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Abstract: Hyperspectral image classification can be achieved by modeling an energy minimization
problem on a graph of image pixels. In this paper, an effective spectral-spatial classification method for
hyperspectral images based on joint bilateral filtering (JBF) and graph cut segmentation is proposed.
In this method, a novel technique for labeling regions obtained by the spectral-spatial segmentation
process is presented. Our method includes the following steps. First, the probabilistic support
vector machines (SVM) classifier is used to estimate probabilities belonging to each information
class. Second, an extended JBF is employed to perform image smoothing on the probability maps.
By using our JBF process, salt-and-pepper classification noise in homogeneous regions can be
effectively smoothed out while object boundaries in the original image are better preserved as well.
Third, a sequence of modified bi-labeling graph cut models is constructed for each information class
to extract the desirable object belonging to the corresponding class from the smoothed probability
maps. Finally, a classification map is achieved by merging the segmentation maps obtained in the
last step using a simple and effective rule. Experimental results based on three benchmark airborne
hyperspectral datasets with different resolutions and contexts demonstrate that our method can
achieve 8.56%–13.68% higher overall accuracies than the pixel-wise SVM classifier. The performance
of our method was further compared to several classical hyperspectral image classification methods
using objective quantitative measures and a visual qualitative evaluation.
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1. Introduction

Hyperspectral images can provide much valuable information due to high spectral and spatial
resolutions. Therefore, hyperspectral imaging techniques have been widely used for various
applications. However, a large number of spectral channels, the high spectral redundancy, spectral
and spatial variabilities, together with limited ground truth data, present challenges to hyperspectral
image analysis and classification. As a consequence, the traditional multispectral image classifiers
are not suitable to classification of hyperspectral images. Many contributions have been devoted in
the last decade to improving classification accuracies of hyperspectral images [1,2]. One of the most
widely used techniques is SVM [3,4], which can demonstrate preferable performance with a limited
number of training samples. However, these pixel-wise techniques classify hyperspectral images only
using spectral information, without considering spatial dependencies, which limits their applicability.

Recently, several achievements were proposed for combining spectral and spatial information
of hyperspectral images in the classification process. For instance, we can obtain more accurate
classification maps by a pixel-wise classifier using spatial contextual information such as grey level
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co-occurrence matrix (GLCM) [5,6], extended morphological profiles (EMP) [7], pixel shape index [8],
extended morphological attribute profile (EAP) [9], texture information based on Gabor filter [10,11],
wavelet texture feature [12–14], etc. Another way for performing spectral-spatial classification was
achieved by different segmentation techniques of watershed [15], mean shift [16,17], hierarchical
segmentation [18,19], superpixel segmentation [20], extraction and classification of homogeneous
objects [21], minimum spanning forest [22], fractal net evolution approach-based segmentation [6], etc.
Apart from those efforts, some advanced spectral-spatial classification methods have been presented,
by using multiple kernels learning [23] and generalized composite kernels [24], to integrate spatial
features with spectral signatures.

In the spectral-spatial segmentation process, hyperspectral images are partitioned into homogeneous
regions and all pixels in each region are assigned the same information class labels. To label these
regions, two techniques are always employed [15]. The first one is to use a supervised classifier to
directly classify these regions, which are considered as input vectors [25]. While the second one is
to combine a pixel-wise classification map and a region-based segmentation map to obtain a final
spectral-spatial classification map by using majority voting [15,22] or class labels of automatically
selected markers [18]. If a maximum vote decision rule is used, the class label of each region is
determined by the most frequent class in the same region according to the pixel-wise classification map;
while if representative spectra in hyperspectral images are automatically extracted, the marker-based
segmentation algorithm can be performed to obtain a segmentation map, in which class labels of those
homogeneous regions are determined by that of markers obtained by a pixel-wise classifier.

It is well-known that many early vision problems can be naturally expressed in terms of energy
minimization. However, interesting energies are often difficult to minimize because it always requires
minimizing a non-convex function in a space with thousands of dimensions [26]. If the functions are
formulated with a regularized form, the global minima of these functions can be efficiently solved
using dynamic programming [27], which cannot solve energy functions in multidimensional settings.
In the last decade, a novel energy minimization scheme has been presented based on graph cuts and its
basic idea is to construct a specialized graph for the energy function to be minimized and the minimum
cut on the graph can be effectively applied for minimizing the energy. Furthermore, the minimum cut
can be computed very efficiently by max flow algorithms in graph theory. The advantages of modeling
segmentation problems by means of graph theory are twofold: Firstly, mapping image elements
onto a graph is an abstract way to build mathematically reasonable structures, in which relationships
between entities can be measured. Secondly, the segmentation problem can be more flexible and
very efficiently solved by the convenient tools from graph theory. Many intensive segmentation
methods based on graph cuts have been presented, such as minimal cut, normalized cut, s/t graph
cut, multi-labeling graph cut, interactive graph cut, etc. [28]. It is known that the hyperspectral
image classification task can be solved by modeling an energy minimization problem on a graph of
image pixels. In addition, both of spectral and spatial features in the image can be naturally utilized
in the graph model. Therefore, spectral-spatial classification methods based on graph cuts have
been developed. For instance, Yu et al. [29] proposed a multiscale graph cut based classification
method, where region adjacency graph is employed to represent hyperspectral image in multiscale
levels and the SVM classifier is used to classify multiscale context driven features; Tarabalka and
Rana [30] proposed a spectral-spatial classification method based on a graph-cut-based model by
computing an energy minimization problem on an image graph and using the graph-cut α-expansion
approach to solve the problem; Ma et al. [31] proposed a graph-based learning semi-supervised
method and a local-manifold-learning-based graph construction method; Bai et al. [32] employed
a graph cut algorithm to solve the labeling problem on Markov random field (MRF), which was
constructed on the image grid; Jia et al. [33] applied the graph cuts segmentation algorithm on the
sparse-representation-based probability estimates of hyperspectral image to exploit spatial information;
and Damodaran et al. [34] used the graph cut to minimize the MRF energy to gain the final classification
map in the proposed dynamic classifier selection/dynamic ensemble selection method.



Remote Sens. 2016, 8, 748 3 of 29

In this paper, we propose a novel spectral-spatial classification method for hyperspectral images
based on JBF and graph cut segmentation. In this method, an alternative technique for labeling regions
obtained by the spectral-spatial segmentation process is presented. Our method includes four main
steps. First, the probabilistic SVM classifier is used to obtain class membership probability maps for
each information class. Second, an extended JBF is employed to perform image smoothing on the
probability maps. By using our JBF process, salt-and-pepper classification noise in homogeneous
regions can be effectively smoothed out while object boundaries in the original image are better
preserved as well. Third, a sequence of modified bi-labeling graph cut models is constructed for each
information class to separate the desirable object (each class) belonging to the corresponding class from
the smoothed probability maps. Finally, an ultimate spectral-spatial classification map is achieved by
merging a sequence of the segmentation maps obtained in the last step using a simple rule. It should
be noted that the proposed method is greatly different from the segmentation-based spectral-spatial
classification methods mentioned above in terms of the strategy for labeling segments. Therefore,
the major contribution of this work is to explore a novel framework to perform spatial-spectral
classification of hyperspectral images.

The remainder of this paper is organized as follows: Section 2 reviews the techniques of bilateral
filter and graph cut; Section 3 presents the proposed spectral-spatial classification of hyperspectral
imagery; Section 4 describes the experimental results; Section 5 includes discussions of our method;
and Section 6 states our concluding remarks.

