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Abstract: Change detection (CD) based on remote sensing images plays an important role in Earth
observation. However, the CD accuracy is usually affected by sunlight and atmospheric conditions
and sensor calibration. In this study, a scale-driven CD method incorporating uncertainty analysis
is proposed to increase CD accuracy. First, two temporal images are stacked and segmented into
multiscale segmentation maps. Then, a pixel-based change map with memberships belonging
to changed and unchanged parts is obtained by fuzzy c-means clustering. Finally, based on the
Dempster-Shafer evidence theory, the proposed scale-driven CD method incorporating uncertainty
analysis is performed on the multiscale segmentation maps and the pixel-based change map.
Two experiments were carried out on Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and
SPOT 5 data sets. The ratio of total errors can be reduced to 4.0% and 7.5% for the ETM+ and
SPOT 5 data sets in this study, respectively. Moreover, the proposed approach outperforms some
state-of-the-art CD methods and provides an effective solution for CD.

Keywords: change detection; statistical region merging; Dempster-Shafer evidence theory;
uncertainty analysis

1. Introduction

Change detection (CD) is a technique to detect changes occurred on the Earth. It is usually
performed by analyzing remotely sensed images acquired from the same geographical area at
different times [1,2]. This technique has been used widely in many practical applications due to its
cost-effective characteristic, increasing temporal and spatial resolution, such as disaster detection [3],
urban growth [4], and more general land cover/land use CD [5].

Considering the differences between multitemporal images (e.g., sunlight and atmospheric
conditions, sensor differences, spectral characteristics, and registration strategy), image pre-processing
techniques (such as atmospheric correction, image registration, geometric and topographic corrections)
are necessary. A number of CD methods [3,6,7] have been investigated to reduce uncertainties in
CD. Generally, these methods can be divided into post-classification (supervised) and comparative
(unsupervised) methods. The former separately classifies the multitemporal images and finds
changes by comparing individual-date classification maps. The post-classification methods have
the advantages of providing ‘from-to’ change information and minimizing the impact of sensor and
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environmental differences. However, this type of method requires an analyst to acquire classification
maps and the accuracy of the change maps depends on the quality of all individual-date maps [8,9].
With respect to the comparative approach, it detects changes by directly comparing the differences
between multitemporal images based on spectral and texture characteristics. In this study, we focus on
unsupervised CD.

The visual analysis was one of the earliest technologies for detecting changes, such as coastal
areas [10], forest changes [11], and changes of the Broads Environmentally Sensitive Area [12].
The comparative methods were also developed, including image differencing, image ratio, image regression,
principal component analysis and change vector analysis (CVA). They are generally pixel-based
methods. Such methods have been used widely because of their easy implementation and direct
reflection of changes. Some manual and empirical methods were exploited to determine a threshold
involved in the comparative methods [13]. Furthermore, some automated threshold determination
techniques were proposed by minimizing the measures of fuzziness [14], minimizin the least error
probability based on Bayesian theory [15], and histogram-based methods [16]. Generally, changes are
presented as a region that is large to be detected by the sensor used. A pixel belonging to
changed or unchanged classes is likely to be surrounded by pixels belonging to the same class.
Therefore, more reliable and accurate CD results can be yielded by properly using spatial information.
A large number of pattern recognition methods incorporating spatial information were developed to
reduce noise, such as fuzzy c-means (FCM) clustering [17,18], genetic algorithm [19,20], active contour
model [21,22], and Markov random field [7,23]. These methods have their advantages in not requiring
a threshold and in removing noise. Due to the uncertain overlap between the changed and unchanged
pixels in the difference image, however, they have limitations in separating changed and unchanged
pixels [24].

With the development of satellite technology, increasing higher-resolution images are available for
CD, where more details of spatial structure and lower spectral resolution can increase the uncertainty
in CD. To cope with the uncertainty, object-based methods were proposed, in which high-resolution
images are segmented into objects with homogenous region and changes are then detected in units
of objects [25]. Generally, four kinds of object-based methods can be identified, namely image-object,
class-object, multitemporal-object and hybrid methods [26]. The image-object methods are similar to
pixel-based methods and directly compare image objects to detect changes based on objects’ spectral
information or texture features [27,28]. The class-object methods detect ‘from-to’ changes by comparing
classified objects from multitemporal images [29,30]. For multitemporal-object methods, the temporally
sequential images are combined and then segmented together to produce changed objects [31].
The hybrid methods detect changes through both pixel- and object-based methods, where the image
differencing is usually used to generate the difference image and the object-based analysis method is
then implemented to detect changes [32]. The hybrid algorithm has shown advantages in reducing
noisy changes by combining pixel- and object-based methods [33], but it remains unclear how the final
change results are influenced by the different combinations of pixel- and object-based schemes due to
the several steps involved [26].

