorded in GP but is reportedly undetectable
in LSP. Definitively, phenological phases such as bud break are a too small feature or event to produce
detectable changes in the NIR band of satellite sensor [4]. The mixing of bud burst signals with
pre-existing understory might also be another reason for the poor detection of early phenophases of
broadleaf species. Fisher and Mustard [15] indicate this in their study where inter-annual behaviour
of LSP-SOS obtained from 50% amplitude of NDVI indicated a stronger linear relationship with GP
records of greening of 75% of leaves than with 50% bud break. Soudani et al. [42] also reported a
better performance of the inflection point of the fitted NDVI curve or late LSP-SOS with the start of
onset of greening in 90% of trees, whereas the day of minimum NDVI or earlier LSP-SOS showed
higher agreement with the earlier phase of onset of greening i.e., in 10% of trees. As pointed out
by Nagai et al [48] NDVI thresholds may also be used to detect spring phenology of broad-leaved
forests. However, our results suggest that an overall threshold may not account for the vegetation
type specific differences of spring phenology. Though earlier research has reported a better agreement
of some specific LSP methods with some GP phases, but none of them had systematically tested the
performance of various LSP methods with a variety of GP observations. Hence, our paper reveals some
of the characteristics of commonly used LSP estimation methods, their variability and its agreement
with GP observations. Since there seems to be a fair indication of correspondence of specific GP-SOS
to specific LSP-SOS, we therefore suggest that the 20% amplitude and 3rd derivatives are the best
measures of early understory SOS; and 75% amplitude and 1st derivative to best correspond with
broadleaf SOS. However, these results need to be tested further with improved data resolution and at
different sites.

5. Conclusions

This paper aimed at studying the LSP of broadleaf forests and to assess its agreement with a rich
set of GP observations for specific species. The problem of attributing or matching pixel based LSP
estimates to GP of specific species is one of the important underlying limitations of this paper and
many similar studies. A variety of available LSP-50S estimation methods were tested and revealed
an inherent uncertainty associated with the initial processing and smoothing of data, estimation of
LSP-SOS and finally the validation with GP. Therefore, this study reveals and discusses some of the
limitations of LSP studies from remote sensing data.

It was found that the agreement between GP and LSP method is governed by the species and
phenophase under study. Broadleaf species and late understory occurring after the 90th day of the year
reveal stronger significant correlation (p < 0.05) with late detected LSP methods such as 75% amplitude
and 1st derivative, whereas early understory reveal stronger significant correlation (p < 0.05) with early
detected LSP methods like 20% amplitude and 3rd derivative. There were several mismatches either
in mean SOS or trends or both when comparing GP of species and LSP, which accentuate the need for
detailed studies with data quality of highest order. The limitations of using a 13-year length satellite
NDVI time series also have to be considered. Past studies and our analyses indicate the importance of
a reliable land cover map both for understory and broadleaves, in order to improve our understanding
of phenology from LSP and relate it to GP. Even though the results from this study are specific to a
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small area and a specific GP dataset, it nonetheless provides vital insights into problems of matching
LSP estimates with GP observations. We therefore recommend careful analyses of LSP methods and
land use cover of the study area for future studies and redoing similar analyses in other regions.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/9/753/s1,
Equation (S1) Weighted Gaussian filter, Figure S1: Gaussian smoothing results-I, Figure S2: Gaussian smoothing
results-II, Figure S3: Double Log smoothing results-I, Figure S4: Double Log smoothing results-II, Figure S5:
Time series of GP-SOS-I, Figure S6: Time series of GP-SOS-II and Table S1: showing Mean-SOS and trends of
species-specific GP and their ID numbers (No.).
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