2. Related Techniques

2.1. Bilateral Filter

The bilateral filter which was firstly proposed by Tomasi and Manduchi [35] is a classical
edge-preserving smoothing technique. It is almost like a Gaussian filter, except that the bilateral
filter is modulated by a function of the similarity between the central pixel (where the filter is applied)
and its neighborhoods (that is used in blurring), and a function of the difference in intensity value with
the neighborhoods as well. Let u denotes the input image and BF(u) represents its smoothed version
by a bilateral filter applied to the image u, the classical bilateral filter is defined as follows:

BF (u)i =
1

Wi
∑
j∈Ω

Gσs (||i− j||) Gσr

(
||ui − uj||

)
uj (1)

where the normalization term Wi ensures that pixel weights sum to 1 and defined by:

Wi = ∑
j∈Ω

Gσs (||i− j||) Gσr

(
||ui − uj||

)
(2)

In Equation (1), i represents the pixel location at the center of the Gaussian kernel and j denotes
the pixel location in the domain Ω which is a local window of size (2n + 1)2, where n = 1, 2, . . . , M.
uj is the image intensity value at the jth pixel. ||i− j|| means the L2 norm of (i− j). Gσs and Gσr

denote the spatial and the range Gaussian kernels with standard deviation σs and σr, respectively.
If intensity values of two adjacent pixels are very close, i.e., ui ≈ uj, it multiplies the Gaussian weight
by something close to one, and hence it is equivalent to a Gaussian filter. In contrast, if the neighboring
pixels have quite different intensity values, i.e.,

∣∣ui − uj
∣∣ is very large, the Gaussian smoothing for

this pixel is prohibited. Intuitively, this behavior yields the following result: Gaussian smoothing
in homogeneous areas of the image, no filtering across object boundaries. The bilateral filter can
effectively produce more pleasant results, because it avoids the introduction of blur between objects
while removing noise in homogeneous areas. In addition, the bilateral filter can be adjusted by σs and
σr, without an iterative manner.
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2.2. Image Segmentation by Graph Cut

The graph cut algorithms have become very popular in image segmentation due to the fact that
graph cut can provide a convenient language to encode simple local segmentation cues, together with
a set of powerful computational mechanisms to extract global segmentation from those simple local
pixel similarities. Moreover, graph cuts can be computed very conveniently by the efficient tools from
graph theory [36].

(1) s/t graph cut

Let an undirected graph be denoted as G = (V, E), with the set of vertices V corresponding to the
pixels u in the image. Edges E of G occur between any two pixels ui and uj within a small distance
of each other. An s/t graph in the graph cut model is a weighted directed graph with two identified
nodes, i.e., the source s and the sink t. In this graph, E is composed of two types of edges: (i) every pair
of neighborhood vertices, which correspond to all pixels in an image, is connected by an n-link; and
(ii) the terminal nodes of s and t are connected to other vertices by t-links. The segmentation problem
can be solved by partitioning the vertices of a graph G into two disjoint sets S and T by using an s/t
cut, where s ∈ S, t ∈ T and S∪ T = V, that minimizes the cost of the cut

cut (S, T) = ∑
i∈S, j∈T

a
(
ui, uj

)
(3)

where a (·, ·) is the affinity function. If the cost of a cut of G is smaller than that of any other cut, the
minimum cut can be obtained. As the Ford–Fulkerson theorem states [37], the maximum value of
an s/t flow is equivalent to the minimum cost of an s/t cut. Therefore, the efficient max-flow/min-cut
algorithm proposed by Boykov and Kolmogorov [38] can be utilized to generate the minimum cut for
the s/t graph.

(2) s/t graph cut based segmentation

The s/t cut is well suited for two-class image segmentation [39]. For instance, pixels in an image
can be represented by the vertices of the s/t graph and any neighborhood relationship between the
pixels can be indicated by an edge. The partition problem can be regarded as assigning a label from the
set L = {Li|i = 1, 2, . . . , N}, where Li = {0, 1}, to each pixel in the image, where 1 represents the label
of “object” and 0 indicates the label of “background”. As a result, the globally optimal segmentation of
image can be achieved by graph cuts. The energy functional, which can be minimized by the minimum
cut in the s/t graph, is shown as follows [39,40]:

E(L) = B(L) + ωR(L) (4)

where R(L) denotes the regional term and can be defined as follows:

R(L) =
N

∑
i=1

Ri (Li) (5)

The regional term measures penalties for assigning a pixel i to “object” and “background” and can
be obtained by comparing the intensity of the ith pixel with a given intensity model (e.g., histogram)
of the object and background. The other term on the right-hand side of Equation (4) is the boundary
term and its definition is shown as follows

B(L) = ∑
(i,j)∈C

Bi,j
(

Li, Lj
)
· δ
(

Li, Lj
)

(6)
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where the ith and jth pixels are neighboring ones and C defines the neighborhoods of the ith pixel.

δ
(

Li, Lj
)
=

{
1 i f Li 6= Lj

0 otherwise.
(7)

The boundary term B(L) can be considered as a penalty for a dissimilarity between the ith
and jth pixels. The penalty Bi,j can be defined as a non-increasing function of distance between
the ith and jth pixels and the corresponding distance can be measured using local gradient and
its direction, Laplacian zero-crossing and other criteria. In addition, ω is a relative importance
parameter to balance the two terms in Equation (4). As mentioned above, the minimized energy can
be computed by the max-flow/min-cut algorithm Therefore, the energy minimization is converted
into the graph cut problem. To obtain desirable segmentation results, weights of edges in the s/t graph
are greatly significant.

3. Spectral-Spatial Classification Using Joint Bilateral Filter and Graph Cut Based Model

In this work, a spectral-spatial classification method of hyperspectral images based on joint
bilateral filtering and class-specific graph cut segmentation, is proposed. A flow-chart of our
classification method using the Indian Pines dataset as an example is summarized in Figure 1.
First, a supervised probabilistic SVM classifier is applied to the original hyperspectral image to obtain
class membership probability maps. Then, the SVM probability estimates are smoothed by an extended
JBF, in which the original hyperspectral image is utilized as a guidance image for calculating range
(photometric) weights. Next, a sequence of s/t cut energy functions are built for extracting each specific
class from the smoothed probability maps. Finally, a simple and effective method is used to integrate
all of the segmentation maps into a final classification map. In this section, the details of the proposed
classification method are briefly introduced.
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3.1. Probabilistic SVM Classification

Given an original B-band hyperspectral image which is composed of N pixel vectors
U =

{
ui ∈ RB, i = 1, 2, . . . , N

}
, where ui = {ui1, ui2, . . . , uiB}. Information classes of interest in

the image are defined as W = {w1, w2, . . . , wK}, where K is the number of classes. In this work,
the probabilistic SVM classifier is employed to perform the pixel-wise classification on the input
hyperspectral image. To compute class membership probabilities, the pairwise coupling method is
used by using the LIBSVM software [41,42]. The details on the SVM classifier and its application can
be found in [4,43]. By applying the probabilistic SVM classifier to the original image, we can obtain
following outputs:
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(1) A classification map, in which each pixel has a unique information class label;

(2) Probability maps. Let P =
{

Pk, k = 1, 2, . . . , K
}

be the output probability maps and each
pixel has a probability value, which indicates the probability belonging to the class of wk

(k = 1, 2, . . . , K), on the kth probability map Pk =
{

pk
1, pk

2, . . . , pk
N

}
, where pk

i is the probability
value of the ith pixel.

3.2. Joint Bilateral Filter

As described in Section 2.1, the bilateral filter is a classical edge-preserving algorithm and has
been widely used for various applications due to its high extendibility [44]. In this work, it is used
for smoothing class membership probability maps. However, if this filter is directly applied to the
probability maps, only class-specific features contained in the map are utilized, without taking spatial
information between adjacent spectral signatures in hyperspectral imagery into account. Meanwhile,
salt-and-pepper classification noise in the probability maps makes it difficult to accurately locate
material boundaries, which is greatly significant for object extraction and recognition. Therefore, it is
required for a probabilistic filter to preserve material boundaries while removing artifacts. To this
end, an effective algorithm is presented to smooth the probability maps by employing the framework
of bilateral filter. The technique of JBF was proposed by Petschnigg et al. [45] as an extension of the
bilateral filter. In this work, we extend a JBF for probability maps while using the original hyperspectral
image as a guide to compute the range weights Gσr , instead of the probability maps. For simplicity, the
superscript k of pk

i is omitted and the proposed filtering technique is defined as follows:

JBF (P)i =
1

Wi
∑
j∈Ω

Gσs (||i− j||) Gσr

(∣∣ui − uj
∣∣) pj (8)

with
Gσs (||i− j||) = e−(||i−j||)/2σ2

s (9)

Gσr

(∣∣ui − uj
∣∣) = e−(|ui−uj |)/2σ2

r (10)

Wi = ∑
j∈Ω

Gσs (||i− j||) Gσr

(∣∣ui − uj
∣∣) (11)

where
∣∣ui − uj

∣∣measures the dissimilarity between the ith and jth spectral vectors in the image and
can be calculated using the Euclidean distance (ED), the spectral angle mapper (SAM) measure or
the spectral information divergence (SID). In this work, the SAM measure is used as the dissimilarity
measure in Equation (8) and is shown as follows:

∣∣ui − uj
∣∣
SAM = arccos


N
∑

b=1
uibujb√

N
∑

b=1
u2

ib

√
N
∑

b=1
u2

jb

 (12)

The proposed JBF is different from the standard bilateral filter in two aspects. First, it is performed
on the obtained SVM class membership probability maps, instead of the original image. Second, the
original image is adopted as a guide image because it can provide all valuable edge information. It can
be observed in Equation (8) that both of spatial information and spectral features in hyperspectral
imagery are combined in the proposed JBF. Consequently, the smoothed probability maps can provide
more reliable information for further segmentation.