The ranges of pixel values of the difference image belonging to the changed and unchanged parts
generally have overlap in pixel-based schemes. In object-based schemes, the segmentation is a pivotal
step to generate corresponding objects between images and surface of the earth. However, segmented
objects from different image often vary geometrically due to some factors including illumination
conditions, view angles and meteorological conditions [34]. Additionally, the segmentation process
sometimes suffers from under-segmentation and over-segmentation errors, which may create objects
that do not accurately represent real-world feature [35]. Thus, uncertainty in the object-based methods
exists inevitably.

In this paper, a scale-driven CD method incorporating uncertainty analysis is proposed, where the
pixel- and object-based schemes are combined to reduce the uncertainty and increase accuracy.
The proposed method consists of three main steps as shown in Figure 1, namely multitemporal-object
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segmentation, FCM clustering and uncertainty analysis. First, two temporal images X1 and X2

both including L bands are stacked and segmented to generate multiscale segmentation maps.
Then, FCM clusters the difference image obtained by CVA into an initial pixel-based change map,
with pixels’ membership belonging to changed and unchanged parts. Third, the Dempster-Shafer
(DS) evidence theory is used to analyze the uncertainty in the combination of pixel- and object-based
schemes. Two experiments on Landsat-7 Enhanced Thematic Mapper Plus (ETM+) and SPOT 5 data
sets were carried out to evaluate the proposed method.
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2. Methodology

Two images X1 = {X1l(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ L} and X2 = {X2l(i, j)|1 ≤ i ≤ m,
1 ≤ j ≤ n, 1 ≤ l ≤ L} of size m × n and L bands were acquired by the same sensor from the same
geographical area at two different times t1 and t2. The images were co-registered and radiometrically
corrected beforehand. The main steps are presented below.

2.1. Multiscale Segmentation of Difference Image

Due to impacts of sunlight, atmospheric condition and phenology cycle, it is difficult
to obtain exactly corresponding objects by segmenting two temporal images individually.
It discourages the comparison of objects, as uncertainties are accumulated when generating
one-to-one correspondence. Therefore, two temporal images X1 and X2 are stacked into one image
X = {Xl(i, j)|1 ≤ i ≤ m, 1 ≤ j ≤ n, 1 ≤ l ≤ 2L} by simple band stacking, and segmentation is
implemented on the stacked image.

Many clustering methods have been investigated to segment images, such as k-means and
iterative self-organizing data analysis techniques algorithm. The results depend on the initialization
to a certain extent. Recently, statistical region merging (SRM) was proposed to segment images,
which has the ability of removing significant noise, handling occlusions, and can perform scale-sensitive
segmentations fast [36]. Thus, SRM is adopted to segment the stacked image in this study.

The stacked image X contains m × n pixels, with each pixel containing 2L values, each of the
2L channels belonging to the set {0, 1, . . . , g}, and g = 255 here. Let X* denote the perfect segment
scene of observed image X. Each channel of X is obtained by sampling each statistical pixel of X*
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from a set of exactly Q independent random variables (taking values within [0, g/Q]) for observed 2L
channels. The tuning Q controls the scale of segmentation: the larger it is, the more regions exist in the
final segmentation.

The SRM segments an image based on an interaction between a merging predicate and an order
in merging. The merging predicate P (R, R′) can be expressed as follows

P
(

R, R′
)
=

{
true if ∀a ∈ [1, 2, . . . , 2L] ,

∣∣∣R′a − Ra

∣∣∣ ≤ b (R, R′)

false otherwise
(1)

where R and R′ denote a fixed couple of regions of X, Ra and R′a are the average grey values for

channel a in region R and R′, respectively, and b (R, R′) = g
√

1
2Q

(
1
|R| +

1
|R′ |

)
ln 2

δ (0 < δ < 1).

