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Abstract: A few previous studies have illustrated the potentials of compact polarimetric Synthetic
Aperture Radar (CP SAR) in ship detection. In this paper, we design a ship detection algorithm
of CP SAR from the perspective of computer vision. A ship detection algorithm using the pulsed
cosine transform (PCT) visual attention model is proposed to suppress background clutter and
highlight conspicuous ship targets. It is the first time that a visual attention model is introduced to
CP SAR application. The proposed algorithm is a quick and complete framework for practical use.
Polarimetric features—the relative phase δ and volume scattering component—are extracted from
m-δ decomposition to eliminate false alarms and modify the PCT model. The constant false alarm rate
(CFAR) algorithm based on lognormal distribution is adopted to detect ship targets, after a clutter
distribution fitting procedure of the modified saliency map. The proposed method is then tested on
three simulated circular-transmit-linear-receive (CTLR) mode images, which covering East Sea of
China. Compared with the detection results of SPAN and the saliency map with only single-channel
amplitude, the proposed method achieves the highest detection rates and the lowest misidentification
rate and highest figure of merit, proving the effectiveness of polarimetric information of compact
polarimetric SAR ship detection and the enhancement from the visual attention model.
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1. Introduction

Maritime surveillance is a critical issue in global environmental and economic development, with
great relevance in public safety and freight transportation. As an all-day and all-weather operating
tool, SAR triggers great concerns in ocean surveillance fields. In the ship detection field, SAR is more
favorable than optical remote sensing images, because ocean surface acts as dark background but ships
appear as bright spots. The capability and effectiveness of SAR have been analyzed in past studies [1–5].
Quad-polarization (quad-pol) SAR (HH, HV, VH, and VV) is able to provide the intensity and the
coherent phase information of four channels, which leads to higher accuracy than dual-polarization
(dual-pol) and single-polarization (single-pol) SAR in ship detection and classification. However, the
swath of quad-pol SAR is only half of dual-pol SAR; and the high data download rate and energy cost
also cause inconvenience in large-scale maritime monitoring [6].

Various threads about polarimetric SAR (PolSAR) ship detection have been investigated by
researchers. Ringrose et al. [7] designed a ship detection method based on Cameron decomposition.
The experiments on SIR-C quad-pol images displayed the effectiveness of Cameron decomposition on
ship detection. Touzi [8] explored the polarization information in ship detection and found out that
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the polarization entropy had good performance in increasing ship-sea contrast. On the perspective of
polarimetric filtering, Marino [9] proposed a dual-pol detector based on notch filter principles- the
Geometrical Perturbation–Polarimetric Notch Filter (GP–PNF) method for ship detection, which was
tested on Monte Carlo Test and real TerraSAR-X dual-pol images. Marino et al. [10] then studied
the statistical properties of notch filter and analyzed the distribution characteristics of GP-PNF to
achieve an automatic and adaptive detection threshold. Besides, other detection strategies based
on multi-feature combinations were also considered. Hannevik [11] propounded a polarimetric
combination component (HH−VV) × HV to increase ship-sea contrast. Experiments were carried out
on 19 Radarsat-2 quad-pol images and the results exhibited good performance. Nunziata et al. [12]
investigated the polarimetric symmetry properties of ship and sea and proposed a method to detect
man-made metallic targets over sea surface based on dual-pol SAR images.

CP SAR is a two-channel polarimetric SAR strategy, which provides a compromise between
polarimetric scattering information and swath [13]. Its specialty lies in the unique transmission
and reception patterns, which enable CP SAR to obtain more information than traditional dual-pol
SAR. Souyris et al. firstly developed the concept of CP SAR and provided details about π/4 mode
configuration [14], which transmits a linear polarization signal directed to 45◦ and receives backward
signals in both H and V polarizations (45◦H, 45◦V). Stacy et al. proposed dual circular polarization
(DCP) mode, which transmits and receives circular polarizations (RR and RL, where R and L denote
right and left circular polarization, respectively) [15]. Raney raised a hybrid mode of polarimetric SAR,
which transmits circular polarization but receives two linear polarizations (RH, RV or LH, LV) [16].
The hybrid mode is also known as CTLR mode. CP SAR has the same swath as dual-pol SAR, which
is as twice that of quad-pol SAR [17]. Considering the importance of swath coverage in maritime
surveillance, CP SAR is quite advantageous in ship detection.