Remote Sens. 2016, 8, 748 7 of 29

3.3. Class-Specific Graph-Cut (CS-GC) Method

In this subsection, the proposed spectral-spatial classification method for hyperspectral imagery
based on a graph cut is carefully introduced. For clarification, the energy functional with respect to the
probability map of pk (k = 1, 2, . . . , K) is set as an example. In the s/t graph cut segmentation map
achieved by our method, pixels belonging to the kth class are labeled as “object”, while the remaining
pixels are assigned to “background”. In this way, pixels of each information class are extracted and
labeled 1. The class-specific graph-cut method mainly includes three steps:

(1) Construction of a class-specific graph-cut-based model;
(2) The class-specific energy functional minimization; and
(3) Image labeling based on graph cut Model.

(1) Construction of a class-specific graph-cut-based model

Let Lk =
{

Lk
1, Lk

2, . . . , Lk
N

}
be a set of class label of each pixel with respect to the kth class, where

Lk
i = {0, 1} , i = 1, 2, . . . , N. If the ith pixel vector belongs to the kth information class, its class label is

set to 1, i.e., Lk
i = 1; otherwise, this pixel vector belongs to the other classes with Lk

i = 0. According to
graph theory, we build a Gibbs energy functional for the kth class as follows:

E(Lk, pk, u) =
N

∑
i=1

V(Lk
i , pk) + ω ∑

(i,j)∈C
Wi,j(Lk

i , Lk
j , u) (13)

where V(Lk
i , pk) is the data term in the energy functional and it is utilized to measure the fit of assigning

label Lk to the probability map pk. In this work, this term is defined using the smoothed probability
maps as follows:

V(Lk
i , pk

i ) =

exp( pk
i

µ ), Lk
i = 1

exp( 1−pk
i

1−µ ), Lk
i = 0

(14)

where µ (0 < µ ≤ 1) is a parameter to control the strength of the data term. The proposed graph
cut based model is built based the competition between “object” and “background” and µ can be
used to balance the two opponents. For instance, if pk

i is larger than µ, then V(1, pk
i ) is greater than

V(0, pk
i ) according to Equation (14), which means that the ith pixel vector may belong to the class of

“object”. Otherwise, pk
i is very small and the pixel vector is more likely to be classified as “background”.

The smoothness term W(Lk
i , Lk

j , u) in Equation (13) is defined as follows:

V(Lk, u) = ω ∑
(i,j)∈C

exp
(
−β

∣∣ui − uj
∣∣) · δ (Li, Lj

)
(15)

where an eight-neighborhood system is employed in the proposed energy model, and
∣∣ui − uj

∣∣ can
be computed according to Equation (12). ω is a parameter to control the weight of spatial smoothing.
The parameter β is defined as described in [46] to be

β = (2
〈∣∣ui − uj

∣∣〉)−1 (16)

where 〈·〉 denotes expectation over an image sample.

(2) The class-specific energy functional minimization

Once the energy functional is defined, a set of “object” pixels belonging to the kth class can be
extracted by estimating a global minimum of the energy functional:

L̂k = argmin
Lk

E(Lk, pk, u) (17)
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The energy minimization can be solved by using the standard minimum cut algorithm proposed
by Boykov and Jolly [39]. In this way, we build the proposed graph cut based model for each class
and extract the corresponding “object” areas. As a consequence, a sequence of object extraction maps
O =

{
oi ∈ RK, i = 1, 2, . . . , N} , are obtained, where oi = (oi1, oi2, . . . , oiK).

(3) Image labeling based on graph cut Model

As mentioned in the first step, each of the segmentation maps is assigned two labels: 0 for
background and 1 for the specific class. In this step, these maps are integrated into a final classification
map. To this end, a simple and effective method, which is performed on these segmentation maps, is
presented. For each pixel in the object extraction maps,

(i) If the maximum value of its labels, i.e., max (oi1, oi2, . . . , oiK), is equal to 1 and the sum of its

labels
K
∑

j=1
oij is equal to 1 as well, the final class label of the ith pixel is set to 1; otherwise, the class

label of this pixel is assigned to 0.
(ii) If the class label of a pixel is 0, we assign this pixel a final information class label by performing

classification based on the maximum probability.

Finally, the spectral-spatial classification map is obtained using our proposed CS-GC method
with JBF.

3.4. Parallelizing Algorithms

The proposed methods are highly suitable for high-performance parallel computing because they
can be divided into several image tasks, which can be naturally executed at multiple levels. In this
subsection, we investigate the parallel implementation of the CS-GC model with the optional JBF step
(CS-GC + JBF) method at multiple level. To this end, this method is divided into several tasks that can
be run in parallel for analysis.

(1) Pixel-wise classification: The objective of the probability SVM classifier is to estimate for each
pixel probabilities belonging to each class of interest. Therefore, the classification task can be
performed at pixel-level in parallel, i.e., each pixel vector is processed independently of the other
pixels. The number of computation threads that can be executed concurrently is set to N, which is
defined in Section 3.1 as the number of pixels of the input hyperspectral dataset.

(2) JBF: Since our JBF is applied to each band of the K-band (where K is defined in Section 3.1
as the number of information classes) probability maps independently, the JBF task can be
performed concurrently with K computation threads at spectral-level. In addition, the process
of smoothing a one-band probability map for one channel can be further parallelized with N
threads at pixel-level, i.e., each pixel is smoothed by our JBF independently of the other pixels.

(3) Graph cut based segmentation: The objective of this task is to build a graph cut model for
each smoothed probability map and extract the object belonging to a certain information class
from the corresponding one-band probability map. Therefore, the segmentation task can be
naturally run concurrently with K computation threads at spectral-level. Meanwhile, the task of
the energy functional minimization can be further concurrently executed with N computation
threads at pixel-level.

(4) Image Labeling: The objective of this task is to assign a final information class label to each pixel
based on the obtained K-band segmentation maps to achieve a classification map. Therefore,
a pixel-level parallelism with N computation threads is preferably suitable for this task.

Therefore, the proposed classification method for hyperspectral images has considerable data-level
concurrency, which is suitable for high-performance parallel computing.
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4. Results

4.1. Evaluation Measures

In our experiments, we applied the proposed spectral-spatial classification methods, i.e., the
CS-GC model without the optional JBF step (CS-GC) and the CS-GC + JBF method, to three benchmark
airborne hyperspectral datasets. To evaluate these methods, several assessment measures were used
as follows:

(1) Objective measures including three widely used global accuracy (GA) measures of the overall
accuracy (OA), the average accuracy (AA) and the kappa coefficient (κ), and the class-specific
accuracy (CA), which can be computed from a confusion matrix based on the ground truth data.

(2) Subjective measure: visual comparison of classification maps.

In this section, our proposed methods were compared with several mostly used hyperspectral
imagery classifiers, including:

(1) The pixel-wise SVM classifier with a Gaussian radial basis function (RBF) kernel. Its optimized
parameters were determined for each data set in the following experiments.

(2) The spectral-spatial kernel-based classifier (SS-Kernel) [25] using a morphological area filter with
a size of 30, a vector median filter and a contextual spectral-spatial SVM classifier with a Gaussian
RBF kernel.

(3) The spectral-spatial extended EMP classifier [7]. The EMP was constructed based on the first three
principal components of a hyperspectral image, a flat disk-shaped structuring element with radius
from one to 17 with a step of two, and four openings and closings for each principle component.

(4) An edge-preserving filter based spectral-spatial classifier [47]. A JBF was applied to a binary
image for edge preservation and the first principal component of a hyperspectral image was
employed as a guidance image. In this work, this classifier was named as EPF_JBF and its
parameters were set as σs = 1 and σr = 0.1.

(5) The Multinomial logistic regression (MLR) regressor [48] which is learnt using the logistic
regression via variable splitting and augmented Lagrangian (LORSAL) algorithm [49]. In this
work, this classifier was named as MLR-LORSAL.