If P (R, R′) = true, R and R′ are merged. The function f of merging order used to sort pixel pairs in X
is described as

fa
(

p, p′
)
=
∣∣pa − p′a

∣∣ (2)

where p and p′ are pixels in X, and pa and p′a are the pixel grey values of channel a. The SRM is then
performed to segment the stacked image with different Q values and multiscale segmentation maps
are obtained.

2.2. Pixel-Based CD Using FCM

In this part, CVA is used to generate the difference image, and FCM clusters the difference
image to produce a change map with memberships belonging to changed and unchanged parts.
First, the change vector ∆X can be calculated as follows

∆X(i, j) = X1(i, j)− X2(i, j) =


x11(i, j)− x21(i, j)
x12(i, j)− x22(i, j)

· · ·
x1L(i, j)− x2L(i, j)

 (3)

where ∆X includes all the spectral change information between X1 and X2 for a given pixel.
The modulus ||∆X|| of change vector ∆X is computed using Equation (4), which is recorded as
the final difference image Xd.

Xd(i, j) = ||∆X(i, j)|| =

√√√√ L

∑
b=1

(x1b(i, j)− x2b(i, j))2 (4)

The difference image Xd is then normalized to [0, 255] in order to avoid the instability and
inconsistency among the data sets and supply a consistent input for the following FCM clustering.

Afterwards, FCM [37] is implemented to cluster the difference image and detect changes.

The membership probability uij ∈ [0, 1] (
c
∑

i=1
uij = 1(j = 1, 2, . . . , n), c is the cluster number), that is,

the pixel xj in the difference image belonging to the i-th (i = 1 or 2) cluster, is determined by minimizing
the objective function

J(U, V) =
c

∑
i=1

n

∑
j=1

um
ij ||xj − vi||2 (5)

where U = [uij] is the membership probability matrix of Xd, and V = [v1, v2, . . . , vc] is the
matrix composed of c central values. The membership probability uij can be calculated using the
following equation
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uij =
1

c
∑

k=1

( ||xj−vi ||
||xj−vk ||

) 2
m−1

(6)

In Equation (6), vi is computed as follows

vi =

n
∑

j=1
um

ij xj

n
∑

j=1
um

ij

(7)

where m is a weighting exponent. For most data, 1.5 ≤ m ≤ 3 leads to satisfactory results [37]. It is set
to 2 in this study, a widely used choice in many works [7,38].

An optimum solution can be obtained by updating U and V iteratively, and the iteration process
is stopped when the number of iterations reaches a predefined maximum number or ||Vt −Vt−1|| < ε

is achieved, where Vt and Vt−1 are the cluster center matrix in the t-th and (t−1)-th iteration and ε is
a predefined threshold. Finally, an initial change map and the membership probability U of pixels in
the difference image are produced and used for uncertainty analysis.

2.3. Scale-Driven CD Incorporating Uncertainty Analysis (SDCDUA)

In this study, a scale-driven solution is proposed to analyze the uncertainty existing in traditional
CD, where DS evidence theory is employed, as shown in Figure 2.
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First, a coarse segmentation map of SRM is analyzed based on the pixel-based CD map and
memberships. Then, it is classified into changed, unchanged, and uncertain parts through the
uncertainty analysis using the DS evidence theory. More details of the DS evidence theory are
introduced in the following content. Only certain changed and unchanged objects are included in
‘Certain CD map 1’ shown in Figure 2. Second, for uncertain objects after the uncertain analysis, the next
scale segmentation map with more detailed objects is adopted and analyzed with the pixel-based CD
map and memberships. In this stage, the uncertain objects are also divided into changed, unchanged
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and uncertain parts, and a CD map consisting of identified changed and unchanged objects is also
obtained, labeled as ‘Certain CD map 2’ in Figure 2. Next, the uncertain parts are further analyzed as
showed in the last stage, which iterates until no uncertain object exits or the final segmentation map
has been utilized. Finally, all ‘Certain CD maps’ are combined together to generate the final CD map.

The main step of uncertainty analysis based on DS evidence theory in SDCDUA is presented as
follows. The DS evidence theory is an extension of the traditional Bayesian theory. The theory was
first introduced by Dempster [39] in the context of statistical inference, and it was later extended to
a general framework for modeling epistemic uncertainty by Shafer [40]. Three important functions in
DS theory are defined and used to model the uncertainty, namely, the basic probability assignment
function (m), the Belief function (Bel), and the Plausibility function (Pls).