Currently, there are two space-borne SAR systems with CP SAR imagery capability in operation:
Chandrayaan-1 launched by ESA for moon monitoring, and Risat-1 operated by the Indian Space
Research Organization for earth observation [18,19]. The Radarsat Constellation Mission (RCM) of
the Canadian Space Agency is also in preparation. Since actual usage of CP SAR data is on the way,
prospective studies on land cover mapping, classification, soil moisture estimation, and maritime
detection have been carried out [20–23].

In the area of ship detection, quantitative comparisons between CP SAR and quad-pol SAR were
conducted with reconstruction algorithms. Souyris designed the first reconstruction algorithm with an
extrapolation between co-polarization and cross-polarization channels; experiments on classification
demonstrated the capability of reconstruction pseudo-quad-pol (PQ) data. Yin et al. modified
Souyris’ algorithm according to Yamaguchi decomposition [24]. Ship detection performance of PQ
data was evaluated with comparisons of quad-pol, dual-pol, and raw CTLR data. Nord compared
reconstruction performance of different CP modes and concluded that the scattering vector element
SHV was overestimated in all three modes by the Souyris’ algorithm [25]. He defined the ratio between
co-polarization difference (|SHH − SVV|2) and cross-polarization (|SHV|2) as parameter N. It was
approximately the proportionality between double bounce backscatter and volume backscatter, and
was updated during iterations. Atteia and Collins compared algorithms proposed by Souyris and
Nord and further modified the Nord method by building an empirical formula, making N constant
throughout the iterations [26]. Their work suggested that the PQHV detector was strongest in ship
detection among all incident angles, with performance comparable to quad-pol data.

However, these reconstruction methods were restricted by assumptions. Because the reconstruction
from CP SAR did not provide any extra information [27], when assumptions did not hold, the
rebuilding accuracy would be affected, and the detection results thus became unconvincing. Therefore,
some researchers concentrated on the direct utilization of CP SAR scattering information. Shirvany et al.
explored the effectiveness of degree of de-polarization (DoD) in ship detection and discovered that CP
SAR and HH/VV dual-pol SAR performed better than HH/HV or VH/VV dual-pol SAR [28]. Li et al.
demonstrated that the relative phase increased the contrast between a wind farm target and the ocean
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background and was stable under incident angles from 18◦ to 45◦ [29]. Yin deduced three parameters
for ship and oil detection based on the X-Bragg model and proved their ability in discriminating targets
from lookalikes [30].

These studies explored the feasibility of CP SAR in ship detection and became foundations for
future practical applications. Because the utilization of CP SAR is on the horizon, we wish to design
a practical CP SAR ship detection algorithm, which aims to achieve a high detection rate and low
misidentification rate. The detection algorithm is based on the visual attention model and is modified
with polarimetric information, which is qualitatively analyzed.

The principle of our method is completely illustrated in the following sections: Section 2 illustrates
the methodology; Section 3 demonstrates the experiment results and detailed analysis; and Section 4
draws the final conclusions.

2. Methodology

A phenomenon has been noted wherein some ship targets might be missed when the intensity
of background clutter is as strong as that of targets. This is caused by the complexity of the imaging
procedure and the randomness of ocean states, which is common in high-resolution polarimetric SAR
images. However, these undetected ships might still be distinguishable by manual interpretation [31],
thanks to the visual attention mechanism in the human brain. The basic idea of visual attention
is to inhibit the homogeneous background or identical areas while highlighting the distinctive
objects through a “center-surround” mechanism [32]. Because ships are usually distinctive over
the homogeneous sea surface, the visual attention concept is suitable for SAR ship detection. This
paper introduces visual attention to CP SAR ship detection with the pulsed cosine transform (PCT)
model [33], which has been proven feasible for SAR image processing on single-pol images [34–36].