(6) The spectral-spatial classifier using loopy belief propagation and active learning (LBP-AL) [48].
(7) The logistic regression via splitting and augmented Lagrangian-multilevel logistic classifier with

active learning (LORSAL-AL-MLL) [50].

In this work, the source codes of the MLR-LORSAL, LBP-AL and LORSAR-AL-MLL methods are
available on Jun Li’s homepage [51].

4.2. The Indian Pines Image

The Indian Pines image was recorded by the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor over the Indian Pines test site in Northwestern Indiana. The data set has
145 × 145 pixels, 220 bands in the 400–2500 nm range and a spatial resolution of 20 m per pixel.
Thirty-five bands have been removed and a 185-band image was used for our experiments. The RGB
composite map obtained from bands 47, 23 and 13 of the Indian Pines data set and its ground truth
data are shown in Figure 2a,b, respectively. To perform supervised classification, we chose 10% of
samples for each class from the ground truth data as training samples and the remaining 90% were
used as test samples, except for classes of Alfalfa, Grass/pasture-mowed and Oats, which include a very
small number of samples in the ground truth data and only 10 of them were randomly selected as
training samples for each of these classes and the remainder of the samples comprised the test set.
The training-test samples for the three hyperspectral data set are listed in Table 1. The optimized
parameters of the SVM classifier used by different classification methods with a Gaussian RBF kernel
were obtained by a fivefold cross validation: C = 2084, γ = 2.
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Table 1. Information classes and training and test samples for the three benchmark hyperspectral
data sets.

Class
Indian Pines University of Pavia Salinas

Name Train Test Name Train Test Name Train Test

1 Alfalfa 10 44 Asphalt 250 6381 Brocoli_weeds_1 70 1939
2 Corn-no till 143 1291 Meadows 250 18,399 Brocoli_weeds_2 70 3656
3 Corn-min till 83 751 Gravel 250 1849 Fallow 70 1906
4 Corn 23 211 Trees 250 2814 Fallow_rough_plow 70 1324

5 Grass/pasture 49 448 Metal
Sheets 250 1095 Fallow_smooth 70 2608

6 Grass/trees 74 673 Bare Soil 250 4779 Stubble 70 3889
7 Grass/pasture-mowed 10 16 Bitumen 250 1080 Celery 70 3509

8 Hay-windrowed 48 441 Self-Blocking
Bricks 250 3432 Grapes_untrained 70 11,201

9 Oats 10 10 Shadow 250 697 Soil_vinyard_develop 70 6133
10 Soybeans-no till 96 872 Corn_senesced_weeds 70 3208
11 Soybeans-min till 246 2222 Lettuce_romaine_4wk 70 998
12 Soybeans-clean till 61 553 Lettuce_romaine_5wk 70 1857
13 Wheat 21 191 Lettuce_romaine_6wk 70 846
14 Woods 129 1165 Lettuce_romaine_7wk 70 1000
15 Bldg-Grass-Trees-Drives 38 342 Vinyard_untrained 70 7198
16 Stone-steel towers 10 85 Vinyard_trellis 70 1737

Total 1051 9315 2250 40,526 1120 60,207

In our experiments, the default parameters of the CS-GC method were given as follows: µ = 0.3
and ω = 6, while the default parameters of the CS-GC + JBF method were set as µ = 0.3, ω = 2, n = 3,
σs = 4 and σr = 0.015. The classification maps achieved by different methods are demonstrated in
Figure 3a–i. It can be observed from Figure 3a that the classification map obtained by the SVM classifier
was seriously corrupted by salt-and-pepper noise. In Figure 3b,c that salt-and-pepper classification
noise in the corresponding classification maps by the SS-Kernel and EMP methods cannot be completely
smoothed out. In Figure 3e, several classification errors were made using the MLR-LORSAL method.
For instance, at the top of the image, regions which should belong to Corn-no till, Bldg-Grass-Trees-Drives
and Soybeans-min till according to the ground truth data, were falsely assigned to Soybeans-no till, Woods
and Soybeans-clean till, respectively. At the center of the image, one region belonging to Corn-no till
was confused to Corn as well. We can still observe misclassification caused by the LBP-AL method in
Figure 3f. Specifically, at the top-left, one region of Corn-no till was classified to Soybeans-min till and
Soybeans-no till. In addition, the LBP-AL method cannon well differentiate the class of Soybeans-min till
from Soybeans-clean till and Soybeans-no till, as shown on the left and at the bottom-left of the image in
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Figure 3f. The classification maps obtained by the EPF_JBF and LORSAL-AL-MLL methods were better
than the methods mentioned above. However, both of them misclassified some regions of Corn-min
to Soybeans-min till, as shown at the bottom-left in Figure 3d,g. Compared with those classification
methods used in this work, the proposed methods can provide visually desirable classification maps,
as show in Figure 3h,i. With the optional JBF step, our method can obtain in Figure 3i more accurate
classification results for object boundaries, compared to the classification map by the CS-GC method in
Figure 3h. To objective evaluate the performance of our methods, the classification accuracies obtained
by all the classification methods for comparison are listed in Table 2. From this table, it can be seen that
the OA and κ achieved by the CS-GC and CS-GC + JBF methods were better than the other methods,
while the CS-GC + JBF method outperformed the CS-GC method in terms of the GAs. Therefore, we
can obtain more accurate classification results by our method with the optional JBF step. The highest
OA, AA and κ in Table 2, which were obtained by the CS-GC + JBF method, increased by 13.68%,
15.06% and 15.69%, respectively, compared to the pixel-wise SVM classifier.
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Table 2. The GAs and CAs (percent) for the Indian Pines data set by all the classification methods used
in this work for comparison. The highest accuracies are indicated in underlined in each category.

SVM SS-Kernel EMP EPF_JBF MLR-LORSAL LBP-AL LORSAL-AL-MLL CS-GC CS-GC + JBF

OA 82.51 93.69 93.27 94.75 80.52 87.99 95.28 95.36 96.19
AA 80.63 94.737 93.43 92.64 86.13 90.71 94.75 93.71 95.69
κ 0.7996 0.9281 0.923 0.9399 0.7808 0.8623 0.9462 0.947 0.9565
Alfalfa 81.82 86.36 88.64 79.55 93.18 97.73 93.18 87.04 95.45
Corn-no till 76.61 91.01 84.35 89.31 40.43 79.63 97.21 92.26 92.95
Corn-min till 72.7 82.29 93.74 92.14 83.89 85.09 86.82 96.28 98.14
Corn 46.45 91.94 82.46 95.26 99.53 80.57 97.63 93.16 97.63
Grass/pasture 86.16 94.87 86.61 97.54 84.6 87.95 94.87 96.98 98.21
Grass/trees 89.75 98.07 96.58 98.66 97.33 100 100 98.53 98.81
Grass/pasture-mowed 87.5 100 100 93.75 100 93.75 93.75 96.15 93.75
Hay-windrowed 97.28 99.09 99.32 100 99.32 99.09 99.32 99.39 99.55
Oats 100 100 100 90 100 100 100 95 100
Soybeans-no till 83.03 90.02 87.96 87.27 98.85 78.9 92.09 88.64 89.11
Soybeans-min till 87.62 93.74 97.25 98.83 78.22 89.65 96.04 98.95 98.87
Soybeans-clean till 66.55 93.67 89.33 99.28 97.65 72.33 93.49 97.23 98.73
Wheat 96.34 98.95 98.43 100 99.48 100 100 99.53 99.48
Woods 93.3 99.57 99.57 99.66 100 94.59 97.77 99.61 99.91
Bldg-Grass-Trees-Drives 61.4 98.53 96.49 71.64 5.56 97.95 89.18 69.95 72.81
Stone-steel towers 63.53 97.65 94.12 89.41 100 94.12 84.71 91.58 97.65

4.3. The University of Pavia Image

The University of Pavia image was recorded by the Reflective Optics System Imaging Spectrometer
(ROSIS) optical sensor over the urban area of University of Pavia, Italy. The image has 610 × 340 pixels,
115 bands in the 430–860 nm range and a spatial resolution of 1.3 m per pixel. Twelve bands were
removed due to heavy noise and the remaining 103 bands were used for the experiments. Nine classes
of interest were used for classification, as shown in Table 1. Figure 4 shows a three-band false color
image of the original hyperspectral data set and the corresponding ground truth data. In the following
experiments for this data set, 250 samples for each class were randomly chosen from the ground
truth data, and the rest were used as test samples. For the pixel-wise SVM classifier used in different
methods here, the Gaussian RBF kernel was used and its optimal parameters were chosen by a fivefold
cross validation: C = 2048, γ = 2.
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map obtained by the pixel-wise SVM classifier contained a lot of salt-and-pepper classification noise. 
In Figure 5b–d, the salt-and-pepper effects cannot be thoroughly avoided by the SS-Kernel, EMP and 
EPF_JBF methods, especially for the noise in the classes of Meadows and Bare Soil. It can be easily 
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Figure 4. ROSIS-03 University of Pavia data set and the corresponding ground truth data: (a) three-band
color composite image (bands 80, 50 and 30); and (b) ground truth data.