Let Θ be the space of hypothesis and 2Θ denote the set of subsets of Θ. For any hypothesis A
of 2Θ, m(A) ∈ [0, 1] and  m(∅) = 0

∑
A⊂2Θ

m(A) = 1 (8)

where ∅ represents the null set, m is the basic probability assignment function (BPAF), and m(A) denotes
the basic probability of the hypothesis A.

Generally, the belief degree of the combined result from different evidences is represented with
an interval. The upper and lower limits of the interval are called the Belief function (Bel) and the
Plausibility function (Pls), respectively, which are computed as follows

Bel(A) = ∑
B⊂A

m(B)

Pls(A) = ∑
B∩A 6=∅

m(B)
(9)

where A and B are made up of several or all the elements in Θ, B ⊂ A, and the values of Bel and Pls
range from [0, 1].

A new evidence m(c) is then calculated by fusing different source evidences using the
following equation

m(F) = m1 ⊕m2 ⊕ · · · ⊕mn(F)

= 1
k ∑

X1∩...∩Xn=F

n
∏
i=1

mi(Xi)
(10)

k = ∑
X1∩...∩Xn 6=∅

n

∏
i=1

mi(Xi) (11)

where ⊕ denotes the fusion of evidences, and m1, m2, . . . , mn are the basis probability
assignment function.

In CD problem, Θ = (C, U), where C denotes “change” and U represents “no-change”.
Two evidences are generated and combined in this study. One is the object-based evidence m1

produced based on the segmentation maps, and the other is the pixel-based evidence m2 obtained
with FCM. First, objects in a segmentation map are partitioned into changed and unchanged parts
by minimizing the difference of grey values of pixels in each part, and the mean values of changed
and unchanged parts are calculated. For an object Ri, its variances corresponding to changed and
unchanged parts are obtained and termed vi

c and vi
u, respectively. Thus, the evidence m1 = {P1c, P1u}

of the object Ri can be obtained with the following equation{
P1c = vi

u/(vi
c + vi

u)

P1u = vi
c/(vi

c + vi
u)

(12)

where P1c and P1u are probabilities of the object Ri belonging to changed and unchanged parts in the
first evidence, respectively.
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The second evidence m2 = {P2c, P2u} of the object Ri is calculated from the membership of pixels
belonging to changed and unchanged parts with the following equation

P2c =
n
∑

j=1
pj

c/n

P2u =
n
∑

j=1
pj

u/n
(13)

where P2c and P2u are probabilities of the object Ri belonging to changed and unchanged parts in
the second evidence, respectively, and n is the total number of pixels in the object Ri. pj

c and pj
u are

probabilities of the j-th pixel belonging to changed and unchanged parts in the object Ri, respectively.
They are computed by clustering the difference image using FCM algorithm in Section 2.2.

The evidences m1 and m2 are then combined into a new evidence m = {Pc, Pu}, where Pc and
Pu are probabilities of the object Ri belonging to changed and unchanged parts in the new evidence,
respectively. For example, m1 = {P1c = 0.6, P1u = 0.4} and m2 = {P2c = 0.7, P2u = 0.3}. k can be
calculated using Equation (11) as

k = m1(change) ·m2(change) + m1 (no-change) ·m2 (no-change)
= P1c · P2c + P1u · P2u = 0.54

(14)

The Pc of the new evidence is calculated as

m1 ⊕m2(change) = 1/k · ∑
X1∩X2={change}

m1(X1) ·m2(X2)

= 1/k ·m1(change) ·m2(change)
= 1/k · P1c · P2c = 0.78

(15)

The Pu of the new evidence is computed as

m1 ⊕m2(no-change) = 1/k · ∑
X1∩X2={no-change}

m1(X1) ·m2(X2)

= 1/k ·m1(no-change) ·m2(no-change)
= 1/k · P1u · P2u = 0.22

(16)

A threshold Tm is then set to classify the object into unchanged, uncertain and changed groups
with the following equation

li =


1 Pc > Tm

2 Pu > Tm

3 else
(17)

where li = 1, 2, 3 denote that the object Ri belongs to changed, changed and uncertain
groups, respectively.