The flowchart of the proposed method is shown in Figure 1, which is divided into three stages.
The first stage is feature extraction, during which the m-δ decomposition is applied to input CTLR
image. The cosine of the half-relative phase (δ/2) is taken as a correction factor and multiplied by
the volume scattering component VG to eliminate false alarms. The second stage is to apply the
visual attention model to the polarimetric feature image. In this paper, the PCT model is adopted
for its computation simplicity to generate a saliency map. The final stage is to process ship detection.
According to a histogram fitting, the CFAR algorithm based on lognormal distribution is utilized to
detect ship targets.
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Because there is still no real CP SAR data available, the experimental data must be simulated
first. The constant relationships between scattering vector elements of quad-pol and three CP SAR
modes make it convenient to simulate CP SAR images from quad-pol SAR. The scattering vector for
CP SAR images could be calculated from Equation (1) to Equation (3), with which the covariance and
coherency matrixes could be deduced as well. In Equations (2) and (3), the transitions are both right
circular polarization:

→
k π

4
=

1√
2

[
SHH + SHV SVV + SHV

]T
(1)

→
k DCP =

1
2

[
SHH − SVV + 2iSHV i(SHH + SVV)

]T
(2)

→
k CTLR =

1√
2

[
SHH − iSHV SHV − iSVV

]T
(3)

where SHH, SHV, and SVV denote the scattering vector elements of quad-pol data. In this research, the
ship detection framework is applied to right circular CTLR images. For other modes, similar methods
could be applied after proper analysis of polarimetric features.

2.1. Evaluation of Polarimetric Scattering Features for Ship Detection

High-resolution SAR images usually face severe false alarms caused by complex sea conditions,
side lobes, azimuth ambiguities, and system noise [37]. Because the essential distinctions between
false alarms and ships lie in the differences in polarimetric scattering characteristics, it is necessary to
involve polarimetric information in the detection.

The m-δ decomposition was proposed by Charbonneau in 2009 [38]. The degree of polarization
(m) and the relative phase angle (δ) were used to generate a three component decomposition
method. Charbonneau testified the performance of m-δ decomposition on land change detection
and classification, and the results corresponded very well to those of quad-pol Freeman-Durden
decomposition [39]. The m-δ decomposition has been applied in various fields and is often studied
along with the m-χ decomposition proposed by Raney [40], for their similarities in characterizing
backscattering mechanisms. Sivasankar et al. analyzed different land cover targets in m-δ and m-χ
decomposition on real CP SAR data of RISAT-1 [41]. Yin et al. qualitatively analyzed the performance
of ship detection of simulated CP SAR images using m-δ and m-χ decompositions, whose three-channel
false color images both exhibit great potentials [42].

In the following of this section, we will make some assessments on m-δ decomposition and find
out the proper polarimetric features to remove false alarms of CP SAR as much as possible. The degree
of polarization and the relative phase are evaluated first, for they denote the variation of polarization
and scattering mechanisms. The three component decomposition results are inspected afterwards
for they represent the intensity of different scattering mechanisms. Right circular CTLR mode data
are simulated from Radarsat-2 Fine Quad images, and a study area of 677 × 887 pixels is selected for
experiments in this section as shown in Figure 2. The detailed information on the experimental area is
introduced in Section 3.
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2.1.1. Degree of Polarization and Relative Phase

For right-circular CTLR mode, the received electromagnetic field ECTLR is expressed by

ECTLR =

[
ERH
ERV

]
=

1√
2

[
SHH SHV
SVH SVV

] [
1
−i

]
=

1√
2

[
SHH − iSHV
SVH − iSVV

]
(4)

where ERH and ERV stand for the transmitted electromagnetic field. When assuming reflection
symmetry, there is SVH = SHV. The Stokes vector of CTLR mode is then calculated by

gCTLR =


g0

g1

g2

g3

 =


〈
|ERH |2 + |ERV |2

〉〈
|ERH |2 − |ERV |2

〉
2Re

〈
ERHE∗RV

〉
−2Im

〈
ERHE∗RV

〉

 (5)

From which m and δ are expressed as

m =

√
g2

1 + g2
2 + g2

3

g0
(6)

δ = −arctan
(

g3

/
g2

)
, δ ∈ [−π, π] (7)