To compare our methods with different classification methods, the default parameter settings for
the CS-GC method were fixed as µ = 0.35 and ω = 5.5, while the default parameter settings for the
CS-GC + JBF method were set as µ = 0.35, ω = 5.5, n = 1, σs = 4 and σr = 0.01. The classification
maps obtained by different methods and the corresponding classification accuracies are shown in
Figure 5 and Table 3, respectively. We can observe from Figure 5a that the classification map obtained
by the pixel-wise SVM classifier contained a lot of salt-and-pepper classification noise. In Figure 5b–d,
the salt-and-pepper effects cannot be thoroughly avoided by the SS-Kernel, EMP and EPF_JBF methods,
especially for the noise in the classes of Meadows and Bare Soil. It can be easily found in Figure 5e
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that there were several misclassification effects caused by the MLR-LORSAL classifier. For instance,
the most of regions belonging to Self-Blocking Bricks were classified as Asphalt; a region belonging to
Gravel were classified as Self-Blocking Bricks and Asphalt. In the classification map in Figure 5f, several
regions belonging to Self-Blocking Bricks were classified as Asphalt and Gravel by the LBP-AL method.
Meanwhile, a large region (belonging to Meadows) at the bottom of Figure 5f still included small
amounts of the salt-and-pepper classification noise. It can be seen from Figure 5g that two regions
belonging to Gravel were classified as Self-Blocking Bricks. The salt-and-pepper classification noise can
be observed in two regions at the bottom and at the center of the classification map in Figure 5g as
well. Finally, the classification maps obtained by the proposed CS-GC and CS-GC + JBF methods
were highly close to the ground truth data in Figure 4b, except that very small regions in Figure 5h,i
belonging to Gravel were classified as Self-Blocking Bricks.
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and (i) CS-GC + JBF.
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The classification accuracies obtained by all the classification methods for comparison are listed
in Table 3. From this table, it can be seen that the OA and κ achieved by the CS-GC and CS-GC + JBF
methods were better than the other methods, while the CS-GC + JBF method was superior to the CS-GC
method in terms of the GAs, which verifies the efficiency of the JBF step to improve classification
accuracies. The highest OA, AA and κ in Table 3, which were obtained by the CS-GC + JBF method,
increased by 8.56%, 6.89% and 11.39%, respectively, compared to the pixel-wise SVM classifier.

Table 3. The GAs and CAs (percent) for the University of Pavia data set by all the classification methods
used in this work for comparison. The highest accuracies are indicated in underlined in each category.

SVM SS-Kernel EMP EPF_JBF MLR-LORSAL LBP-AL LORSAL-AL-MLL CS-GC CS-GC + JBF

OA 90.85 97.04 98.19 97.69 88.3 96.55 97.24 99.38 99.41
AA 92.14 97.41 98.97 98.07 85.57 96.37 94.99 98.96 99.03

κ 0.8781 0.96 0.976 0.9689 0.8419 0.9535 0.9632 0.9915 0.992
Asphalt 85.02 96.01 99.4 96.11 91.8 98.67 98.35 99.17 99.33

Meadows 92.26 97.6 97.31 97.75 94.39 97.14 99.79 99.99 99.99
Gravel 84.32 96.85 99.35 95.57 70.52 96.81 77.48 98 98.05
Trees 97.58 94.19 98.58 98.65 80.35 98.47 95.16 97.05 97.16

Metal Sheets 99.73 99.92 99.91 99.82 99.91 99.73 99.84 99.91 99.91
Bare Soil 91.88 96.47 97.87 99.73 98.18 99.96 98.21 99.9 99.9
Bitumen 93.24 98.81 99.54 98.61 90.09 95.95 92.62 98.52 98.89

Self-Blocking Bricks 85.23 96.96 98.89 96.42 44.87 81.67 93.66 98.43 98.31
Shadow 100 99.89 99.86 100 100 99.28 99.89 99.71 99.71

4.4. The Salinas Image

The Salinas image was recorded by the AVRIS sensor over the Salinas Valley, CA, USA. The image
has 512 × 217, 224 bands in the 400–2500 nm range and a spatial resolution of 3.7 m per pixel.
Twenty spectral bands were removed due to water absorption and noise and 204 bands were used
in our experiments. The RGB composite map obtained from bands 47, 27 and 13 of the Salinas data
set and its ground truth data are shown in Figure 6a,b, respectively. For supervised classification, we
randomly chose 70 samples for each class from the ground truth data as training samples, while the
remaining samples were used for test. For the pixel-wise SVM classifier used in different methods
here, the Gaussian RBF kernel was used and its optimal parameters were chosen by a fivefold cross
validation: C = 131072, γ = 8.
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To compare our methods with different classification methods, the default parameter settings
for the CS-GC method were fixed as µ = 0.5 and ω = 40, while the default parameter settings for
the CS-GC + JBF method were set as µ = 0.5, ω = 50, n = 2, σs = 4 and σr = 0.05. The classification
maps obtained by different methods and the corresponding classification accuracies are displayed in
Figure 7 and Table 4, respectively. As shown in Figure 7a, there was much salt-and-pepper noise in
the classification map obtained by the SVM classifier, especially in the two large-scale regions at the
top-left of the image belonging to Vinyard_untrained and Grapes_untrained, respectively. The noise was
alleviated by the SS-Kernel and EMP methods, but still was observed in those regions, as shown in
Figure 7b,c. Meanwhile, the EPF-JBF method removed the noise but introduced small-scale regions
belonging to the other classes in the two regions mentioned above, and its classification map is
depicted in Figure 7d. Although the noise was thoroughly smoothed out by the MLR-LORSAL
classifier, two misclassified areas were obvious, i.e., one region on the left of the image belonging
to Vinyard_untrained was classified by the MLR classifier to Grapes_untrained; the other region at
the center-left of the image belonging to Corn_senesced_weeds was classified by the same classifier to
Lettuce_romaine_4wk. In addition, the misclassification effects apparently occurred in the classification
maps achieved by the LBP-AL and LORSAL-AL-MLL methods, as shown in the two large-scale regions
mentioned above at the top-left of the image in Figure 7f,g, respectively. In contrast, the noise was
completely filtered out and the misclassification effects were effectively avoided by the CS-GC and the
CS-GC + JBF methods, as shown in Figure 7h,i. In addition, the classification maps obtained by our
methods were almost the same as the ground truth data in Figure 6b.

The classification accuracies obtained by all the classification methods for the Salinas data set are
listed in Table 4. The GAs obtained by the proposed CS-GC and the CS-GC + JBF methods were much
better than the other classification methods. Meanwhile, the highest GAs in Table 4 were obtained by
the CS-GC + JBF methods with OA = 99.35%, AA = 99.32% and κ = 0.9927, which were increased by
10.2%, 4.32% and 11.32%, respectively, compared with the SVM results. It can be noticed as well that
the highest CAs for nine of 16 classes were achieved when using the CS-GC + JBF method.

Table 4. The GAs and CAs (percent) for the Salinas data set using all the classification methods used in
this work for comparison. The highest accuracies are indicated in underlined in each category.