After the uncertainty analysis using DS evidence theory based on multiscale segmentation
maps and pixel-based CD, a final change map can be obtained. For quantitative assessment on CD
results, several indices are adopted: (1) Missed detections Nm that indicate the number of incorrectly
classified unchanged pixels in the CD map. The ratio of missed detections Pm is calculated by
Pm = Nm/N0 × 100%, where N0 is the total number of changed pixels counted in the ground reference
map; (2) False alarms Nf that indicate the number of the incorrectly classified changed pixels in the CD
map. The ratio of false alarms Pf is calculated with the ratio Pf = Nf/N1 × 100%, where N1 is the total
number of unchanged pixels counted in the ground reference map; (3) Total errors Nt that indicate the
total number of detection errors, including both missed and false detections. This total number refers
to the sum of missed detections and false alarms. Hence, the ratio of total errors Pt is calculated with
Pt = (Nm + Nf)/(N0 + N1)× 100%.
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3. Experimental Results and Analysis

Two experiments were conducted to test the performance of the proposed method, and each
experiment includes two parts. In the first part, the effects of the initial segmentation map and
threshold Tm were analyzed. In the second part, comparative experiments were carried out with some
other effective CD methods, including distance regularized level set evolution (DRLSE) [41], CV model,
multiresolution level set with Kittler algorithm (MLSK) [21] and expectation-maximization-based level
set (EMLS) [22]. DRLSE is an enhanced level set method without revitalization of level set to detect
objects. CV model detects changes by the evolution of a contour and minimizing the difference energy
inside and outside the contour simultaneously. In MLSK, an initial change map is yielded as the initial
contour, and level set is then implemented from coarse to fine difference images. The final change
map is obtained from the fine resolution image. EMLS develops the level set method by adding more
energy functions of changed and unchanged mean values from EM algorithm.

3.1. Experiments of Landsat-7 ETM+ Data Set

3.1.1. Description of Data Set 1

The first data set was acquired by the sensor of Landsat-7 ETM+ in August 2001 and August 2002
in the northeast of China. A section (400 × 400 pixels) of the entire scene was selected as the test
site. Figure 3a,b show the true color images of 2001 and 2002, respectively. The image of 2001 was
registered to image of 2002, and the histogram matching method was then implemented on both
images for the relative radiometric correction. The difference image was then produced from six bands
(except the thermal infrared channel) by CVA, as presented in Figure 3c. Figure 3d shows the reference
map, which was obtained manually by a meticulous visual interpretation of the two temporal images.
The changes were mainly caused by new crop planting.Remote Sens. 2016, 8, 745 9 of 20 
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3.1.2. Results and Analysis of Experiment 1

Several experiments were conducted according to the following: (1) an analysis of the effect of
segmentation scale by implementing traditional object-based CD (OBCD); (2) a quantitative analysis of
the performance of the proposed uncertainty analysis techniques in relation to different thresholds;
and (3) comparisons among CD results obtained by the proposed method and some state-of-the-art
CD methods.

In traditional object-based CD, objects are obtained from the segmentation maps and partitioned
into changed and unchanged parts by minimizing the gray variance of objects in each group. Figure 4
shows CD maps generated from multiscale segmentation maps. It can be seen that only obvious
changes or large-size changes are detected when a small Q is used, because a coarse segmentation map
is produced. With the increase of Q, a more detailed segmentation map is obtained and a CD map
including more detailed changes is generated as a result, as shown in Figure 4b,c. However, when Q
reaches 256, some detailed changes are missed because of over segmentation. Table 1 presents the
accuracy of CD results produced from different scale segmentation maps. The Q value of 64 gives the
most accurate CD map among these results, where the ratio of total errors is 6.4%. The reason is that
the Q value of 64 leads to a more satisfying segmentation map.Remote Sens. 2016, 8, 745 10 of 20 
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Table 1. Accuracy of object-based CD results produced from different segmentation maps.