We apply a 3 × 3 boxcar filter to ERH and ERV to spatially average the Stokes vector gCTLR
according to Equation (5). Then the degree of polarization and relative phase are calculated as the
foundations of m-δ decomposition. The degree of polarization denotes the state of polarization of an
electromagnetic filed. Mathematically, the total polarized state corresponds to a point on the Poincaré
sphere. There is m = 1 for a totally polarized reflected electromagnetic wave and m = 0 for a totally
depolarized reflection wave. In our experimental image, as Figure 3a displays, some ships display
a high degree of polarization, but the ship marked by a black rectangle in the left-bottom corner is
completely indiscernible. Meanwhile, false alarms caused by azimuth ambiguity, system noise, and
side lobes also have high degree of polarization, as marked by red rectangles. As a result, the degree of
polarization is inappropriate for ship discrimination as indicated by our experimental area.
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The relative phase is the phase difference between two orthogonal components of electromagnetic
fields. It is sensitive to changes in polarimetric scattering fields and is independent to the gain
imbalance between two orthogonal channels [43]. As Figure 3b shows, the relative phases of sea
surface pixels randomly switch between positive and negative values, while in Li’s research the
relative phases of sea surface pixels are stable and close to 90◦ [44]. We assume the reason is that the
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sea condition of the study area is not as steady as Li’s. However, the false alarms are suppressed by
the fluctuations of the restless clutter background, while the ship targets are clearly distinguished.

A further comparison of histogram between targets and clutter is displayed in Figure 4. As shown
in Figure 4b, the relative phase distribution of clutter background concentrates on 180◦ and −180◦,
and smoothly decreases from these two ends to the valley bottom, which is approximately 9◦. Only
few of clutter pixels (frequencies lower than 0.005) have relative phase value ranging from −93◦ to 96◦.
However in the cases of ship targets, the frequencies of this interval are much higher. The average
frequencies in this range of clutter and ship target pixels are 0.0035 and 0.0082 respectively, which leads
to the noteworthy visual discrepancy between targets and nearby clutter. This phenomenon facilitates
the identification of ship targets in Figure 3b, though the relative phase distribution of ship targets
shows no regular pattern. In other words, the relative phase distribution difference between clutter
pixels and ship targets is the basis of discriminate targets from the ocean surface; and we believe these
are accordance with the distributed target traits of ships and single-bounce scattering mechanism of
ocean surface.
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2.1.2. Three-Component Decomposition

With the degree of polarization and relative phase, the m-δ decomposition is generated from the
total scattering power g0. Charbonneau et al. considered relative phase as the indicator of scattering
mechanisms. When δ < 0◦ indicates that double bounce scattering is stronger than surface scattering,
δ > 0◦ indicates that surface scattering is stronger than double bounce scattering. The three components
of m-δ decomposition are calculated by

 VR
VG
VB

 =


√

g0m 1−sinδ
2√

g0 (1−m)√
g0m 1+sinδ

2

 (8)

where VR, VG, and VB represent the double bounce scattering, volume scattering and surface scattering
components, respectively.

Figure 5 displays the results of m-δ decomposition, where red rectangles represent potential
false alarms that perform diversely in different scattering mechanisms. Figure 5a shows the false
color composition image of three components. False alarms are conspicuous in Figure 5a because it
contains the summed energies of three components. Figure 5b–d denotes three individual scattering
mechanisms, of which the color bars represent the intensity of three decomposition components.
It is obvious that side lobes are most severe in the surface scattering component, whereas azimuth
ambiguities are distinguishable in all components. However, the volume scattering component shows
some superiority in inhibiting disturbances: the side lobes are weaker; and strong system noises
presented at the bottom of other images do not show up.
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Based on above analyses, we use the relative phase and volume scattering component to reduce
clutter disturbances, rather than use amplitude or intensity images directly. The cosine of the
half-relative phase is taken as an assistant indicator to characterize change of the polarimetric field.
Thus, the combined feature image I applied to the visual attention model is represented by

I = VG · cos (δ/2) (9)

Figure 6 shows clear improvements in eliminating background disturbances compared with
Figure 5c.
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2.2. The Calculation of the Saliency Map

The detection stage is based on the saliency map generated by the PCT model [33], which
does not involve any prior knowledge in the process of visually concentrating on conspicuous
objects. PCT model tries to simulate human visual attention process in a biologically plausible
way, and could predict human eye fixation well. The high calculation efficiency makes it suitable for
practical use. Its feasibility in SAR ship detection has been illustrated by Yu et al. [35] and testified by
Amoon et al. [36] on single-polarization images. In this research, we enrich its application with CP
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SAR images and involve polarimetric information to further reduce false alarms and highlight the real
ship targets. The procedure of the PCT model could be summarized as