SVM SS-Kernel EMP EPF_JBF MLR-LORSAL LBP-AL LORSAL-AL-MLL CS-GC CS-GC + JBF

OA 89.15 92.62 96.66 94.42 93.99 93.44 93.17 99.04 99.35
AA 95 96.11 98.23 97.57 94.18 96.54 96.2 98.97 99.32

κ 0.8795 0.9177 0.9627 0.9379 0.9331 0.9269 0.9236 0.9893 0.9927
Brocoli_Weeds_1 99.07 99.79 100 100 100 99.07 99.79 100 100
Brocoli_Weeds_2 99.86 100 99.97 100 100 100 100 100 100

Fallow 99.27 99.69 99.74 100 100 99.79 99.79 100 100
Fallow_rough_plow 98.34 98.94 98.56 98.56 99.32 96.22 95.17 98.34 99.09

Fallow_smooth 97.24 96.89 97.20 98.27 99.42 99.35 98.39 97.78 98.43
Stubble 99.69 99.9 99.82 100 100 99.67 99.82 99.9 100
Celery 99.12 99.34 99.52 99.74 99.89 99.63 99.97 99.66 99.89

Grapes_untrained 69.8 86.03 92.46 83.05 98.86 84.31 91.46 98.75 99.11
Soil_vinyard_develop 97.6 97.29 99.25 98.92 100 100 99.98 99.79 99.82
Corn_senesced _weeds 92.18 94.48 98.41 95.51 29.89 97.88 94.26 94.39 96.54
Lettuce_romaine_4wk 99.4 97.7 99.4 99.9 100 94.69 96.89 99.4 100
Lettuce_romaine_5wk 99.52 100 99.35 100 99.84 100 100 100 100
Lettuce_romaine_6wk 99.17 96.57 99.53 99.76 100 97.52 98.35 98.46 98.46
Lettuce_romaine_7wk 96.1 97.3 97.90 99 90.7 97.1 97.6 98.5 99.2

Vinyard_untrained 76.65 75.45 90.78 89.73 91.04 80.29 68.34 99.61 99.61
Vinyard_trellis 97.12 98.39 99.83 98.68 97.93 99.08 99.37 99.02 98.96
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(c) EMP; (d) EPF_JBF; (e) MLR-LORSAL; (f) LBP-AL; (g) LORSAL-AL-MLL; (h) CS-GC; and
(i) CS-GC + JBF.

5. Discussion

5.1. The Influence of Parameters

In our method, there are five parameters whose values critically modulate its performance, i.e.,
µ and ω for the CS-GC model, while n, σs and σr for the JBF. First, we perform the proposed CS-GC
method (without the optional JBF step) to analyze the impact of µ and ω on the three hyperspectral
datasets used in the last section. The GAs achieved by our method were obtained using different
parameter settings.

(1) Influence of µ and ω

The impact of µ and ω on classification accuracies using the CS-GC method for the Indian Pines
data set is shown in Figure 8. Figure 8a demonstrates classification accuracies achieved by the CS-GC
method varying µ from 0.1 to 0.6 with a step size of 0.05, while ω was set to be one. It can be
observed from this figure that the shapes of these plots have a similar global behavior, i.e., the GAs rose
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rapidly as the increase of µ from 0.1 to 0.3 and decreased gradually as µ increased to 0.6. In addition,
the highest GAs were obtained when µ = 0.3 with OA = 92.17%, AA = 89.46% and κ = 0.9107.
Meanwhile, Figure 8b illustrates the impact of ω varying from one to seven with a step size of 0.5 on
the classification performance of the CS-GC method, while µ was set to be 0.3. Similarly, the GAs rose
gradually as the increase of ω until the highest GAs were achieved when ω = 6. Thus, in this case, the
values of the OA, AA and κ increased from 92.17%, 89.46% and 0.9107 (ω = 1) to 95.36%, 93.70% and
0.9470 (ω = 6), respectively. However, these values declined to 94.42%, 92.60% and 0.9362 in the case
of ω > 6.
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The impact of µ and ω on classification accuracies using the CS-GC method for the University of
Pavia data set is shown in Figure 9. (i) Figure 9a illustrates the GAs obtained using different values of
µ from 0.1 to 0.6 with a step size of 0.05. In this case, ω was fixed at one. The plots of the GAs as the
increase of µ were considerably similar to parabolas that open downward and the highest GAs were
achieved in the case of µ = 0.35 with OA = 97.12%, AA = 96.5% and κ = 0.961. Figure 9b depicts
the GAs obtained using different values of ω from one to eight with a step size of 0.5 while µ was set
to be 0.35. We can observe that the GAs were improved as the increase of µ. When ω increased to
5.5, the greatest GAs were obtained with OA = 99.38%, AA = 98.96% and κ = 0.9915, which were
2.26%, 2.46% and 0.0305, respectively, higher than that using ω = 1; when ω increased from 5.5 to
eight, the GAs continued to slide. Finally, the GAs of OA = 99.2%, AA = 98.7% and κ = 0.9891
were obtained; (ii) To visually analyze the impacts of µ, the classification maps with different values
of µ (0.15, 0.25, 0.35, 0.45) and ω = 1 are shown in Figure 10a–d, respectively. It can be found that
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the classes of Self-Blocking Bricks, Bitumen and Bare Soil cannot be effectively extracted if µ = 0.15
because smoothed probabilities of those classes were not very large. Meanwhile, some miscellaneous
components appeared in the homogeneous regions of the classification maps if µ = 0.45, especially
in a region of Meadows at the bottom of the image. By comparison, we can obtain more accurate
classification map when µ was fixed to be 0.35. To visually analyze the impacts of ω, the classification
maps with different values of ω (2, 3, 4, and 5) are shown in Figure 10e–h, respectively. It is clear that
salt-and-pepper noise in the classification maps can be well avoided as the increase of ω because more
spatial information was integrated with spectral features of the hyperspectral data set in the CS-GC
method. In addition, the classification map obtained by the CS-GC method using ω = 5 was better
than the remaining resultant maps in terms of visual inspection. Specifically, regions in Figure 10h
were well homogenized to completely remove class errors; (iii) To further analyze the impact of ω

on classification accuracies, we applied the CS-GC + JBF method to the University of Pavia data set.
In this experiment, ω was chosen from one to eight with a step size of 0.5 and the other parameters of
the CS-GC + JBF method were set as µ = 0.35, n = 1, σs = 8 and σr = 0.01. Figure 11 shows the GAs
obtained using different values of ω. It can be found the GAs achieved by the CS-GC + JBF method
were improved as the increase of ω from one to 5.5, and then reduced as the increase of ω from 5.5 to
eight, which is consistent with the conclusion by using the CS-GC methods in terms of different values
of ω. Meanwhile, it should be noted from this figure that the values of OA and κ are higher than 99%
and 0.99, respectively, in the range of 4 ≤ ω ≤ 7, which further validates the efficiency of the CS-GC +
JBF method.
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The impact of µ and ω on classification accuracies using the CS-GC method for the Salinas data
set is shown in Figure 12. The GAs plots obtained by using different values of µ from 0.1 to 0.7 with
a step size of 0.05 and ω = 1 are shown in Figure 12a. From this figure, we can observe that the
GAs kept increasing until µ increased to 0.5. However, when µ increased from 0.5 to 0.7, the GAs
continued to slide. Therefore, the highest GAs were achieved in the case of µ = 0.5 with OA = 94.21%,
AA = 96.89% and κ = 0.9355. Meanwhile, the GAs plots obtained by using different values of ω

from 0 to 90 with unequal steps and µ = 0.5 are demonstrated in Figure 12b. In this figure, the OA,
AA and κ increased from 94.21%, 96.89% and 0.9355 (ω = 1) to 99.04%, 98.97% and 0.9893 (ω = 40),
respectively, as the increase of ω from one to 40. In contrast, the GAs reduced very slowly in the range
of 40 < ω ≤ 90. Based on our experiments on the Salinas data set, including those not reported here,
the GAs achieved by the CS-GC method were lower and can still maintain at high values even if ω

was set very large. It should be noted that the range of ω for the Salinas data set was greatly different
from that for the above two hyperspectral data sets, because the distribution of objects in the Salinas
data set is more regular and all of regions in the ground truth data are quite large.
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Based on the above experiments on the impact analysis of µ and ω, we can draw conclusions
as follows:

(1) Since the strength of spectral weights in the procedure of image classification is modulated
by µ, we can consider this parameter as a spectral weight regulator. As mentioned in Section 3, the
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proposed method performs segmentation based on the competition between object (each class) and
background in the energy functional Equation (13). If the value of µ is close to one, the “background”
is dominant in the competition. Otherwise, if the value of µ is close to 0, the energy functional is
apt to superiorly separate targets of a certain class from backgrounds. Therefore, the appropriate
setting of the spectral weight regulator plays an important role for exacting information classes from
hyperspectral images. Experiments on the three hyperspectral datasets demonstrated that the plots of
the GAs as the increase of µ were approximately a concave shape and the highest GAs can be achieved
using an appropriate setting of µ.