Q
Missed Detections False Alarms Total Errors

Nm Pm (%) Nf Pf (%) Nt Pt (%)

32 13,187 43.5 397 0.3 13,584 8.5
64 9357 30.9 869 0.7 10,226 6.4

128 10,580 34.9 815 0.6 11,395 7.1
256 12,457 41.1 566 0.4 13,023 8.1

Figure 5 presents the results of uncertainty analysis based on the first scale segmentation map
and pixel-based CD result from FCM, where black, white and gray represent unchanged, changed and
uncertain parts, respectively. The first scale segmentation map used in SDCDUA is generated with
Q = 64. The value of the threshold Tm ranges from 0.6 to 0.9 with steps 0.5, producing results in
Figure 5a–g. As can be seen, few uncertain regions exist in the initial CD map when the threshold
ranges from 0.6 to 0.75, and more regions are identified as uncertain parts with the increase of
threshold. The DS theory is used to fuse the object-based results and pixels’ memberships to analyze
the uncertainty in CD.

Figure 6 shows final CD results when the threshold ranges from 0.6 to 0.9 with steps 0.5. It is
obvious that similar CD maps are obtained for different thresholds. Table 2 describes the accuracy of
different CD maps, where results having the same total errors of around 4.0% are produced as the
threshold ranges from 0.6 to 0.9.
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Table 2. Accuracy of CD results for different thresholds of data set 1.

Tm
Missed Detections False Alarms Total Errors

Nm Pm (%) Nf Pf (%) Nt Pt (%)

0.6 4896 16.2 1735 1.3 6631 4.2
0.65 4632 15.3 1779 1.4 6411 4.0
0.7 4632 15.3 1779 1.4 6411 4.0

0.75 4632 15.3 1779 1.4 6411 4.0
0.8 4653 15.4 1774 1.4 6427 4.0

0.85 4653 15.4 1774 1.4 6427 4.0
0.9 4896 16.2 1774 1.4 6670 4.2
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To evaluate the effectiveness of the proposed approach, some state-of-the-art methods are used as
benchmarks, such as DRLSE, CV, MLSK, and EMAC. Figure 7 shows CD maps obtained by different
methods. There is a parameter µ tuning the tradeoff between the fitness and the length of the contour
in CV, MLSK and EMAC. With the increase of µ, more false alarms can be removed but over-smooth
results are obtained. In this study, µ was set to 0.1 for CV, MLSK and EMAC. It is obvious that many
false alarms are detected by DRLSE, MLSK and EMAC, and some missed detections exist in DRLSE
and MLSK results. The CD map generated by CV contains more false alarms than the other methods,
as shown in Figure 7b. Though OBCD removes many false alarms than the above-mentioned four
methods (i.e., DRLSE, CV, MLSK and EMAC), a number of missed detections are produced. Figure 7f
shows the CD map obtained by the proposed method, where the threshold was set to 0.85. It is worth
noting that the proposed method generates the closest change map to the reference map.
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Table 3 displays the quantitative comparisons between the comparative and proposed methods
for data set 1. It can be found that OBCD generates a more accurate CD map than the pixel-based
methods. The proposed method produces the change map with total errors of 4.0%, which decrease
the total errors by 2.4% and at least 3.3% in comparison with the traditional object-based method and
pixel-based methods, respectively.

Table 3. Quantitative comparison between the comparative and proposed methods for data set 1.

Methods
Missed Detections False Alarms Total Errors

Nm Pm (%) Nf Pf (%) Nt Pt (%)

DRLSE 9149 30.2 4021 3.1 13,440 8.4
CV 6302 20.8 9858 7.6 16,160 10.1

MLSK 7483 24.7 5059 3.9 12,542 7.8
EMAC 7604 25.1 4151 3.2 11,755 7.3
OBCD 9357 30.9 869 0.7 10,226 6.4

SDCDUA 4653 15.4 1774 1.4 6427 4.0
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3.2. Experiments of SPOT 5 Data Set

3.2.1. Description of Data Set 2

The second data set, which included two high-resolution images acquired from the same
geographical area of Tianjin City, China, was used to evaluate the proposed method. The two images
were acquired by SPOT 5 in April 2008 and February 2009, and were generated by fusing the
panchromatic with three multispectral images. An area with 346 × 434 pixels was cropped
from the entire images as the test site. The image of 2008 was registered to the image of 2009,
and a histogram-matching method was implemented on both images for the relative radiometric
correction. The difference image was generated with CVA, as shown in Figure 8c. Figure 8d shows the
reference image obtained manually by a meticulous visual interpretation of the two temporal images,
where changes occurred mainly due to new buildings.
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3.2.2. Results and Analysis of Experiment 2