T = C (I) , P = sign (T) , F = C−1 (P) (10)

MS = G ∗ F2 (11)

where I represents the input image; C and C−1 denote the two-dimensional discrete cosine transform
and its inverse; and “sign” indicates the sign function. For the original PCT model, I denotes the
intensity or amplitude of a single-pol SAR image, but here, it indicates the combined features defined
in Equation (9). The pulse cosine transform is indicated by P and contains only the sign information of
the cosine transform result, which is applied to simulate the suppression effect of similar image features
or homogenous areas. The binary values of “+1” and “−1” denote the neuronal pulse stimulations
of the human brain and are considered as the analog procedures of neuronal firing and non-firing
states [33,35]. Note that if the C−1 of P is negative, value of the inverse discrete cosine transform image
F is set to zero. G is the two-dimensional Gaussian filter, as prescribed by Yu et al. [33]. The symbol “∗”
indicates applying Gaussian filter to F. Figure 7 demonstrates the comparison between a single-channel
saliency map using only amplitude and the modified saliency map, with the color bar indicating
the degree of conspicuousness. The MS image has obviously better performance in suppressing
background noise.
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2.3. Distribution of MS Image

To apply the CFAR algorithm to the modified saliency map, a proper clutter distribution model
should be selected. Since the computation of PCT model involves pulsed cosine transform, it is
difficult for a self-contained theoretical derivation. So we avoid this problem by fitting the clutter
distribution to several frequently-used models and determine which one is more suitable. An ocean
area of 220 × 450 pixels is outlined with a red rectangle in Figure 7c for background clutter fitting.
The histogram of this ocean area is exhibited in Figure 8a. Different distributions are considered
according to the histogram of the selected area. KL divergence, KS distance, and RMSE are calculated
to evaluate the fitting degrees, as listed in Table 1.

From Figure 8a and Table 1, lognormal model clearly has a better fitting degree than other
distributions. It has the lowest KL divergence, KS distance, and RMSE, indicating the best fitting
performance for the selected area compared with the other three distributions. As a result, we
consider that the lognormal distribution is appropriate to characterize the ocean surface for MS image.
The lognormal-based CFAR method is expressed by

T = σ×Φ−1 (1− p f a) + µ

D(x, y) =

{
1, i f log(MS(x, y)) ≥ T
0, i f log(MS(x, y)) < T

(12)
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where T indicates the detection threshold; µ and σ indicate mean and standard deviation of logarithm
values, respectively; pfa represents the false alarm rate; Φ denotes the standard normal distribution
function; and D indicates the binary map of the detection result.Remote Sens. 2016, 8, 751  9 of 16 
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Table 1. Evaluation of histogram fitting in ocean area.

Distribution Rayleigh Gaussian Exponential Lognormal

MS
KL divergence 0.2485 0.4113 0.9951 0.1303

KS distance 0.0028 0.0036 0.0076 0.0010
RMSE (×10−3) 0.6245 0.8140 1.1755 0.1814

I
KL divergence 0.8562 0.4137 0.2590 0.6436

KS distance 0.0041 0.0035 0.0015 0.0041
RMSE (×10−3) 0.9638 0.7484 0.2226 0.5111

2.4. The Advantages of Applying Visual Attention Model

To evaluate the benefits from applying visual attention model, ship detection performance of
combined feature I and modified saliency map MS should be taken into comparison. Figure 8b
displays the histogram fitting of I. As indicated by Figure 8b and Table 1, the exponential model is
more appropriate to I.

Since I and MS have different clutter distribution properties, the effective pfa range for CFAR test
is quite different. Therefore, in order to illustrate the detection ability on the same level, pfa is set to
be 0.05, which is a relatively high value. A post-processing is applied to remove noises larger than
4 × 4 pixels. The detection results of two images are shown in Figure 9.