(2) The parameter ω is used to balance the data and smoothness terms. In this work, it is also
employed as a spatial weight regulator. For instance, the increase of ω contributes to accurately
extracting spatial information and improving classification accuracies due to similarities between the
central pixel and its neighborhoods. However, if the value of ω is set too large, the smoothness term
plays a major role in the energy functional. Therefore, some information class regions always contain
small-scale regions belonging to other classes, which leads to the reduction of classification accuracies.

(3) We can observe that our method can achieve the highest classification accuracies on the Indian
Pines data set with a relatively small value of µ, by comparing Figure 8a with Figures 9a and 12a, due
to the fact that the ground objects in the Indian Pines data set are mainly the corps and this image
includes more small-scale homogeneous regions that are spatially and spectrally similar. Although the
other two data sets are composed of different types of ground objects, the distribution of all the
different objects in the Salinas data set is much more regular and the corresponding homogeneous
regions are quite large, compared to the University of Pavia data set. As a consequence, a relative large
value of µ is required for our method to achieve the best classification accuracies on the Salinas data
set. Therefore, for classification of unlabeled data, µ should be a data-dependent parameter. (i) If the
unlabeled data include many small-scale homogeneous regions that are spatially and spectrally close
like the Indian Pines data set, a small value of µ is recommended. For instance, the default value of
µ can be set as µ = 0.3; (ii) If the unlabeled data contain different types of ground objects and shapes
of these objects are very regular, µ can be set as a large value, e.g., µ = 0.5; (iii) If there is no prior
knowledge, considering the classification performance, we recommend selecting a relatively moderate
value of µ as µ = 0.4. Similarly, ω should be a data-dependent parameter as well. (i) If the unlabeled
data are spatially and spectrally close like the University of Pavia image, i.e., the unlabeled data
contain different types of ground objects and the distribution of those objects in the unlabeled data is
unbalanced, a small value of ω is recommended, e.g., ω = 3; (ii) If the unlabeled data mainly include
the ground objects with quite regular boundaries and the distribution of all the ground objects is
relatively uniform like the Salinas image, ω can be set as a relatively small value to obtain satisfactory
results, e.g., ω = 30; (iii) If there is no prior knowledge, considering the classification performance, we
recommend selecting a relatively moderate value of ω as 5 ≤ ω ≤ 10.

(2) Influence of n, σs and σr

Then, we perform the proposed CS-GC + JBF method to analyze the impact of the parameters
in the JBF. As mentioned in Section 3.2, our JBF can greatly avoid unstable distribution of class
membership probabilities caused by a pixel-wise classifier only taking spectral features in the image
into account. Not only does the proposed JBF well preserve important edges in the image, but also
spatially optimize class membership probabilities. Therefore, we may not achieve the highest GAs
using the optimal parameter setting of µ and ω obtained from Figure 9, especially for the spatial weight
regulator ω. Based on our experiments on the Indian Pines data set, including those not reported here,
these two parameters for the CS-GC + JBF method were set as µ = 0.3 and ω = 2.

The impact of n, σs and σr on classification accuracies using the proposed CS-GC + JBF method
for the Indian Pines data set is shown in Table 5. (i) To analyze the impact of the size of local window
on classification accuracies, we applied the CS-GC + JBF method to classify the Indian Pines image by
setting different values of n from one to five and the corresponding window sizes and GAs are listed in
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Table 5. In our method, the other parameters were set as σs = 4 and σr = 0.01. It should be noted that
the GAs in Table 5 at the value of “0” in terms of different parameters mean that they were achieved
by our CS-GC method (without the optional JBF step) for the Indian Pines image. In addition, it can
be seen from this table that the highest OA and κ can be reached when the size of local window was
7 × 7, i.e., n = 3. If n is too large, small-scale regions belonging to a certain class are always smoothed
out by the JBF, which may cause the decrease of classification accuracies; while if n is too small, our
method cannot considerably smooth out salt-and-pepper classification noise caused by the pixel-wise
classification and avoid unstable distribution of class membership probabilities; (ii) To analyze the
impact of σs on classification accuracies, we applied the CS-GC + JBF method to classify the Indian
Pines image by selecting different values (0.5, 1, 2, 4, and 8) and the corresponding GAs are listed
in Table 5 as well. In our method, the other parameters were set as n = 3 and σr = 0.01. A similar
conclusion can be drawn that σs should not be set to be too large or small and the highest OA and κ

were achieved in the case of σs = 4; (iii) It can be observed from Equation (8) that the setting of σr is
vitally important to the performance of our JFB. To analyze the impact of σr on classification accuracies,
we provided an example of probability smoothing by selecting different values of σr (0.001, 0.005, 0.01,
0.02, 0.04, and 0.1). The corresponding smoothed probability maps in terms of Corn-no till are shown
in Figure 13. The other parameters for the JBF were set as n = 3 and σs = 4. We can observe from
this figure that the smoothing effect was very limited when σr was equal to 0.001. As σr increased,
the salt-and-pepper classification noise in the probability map was gradually removed while edges
were well preserved. However, the proposed JBF leaded to oversmoothing on the probability map and
edges of Corn-no till were seriously blurred in the case of σr = 0.1. To better analyze the impact of σr

on classification accuracies, this parameter was set from 0.005 to 0.03 with a step size of 0.005 and the
other parameters were the same as that used in Figure 9. It can be easily observed from Table 5 that
the GAs shared the same tendency as the above experiments when analyzing the impacts of n and
σs. For instance, the OA and κ increased in the case of σr < 0.015 and the highest OA and κ can be
achieved when σr was equal to 0.015. However, these two measures decreased in the case of σr > 0.015.
Meanwhile, the extremum value of σr was 0.02 in terms of the AA.

Table 5. The impact of different parameter settings on classification accuracies using the CS-GC + JBF
method for the Indian Pines data set. The highest accuracies are indicated in underlined in
each category.

Parameter Value OA AA κ

The size of local window
(2n + 1) × (2n + 1)

0 93.86 91.25 0.9299
3 × 3 95.02 93.75 0.9431
5 × 5 95.65 94.61 0.9503
7 × 7 96.09 94.95 0.9554
9 × 9 95.90 94.97 0.9532

11 × 11 95.11 94.45 0.9442

σs

0 93.86 91.25 0.9299
0.5 94.24 92.50 0.9342
1.0 95.07 93.94 0.9437
2.0 95.72 94.83 0.9511
4.0 96.09 94.95 0.9554
8.0 96.08 94.99 0.9552

σr

0 93.86 91.25 0.9299
0.005 95.15 93.40 0.9446
0.01 96.09 94.95 0.9554

0.015 96.19 95.69 0.9565
0.02 96.16 95.86 0.9561

0.025 96.08 95.83 0.9553
0.03 96.08 95.23 0.9552
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Figure 13. Smoothed probability maps for the Indian Pines image in terms of the class of Corn-no till using
different values of σr: (a) three-band color composite image (bands 47, 23 and 13); and (b) the original
SVM probability map. The smoothed probability maps obtained using: (c) σr = 0.001; (d) σr = 0.005;
(e) σr = 0.01; (f) σr = 0.02; (g) σr = 0.04; and (h) σr = 0.1.

Then, we performed the CS-GC + JBF method on the University of Pavia data set to analyze the
impact of n, σs and σr on classification accuracies. To analyze the impact of n, we provided a set of
n (1, 2, 3, 4, and 5) and the other parameters were fixed as µ = 0.35, ω = 2, σs = 4 and σr = 0.01; to
analyze the impact of σs on classification accuracies, we gave a set of σs (0, 0.5, 1, 2, 4, and 8) and the
other parameters were fixed as µ = 0.35, ω = 2, n = 2 and σr = 0.01; and to analyze the impact of σr

on classification accuracies, we presented a set of σr from 0 to 0.03 with a step size of 0.005 and the
other parameters were fixed as µ = 0.35, ω = 5.5, n = 1 and σs = 4. The corresponding GAs in terms
of different parameter settings are reported in Table 6. It can be seen that the trend of the GAs, as the
increase of n, σs or σr, was similar to that in the first experiment for the Indian Pines data set.