Figure 9 shows CD maps produced by the traditional object-based method with different
segmentation scales. As can be seen from Figure 9, only main changes are detected from a coarse
segmentation map generated using a small Q. With the increase of Q, more detailed segmentation
maps are obtained, and more satisfying results are produced for values of 64 and 128. Many changes
are lost for Q = 256 because of the over segmentation. Table 4 lists the accuracy of CD maps produced
from different scale segmentation maps. The CD map generated by the Q value of 64 represents the
most accurate one, where the ratio of total errors is 9.4%.
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(c) 128; (d) 256.

Table 4. Accuracy of object-based CD results for different scale segmentation maps.

Q
Missed Detections False Alarms Total Errors

Nm Pm (%) Nf Pf (%) Nt Pt (%)

32 23,929 68.0 1705 0.8 25,634 10.6
64 15,503 44.1 7362 3.5 22,865 9.4
128 13,552 38.5 10,941 5.3 24,493 10.1
256 30,054 85.4 1487 0.7 31,541 13.0

Figure 10 shows the results of uncertainty analysis for the first scale segmentation map using the
SDCDUA method, where black, white and gray represent unchanged, changed and uncertain parts.
The segmentation map is generated for a Q value of 64, and the threshold Tm ranges from 0.6 to 0.9
with steps 0.5. The corresponding results are shown in Figure 10a–g. It is seen that there are almost no
uncertain regions when Tm equals 0.6, and very close uncertain regions are obtained when Tm ranges
from 0.65 to 0.85. Many uncertain regions exist in the result produced for a threshold of 0.9.

Figure 11 shows the final CD maps of SDCDUA yielded with different thresholds, and Table 5 is
the corresponding accuracy. Similar CD maps are produced as the threshold ranges from 0.6 to 0.85,
and ratio of total errors is 8.5%. The threshold of 0.9 leads to the most accurate CD map with a ratio of
total errors of 7.5%.
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Table 5. Accuracy of CD results produced with different thresholds of data set 2.

Tm
Missed Detections False Alarms Total Errors

Nm Pm (%) Nf Pf (%) Nt Pt (%)

0.6 12,345 35.1 8046 3.9 20,391 8.4
0.65 12,345 35.1 8247 4.0 20,592 8.5
0.7 12,345 35.1 8247 4.0 20,592 8.5

0.75 12,345 35.1 8247 4.0 20,592 8.5
0.8 12,345 35.1 8247 4.0 20,592 8.5

0.85 12,345 35.1 8247 4.0 20,592 8.5
0.9 12,954 36.8 5339 2.6 18,293 7.5

The DRLSE, CV, MLSK and EMAC methods were implemented and compared with the proposed
method. Figure 12 shows CD maps generated by different methods, where µ was set to 0.35 for CV
and MLSK and 0.1 for EMAC, respectively. A number of false alarms exist in CD maps generated
by DRLSE, CV, MLSK and EMAC due to the influence of building shadows and seasonal changes.
Though OBCD removes many false alarms, many real changes are also removed at the same time.
The proposed method detects most of the real changes and obtains a CD map closest to the reference
map, as shown in Figure 12f.
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Table 6 displays the quantitative comparison between the comparative and proposed methods.
It can be found that the object-based methods generate more accurate CD maps than the pixel-based
methods. The proposed method produces a CD map with the ratio of total errors of 7.5%,
which decrease the ratio of total errors by 1.9% and at least 3.4% compared with the traditional
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object-based method and pixel-based methods, respectively. For high-resolution images, however,
the accuracy increase by the proposed method is not obvious. A possible reason is that the difference
image generated using only spectral features may be not sufficient due to the larger intra-spectral
variation in high resolution images. This issue is exacerbated by pan-sharpening (as applied to the
two images), a process that may enlarge the intra-spectral variation.

Table 6. Quantitative comparison between the comparative and proposed methods for data set 2.