The differences between Figure 9a,b concern three aspects: (1) without visual attention
enhancement, the combined feature I lacks the ability of maintaining shape integrities; (2) for ships
marked by green rectangles, some inside structures are labeled as background, leading to poor target
compactness; (3) the impact of side lobes are not eliminated well, as indicated by ships in red rectangles.
These disadvantages make the combined feature I easy to miss ships, especially for small ships or in
more complex sea conditions. On contrast, after applying visual attention mode, the completeness of
each ship has been strengthened. So it could be concluded that weak targets would benefit a lot from
visual attention process, thereby promoting the overall detection performance.
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To further evaluate the effect of the visual attention model, the significance is defined to exhibit
the contrast between ocean and ships, according to mean and standard deviation of background pixels
µb and σb, and the mean value of target pixels µt:

sig =
µt − µb

σb
(13)

The subarea is classified into ship target and clutter background through AIS data and manual
interpretation to form a two-value mask, of which the total pixel number of ships is 3276 and the
rest are labeled as clutter background. All seven targets in the experimental area are involved in
the estimation.

As calculated, the significance of MS is 320.31, which is 11 times larger than 28.81 for combined
feature map I. The prominent improvement in significance reflects the effectiveness of visual attention
model in increasing ship-sea contrast, which results in better results of CFAR detection.

3. Experiment Results and Discussion

3.1. Data Introduction

The proposed algorithm is validated with three CTLR images simulated by real Radarsat-2 Fine
Quad data covering the East Sea of China. Their basic information is listed in Table 2, and coverage
locations are shown in Figure 10. The study area of Section 2 is extracted from Data 1.
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Table 2. Information about experimental images.

No. Acquisition Date Image Size
(Azimuth × Range)

Pixel Spacing
(Azimuth/Range, m) Incidence Angle (◦) AIS Data

1 13 July 2010 4364 × 6323 4.73/5.12 48.32–49.47 Yes
2 13 July 2010 4364 × 6477 4.73/5.12 48.32–49.47 Yes
3 22 January 2014 4040 × 5816 5.73/5.06 43.65–44.95 Yes
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3.2. Discussions of Representative Areas

The CFAR detection results of total power SPAN and saliency map using only the RH amplitude
are considered to demonstrate the performance of our method. As one of the most frequently-used
models, Gamma distribution is adopted for SPAN image. Lognormal distribution is chosen for RH
amplitude saliency map because it involves the same visual attention calculation procedure as MS
image. We examine this conjecture with the same ocean area shown in Figure 7c, and the fitting
results of RH amplitude saliency map are listed in Table 3. Clearly, RH amplitude saliency map also
corresponds to lognormal distribution.

Table 3. Evaluation of RH amplitude saliency histogram fitting in ocean area.

Distribution Rayleigh Gaussian Exponential Lognormal

KL divergence 0.2678 0.4235 0.8102 0.0654
KS distance 0.0047 0.0063 0.0135 0.0015

RMSE (×10−3) 0.8540 1.1228 1.5521 0.2128

In consideration of the large size of experimental images, global CFAR detectors are adopted, and
the false alarm rates pfa are set to be 10−5 for three methods. Figures 11–13 show three subareas which
contain many disturbances extracted from three experimental data for detailed analysis. Their feature
images and detection results are shown in each figure, in which misidentification targets caused by
sea surface disturbances are marked by yellow rectangles. The comparison shows that the proposed
method is effective in suppressing background clutter and false alarms. The saliency map using
only the amplitude performs even worse than SPAN owing to the lack of polarimetric information.
A great deal of disturbances are also enhanced by the visual attention procedure, especially the
azimuth ambiguities and linear-shaped strong system noises. In addition, some small suspected
targets influence the detection result of all methods as well.
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3.3. Detection Accuracy

The detection results are verified with AIS data, as listed in Table 4. The overall precision is
measured by the misidentification rate RMT, the detection rate RD, and the figure of merit (FoM):

RMT =
NFA
ND

(14)

RD =
ND
NT

(15)

FoM =
ND

NT + NFA
(16)
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where ND, NFA, and NT denote the detected ship number, misidentified ship number, and total real
ship number, respectively. In ship detection field, RMT, RD, and FoM are the most frequently used
indexes to evaluate the performance of ship detection algorithm, which embody the success rate and
false rate of detection process. They do not require any specific pixel numbers of targets because
they are target-oriented parameters. In other words, they have no relation with any specific detection
strategy but are only concentrated on the outcomes.