Finally, we performed the CS-GC + JBF method on the Salinas data set to analyze the impact of
n, σs and σr on classification accuracies with µ = 0.5, ω = 5 and the corresponding GAs in terms of
different parameter settings are reported in Table 7. To analyze the impact of n, n was set from one to
five with a step size of one and the other parameters were fixed as σs = 4 and σr = 0.01. In Table 7, the
GAs were improved as the increase of n due to the fact that a very large local window is required for
smoothing out the noise in large-scale regions in the image. To analyze the impact of σs, σs was chosen
from (0, 0.5, 1, 2, 4, and 8) and the other parameters were fixed as n = 2 and σr = 0.01; to analyze
the impact of σr, σr was set from 0.01 to 0.035 with a step size of 0.005 and the other parameters were
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fixed as n = 2 and σs = 4. It can be observed that the trend of the GAs, as the increase of σs or σr, is
completely consistent with the previous experiments. In addition, the highest GAs can be obtained
using the CS-GC + JBF method with σs = 4 when varying σs from 0 to eight; the highest GAs can be
obtained using the CS-GC + JBF method with σr = 0.025 when varying σr from 0.01 to 0.035, as shown
in Table 7. To further analyze the impact of σr on classification accuracies, we applied the CS-GC + JBF
method to the Salinas data set. In this experiment, σr was chosen from 0 to 0.05 with a step size of 0.005
and the other parameters of the CS-GC + JBF method were set as µ = 0.5, ω = 50, n = 2 and σs = 4.
The GAs plots obtained by the CS-GC + JBF method using different values of σr (0 ≤ σr ≤ 0.05) are
demonstrated in Figure 14. We observed that the GAs achieved by the CS-GC + JBF method increased
fast as the rising of σr from 0 to 0.02, while if σr was larger than 0.02, the increase of the GAs slowed
down. Finally, the highest OA, AA and κ achieved by the CS-GC + JBF method with σr = 0.05 can
reach 99.35%, 99.32% and 0.9927, respectively. It is noteworthy that the main difference between the
impacts of σr in Figure 14 and Table 7 on classification accuracies stems from the different ranges of ω.
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method for the Salinas data set.

Table 6. The impact of different parameter settings on classification accuracies using the CS-GC + JBF
method for the University of Pavia data set. The highest accuracies are indicated in underlined in
each category.

Parameter Value OA AA κ

The size of local window
(2n + 1) × (2n + 1)

0 98.5 97.97 0.9797
3 × 3 98.93 98.53 0.9855
5 × 5 99.08 98.77 0.9875
7 × 7 99.19 98.93 0.989
9 × 9 99.24 99.03 0.997

11 × 11 99.23 99.00 0.9895

σs

0 98.5 97.97 0.9797
0.5 98.69 98.19 0.9822
1.0 99.03 98.62 0.9868
2.0 99.05 98.72 0.9871
4.0 99.08 98.77 0.9875
8.0 99.07 98.76 0.9874

σr

0 99.38 98.96 0.9915
0.005 99.39 99.00 0.9918
0.01 99.41 99.03 0.992
0.015 99.21 98.95 0.9893
0.02 99.21 98.94 0.9892
0.025 99.22 98.96 0.9895
0.03 99.21 98.93 0.9893
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Table 7. The impact of different parameter settings on classification accuracies using the CS-GC + JBF
method for the Salinas data set. The highest accuracies are indicated in underlined in each category.

Parameter Value OA AA κ

The size of local window
(2n + 1) × (2n + 1)

0 96.7 98.14 0.9635
3 × 3 97.77 98.59 0.9751
5 × 5 98.01 98.75 0.9778
7 × 7 98.02 98.77 0.9779
9 × 9 98.08 98.82 0.9786

11 × 11 98.16 98.86 0.9795

σs

0 96.7 98.14 0.9635
0.5 97.21 98.32 0.9689
1.0 97.76 98.59 0.975
2.0 97.93 98.70 0.977
4.0 98.01 98.75 0.9778
8.0 98.00 98.74 0.9778

σr

0 96.7 98.14 0.9635
0.01 98.01 98.75 0.9778

0.015 98.08 98.82 0.9786
0.02 98.24 98.91 0.9804

0.025 98.27 98.94 0.9808
0.03 98.25 98.94 0.9805

0.035 98.20 98.92 0.9799

It can be seen in Tables 5–7 that the CS-GC + JBF method is not very sensitive to σs and σs = 4
performs the best for our method on all of the three data sets. In addition, it should be noted that
the University of Pavia data set is composed of different types of ground objects. Furthermore,
those objects on the image are unevenly distributed. As a consequence, edge strengths of the object
boundaries vary in a wide range. To better preserve most important edge features of this data set
for the subsequent classification, a relatively small value of σr is preferred. As mentioned above, the
ground objects are mainly the corps in the Indian Pines data set, thus edge strengths of the object
boundaries change very little, a slightly large value of σr can ensure that noise in the probability maps
is thoroughly removed while edges are effectively preserved. Since the Salinas data set is composed
by mainly different types of vegetation and the object boundaries are very regular for observation,
a relatively large value of σr is required for our method to achieve the best classification performance.

In conclusion, for classification of unlabeled data, σs can be the same as σs = 4 for our method to
achieve the best classification accuracies, while σr should be a data-dependent parameter. (i) If the
unlabeled data contain different types of ground objects and edge strengths of the object boundaries
are very different, a small value of σr is recommended. For instance, the default value of σr can be set
as σr = 0.01; (ii) If boundaries of ground objects in the unlabeled data are obvious and their shapes are
very regular, σr can be set as a large value, σr = 0.025; (iii) If there is no prior knowledge, considering
the classification performance, we recommend selecting a relatively moderate value of σr as σr = 0.015.

5.2. Classification Results with Different Number of Training Samples

In this subsection, the influence of different training samples to the stability of the CS-GC + JBF
method is analyzed. Experiments were performed on two datasets, i.e., the Indian Pines data set and
the University of Pavia data set. To better demonstrate the performance of our method, the SVM
method was used for comparison and the default parameter settings of these methods were fixed
the same as the previous experiments in Section 4. The number of training samples for each class
used by the two methods increased from 5% to 50% for the Indian Pines data set with a step size of
5%, and 1% to 10% for the University of Pavia data set with a step size of 1%. To accurately obtain
the classification results, the OA values obtained by the two methods with different training samples
were the average results over five trials. Figure 15 illustrates the evolution of the OA obtained by
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the two comparative methods with different number of training samples for the two hyperspectral
datasets. It can be observed from this figure that the OA values achieved by the two classification
methods were positively correlated with the number of training samples. Meanwhile, our method
was superior to the SVM method with the same number of training samples for the two hyperspectral
datasets. For instance, regarding the Indian Pines image, when the OA achieved by the SAM method is
82.51% with 10% ground truth samples are used for training, the CS-GC + JBF method can reach over
96%. A similar conclusion can be drawn based on the experimental results in terms of the University
of Pavia data set.
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6. Conclusions

In this paper, a novel framework to perform spatial-spectral classification of hyperspectral images
is presented. The major contribution of this work is to explore an alternative technique for labeling
regions obtained by the segmentation process using JBF and graph cut based model. In our algorithm,
the optional step of JBF can remove salt-and-pepper class noise and effectively preserve important
boundaries of ground objects in the image, while the CS-GC model can successfully extract each of
the desirable objects using the minimum cut algorithm. The proposed methods were compared with
several classical hyperspectral image classification methods using objective quantitative measures
and a visual qualitative evaluation. Experimental results demonstrated that our methods were better
than the other methods in terms of the GAs, while the CS-GC + JBF method can obtain improvements
of 13.68%, 8.56% and 10.2% in terms of OA over the pixel-wise SVM classifier for the Indian Pines,
University of Pavia and Salinas datasets, respectively. Furthermore, for all three datasets, the GAs
by the CS-GC + JBF method were the best among all of the classification methods for hyperspectral
images. It can be concluded from the experimental results that the integration of the extended JBF with
our CS-GC model can obtain more accurate classification results of hyperspectral images. Furthermore,
the proposed CS-GC + JBF method was robust relative to the three parameters and we recommend
µ = 0.4, 5 ≤ ω ≤ 10, σs = 4 and σr = 0.015.

In the future, adaptive modulation techniques of the parameters for our methods are required for
improving their efficiency and universality. For instance, a further improvement may be achieved by
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adaptively modulating the spectral weight regulator µ with respect to different information classes.
Finally, the efficient parallel implementation of our methods is possible.
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