Methods
Missed Detections False Alarms Total Errors

Nm Pm (%) Nf Pf (%) Nt Pt (%)

DRLSE 17,700 50.3 7480 3.6 25,180 10.3
CV 9747 27.7 21,401 10.3 31,148 12.8

MLSK 12,035 34.2 16,830 8.1 28,913 11.9
EMAC 12,633 35.9 13,921 6.7 26,554 10.9
OBCD 15,503 44.1 7362 3.5 22,865 9.4

SDCDUA 12,954 36.8 5339 2.6 18,293 7.5

4. Discussion

This paper presents a CD approach that incorporates uncertainty analysis to reduce uncertainties
in CD. The DS evidence theory is adopted to increase the accuracy of CD maps by fusing two evidences.
One piece of evidence is designed based on the memberships of pixels obtained from FCM
clustering pixels into changed and unchanged classes. The other is produced from the multiscale
segmentation maps yielded by SRM. A scale-driven approach is proposed to account for pixel- and
object-based information at the same time by fusing the two evidences. Two experiments were
carried out on Landsat-7 ETM+ and SPOT 5 data sets and results show the efficiency of proposed
approach. In summary, the proposed approach holds the following characteristics and advantages:
(1) The proposed approach incorporates pixel- and object-based CD results. It introduces fuzzy
information of all pixels based on gray values and considers contextual information, which inherits
merits of the pixel- and object-based methods; (2) A scale-driven strategy is proposed to choose
multiscale segmentation maps from coarse to fine scale in the uncertainty analysis, which solves the
scale issue in segmentation and make the best use of contextual information; (sechon3) The uncertainty
analysis technique is used in the scale-driven strategy to fuse evidences from pixel-based results and
multiscale segmentation maps, which increases the accuracy and robustness of CD.

The proposed approach consists of three main steps, including multiscale segmentation of stacked
temporal images, clustering of the difference image and uncertainty analysis. In the three different
phases, SRM, FCM and DS evidence theory are used in this study. Other alternatives can also be
considered. For example, the mean shift and MRF-based segmentation methods can be used to
segment stacked images; fuzzy set, another uncertainty analysis methods, is expected to replace
DS evidence theory to fuse pixel- and object-based information. In future research, it would be
interesting to incorporate these potential alternatives into the framework presented in this study and
have a systematic comparison between the derived solutions and the method proposed in this study.

In the proposed approach, two parameters Q and Tm are involved. From Tables 1 and 4, we can
see that the CD accuracy is the greatest when Q takes 64, as this value leads to the most satisfying
segmentation map. For the threshold Tm, it can be seen from Tables 2 and 5 that the CD accuracy of the
proposed approach does not change much with its variation. Thus, we recommend that the parameter
Q can be set to 64 and the threshold Tm can be selected within the interval of [0.8, 0.9].

In this study, as a first evaluation, the proposed approach was performed on bi-temporal images
from the same sensor. Images acquired by different sensors usually have different characteristics
(e.g., spectral resolution, spatial resolution and band number). Thus, multitemporal images cannot be
stacked and segmented straightforwardly. In addition, traditional CD methods (e.g., image dereferencing
and CVA) cannot be used directly to generate a difference image. The approach proposed in this study
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is designed as a framework for incorporating uncertainty analysis of pixel- and object-based methods.
In future research, we will focus on developing effective multiscale segmentation and pixel-based
CD methods to make the proposed approach suitable for multi-sensor and multitemporal image CD.
Some literature [42,43] shows that temporal correlation exists between long-term time-series images.
It can be potentially used to increase CD accuracy. It would be interesting to further extend the
proposed approach for continuous CD based on multitemporal images, where temporal correlation
exists between images. It is expected that the temporal information would help to further reduce the
uncertainties in CD. This issue motivates future research.

5. Conclusions

In this paper, a scale-driven CD method incorporating uncertainty analysis is proposed, where the
pixel- and object-based schemes are combined and analyzed together to increase CD accuracy.
Two experiments were carried out on Landsat-7 ETM+ and SPOT 5 data sets, and using the proposed
approach, the ratios of total errors are reduced to 4% and 7.5%, respectively. Compared with some
popular pixel-based methods (i.e., DRLSE, CV, MLSK and EMAC), the ratios of total errors are reduced
at least by 3.3% and 2.8%, respectively. The proposed method generates more accurate CD results than
the benchmark methods tested in this study. Therefore, the proposed method provides an effective new
solution for CD. Future research will be focused on extending the proposed SDCDUA to multi-sensor
and multitemporal image CD.
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