The significance is also estimated according to Equation (13) to evaluate the ship-sea contrast.
The images are classified into ship targets and clutter background through AIS data and manual
interpretation to form a two-value mask, of which the total pixel number of ships are respectively
37450, 23932, and 32732 for Data 1, Date 2, and Data 3; and the rest are labeled as clutter background
for all images. The mean and standard deviation are thus estimated with all pixels of ship masks.
The experiment is carried out in MATLAB R2013b, and the time efficiency is compared as well.

Table 4. Overall accuracy of experimental data.

Method ND NT NFA RMT (%) RD (%) FoM (%) sig Time (s)

Data 1

SPAN 90 101 6 6.67 89.11 84.11 223.61 16.09
RH amplitude

saliency 95 101 41 43.16 94.06 66.90 132.06 20.52

Proposed method 97 101 3 3.09 96.04 93.27 602.57 29.25

Data 2

SPAN 68 70 19 27.94 97.14 76.40 421.29 16.59
RH amplitude

saliency 69 70 50 72.46 98.57 57.50 385.93 20.95

Proposed method 69 70 8 11.59 98.57 88.46 714.65 30.72

Data 3

SPAN 92 93 27 29.35 98.92 76.67 91.06 10.75
RH amplitude

saliency 93 93 31 33.33 100 75.00 71.63 13.06

Proposed method 93 93 16 17.20 100 85.32 274.16 21.05

Obviously, the proposed method has the highest FoM, whereas the saliency using only amplitude
has the lowest one. This indicates that it is insufficient to discriminate ships from disturbances in
complex sea conditions using only amplitude information. Although it achieves relatively high
detection rates, it lacks the ability to eliminate false alarms because some disturbances might also
be strengthened by visual attention model, especially for azimuth ambiguities. The SPAN method
performs better than amplitude saliency because it sums up the total power from both polarizations,
and the power contrast between ships and sea surface is the foundation of separating them apart.
However, sometimes the scattering power of false alarms is as strong as that of ships, which also
results in misidentifications. In contrast, the proposed method involves more polarimetric information
to achieve better target significance. It has the highest detection rates and the lowest misidentification
rates, leading to the highest FoMs, which are increased by 10.89%, 15.79%, and 11.28% compared with
the SPAN method and 39.42%, 53.84%, and 13.76% compared with the RH amplitude saliency method.
Although the time consumptions are slightly higher because of the large image sizes, they are still
tolerable in realistic applications.

4. Conclusions

A ship detection algorithm for CP SAR is proposed in this paper, considering the real application
of CP SAR on the horizon. The new method adopts the principle of the PCT visual attention model
to suppress background clutter and highlight conspicuous ship targets. The novelty and major
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contribution lies on three aspects: (1) it is the first time that a visual attention model is involved in
CP SAR application; (2) now that we have designed a complete detection procedure, this research
could be a good supplement to previous studies whose main concerns were the feasibilities of different
polarimetric features; (3) this research also enriches the application of PCT model since previous
studies on ship detection were merely based on single-pol SAR images.

To ensure good detection rates while reducing false alarms as much as possible, the volume
scattering component and relative phase are chosen to form a feature image after a detailed study over
m-δ decomposition features. PCT visual attention model is then applied to the feature image to form a
modified saliency map. Three CTLR images simulated from Radarsat-2 Fine Quad data are utilized to
justify the performance of the proposed method. The experimental results show that the proposed
method is effective in highlighting conspicuous ship targets while suppressing sea clutter. Its abilities
in resisting system noise, azimuth ambiguities, and strong ocean waves are demonstrated by three
image subareas, compared with CFAR detection results of SPAN and single-channel saliency map with
RH amplitude. The overall performance is evaluated in terms of misidentification rate, detection rate,
figure of merits, and target significance. The proposed method achieves the lowest misidentification
rates, and the highest detection rates, resulting from the superiority in significance. The FoMs of the
proposed method are increased by 10.89%, 15.79%, and 11.28% compared with the SPAN method; and
39.42%, 53.84%, and 13.76% compared with the RH amplitude saliency method. These results illustrate
the importance of polarimetric information in reducing false alarms and the feasibility of the visual
attention model in CP SAR ship detection. The slightly higher time consumption does not affect the
application prospects of the proposed method.
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