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Abstract: The accurate location of clouds in images is prerequisite for many high-resolution satellite
imagery applications such as atmospheric correction, land cover classifications, and target recognition.
Thus, we propose a novel approach for cloud detection using machine learning and multi-feature
fusion based on a comparative analysis of typical spectral, textural, and other feature differences
between clouds and backgrounds. To validate this method, we tested it on 102 Gao Fen-1(GF-1) and
Gao Fen-2(GF-2) satellite images. The overall accuracy of our multi-feature fusion method for cloud
detection was more than 91.45%, and the Kappa coefficient for all the tested images was greater than
80%. The producer and user accuracy were also higher at 93.67% and 95.67%, respectively; both of
these values were higher than the values for the other tested feature fusion methods. Our results
show that this novel multi-feature approach yields better accuracy than other feature fusion methods.
In post-processing, we applied an object-oriented method to remove the influence of highly reflective
ground objects and further improved the accuracy. Compared to traditional methods, our new
method for cloud detection is accurate, exhibits good scalability, and produces consistent results
when mapping clouds of different types and sizes over various land surfaces that contain natural
vegetation, agriculture land, built-up areas, and water bodies.

Keywords: multi-feature fusion; cloud detection; high-resolution; machine learning

1. Introduction

Clouds often obscure on the ground target objects and thus have significant impact on remote
sensing image interpretation [1,2]. Further, the accurate detection of clouds directly affects inversion of
biophysical variables in other applications [3]. Even though a particular image might have excessive
cloud coverage, the image can still be useful as long as specific areas of interest are not obscured.
Therefore, the presence or absence of clouds in a particular image needs to be accurately determined.

Cloud detection is an active area of research in the field of remote sensing with many proposed
cloud detection methods. These methods can be divided into two categories: those using and not using
thermal infrared bands. Methods that use thermal infrared bands often provide highly accurate cloud
detection results. Zhu and Woodcock proposed an object-oriented Function of Mask (Fmask) cloud
and shadow detection method for Landsat images using the Top of Atmosphere (TOA) reflectance and
brightness temperature. This method achieves a detection accuracy reaching 96.4% [4]. Huang et al.
used clear view forest pixels as a reference to define cloud boundaries when separating clouds from
clear view surfaces in a spectral-temperature space for forest change analysis [5]. Most high-resolution
satellite images, however, lack a thermal infrared band; so researchers often use temporal and spatial
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correlation information from images in cloud detection algorithms. Sedano et al. [6] proposed a method
that first use pixel value comparison between high resolution images and cloud free composites at
lower spatial resolution from almost simultaneously acquired dates to identify cloud pixels and then
obtain cloud mask using object-based regional growth. The advantage of this method is that it does
not rely on thermal bands and can be used to extract clouds in the highest-resolution remote sensing
images, but the disadvantages is that it relies on lower spatial resolution from almost simultaneously
acquired dates and if there are a large cloud in image, the method will fail. Tseng et al. [7] applied
multi-temporal cloud detection algorithms for cloud detection. This method have good accuracy,
but the biggest disadvantage is that acquired dates of the reference image and the observed image
must be very close. Han et al. proposed an automatic cloud detection method for high-resolution
images that first detects clouds in a target image including cloud cover, by applying a simple threshold.
Using the difference between the target image and the reference image, clouds can be extracted from
the peripheral region of high-resolution images [8]. This method also needs to use temporal correlation
among pixels.

On the other hand, methods that do not use thermal bands and rely on the attribute information
from single images have been proposed. Maximum and minimum filters and second-moment texture
measures have been tested to detect clouds and cloud shadows based on an analysis of different spectral
and texture features of clouds, thin clouds, vegetation, bare ground, and roads [9]. Marais et al. [10]
have presented a simple image transform that optimally combines four image channels into a greyscale
image for threshold-based cloud detection on Quickbird images. Fisher used reflectance feature and
automated morphological feature extraction to detect cloud in SPOT5 HRG Imagery [11]. Wavelet
analysis, pattern recognition, machine learning, and computer vision technologies have also been used
for cloud detection [12–16]. These methods use spectral information to extract cloud areas; however,
these methods only apply in situations when spectral features of other objects such as buildings are not
similar to clouds. In high-resolution images, the spectral features of city buildings are similar to those
of clouds [17]. Therefore, additional features found in clouds and buildings are needed to discriminate
them accurately. Clouds have high reflectance with relatively uniform, smooth texture characteristics
and have irregular natural shapes, therefore integration of different features might provide a better
solution for differentiating between clouds and high reflective objects in high-resolution images.

Several classification methods have been proposed that are based on the integration of spatial
and spectral features; these can be divided into two types: multi-classifier algorithms [18], and single
classifier multi-feature algorithms [19,20]. The multi-classifier methods use a variety of classifiers for
decision fusion and processing multi-features in parallel. The single classifier multi-feature approach
normalizes the different features and then uses a single classifier on several related features to process
vectors of hybrid features. We therefore selected a single classifier multi-feature approach as the basis
for our new cloud detection method; however, one key issue facing single classifier multi-feature
algorithms is the choice of classification method. Machine learning as an artificial intelligence algorithm
has been widely used in remote sensing image classification [21]. The application of artificial neural
networks, support vector machine, intelligent optimization algorithms such as genetic algorithms,
partial swarm optimization, and artificial immune systems in remote sensing image classification
reflect this trend [22–27].

Some researchers have studied cloud features and machine learning for cloud detection.
Wang et al. [28] compared Support Vector Machine (SVM) with Back Propagation Neural Network
(BP-NN) method with training set numbers for cloud detection, finding that when sample size is small,
SVMs perform better than BP-NN method. Hughes et al. [29] developed a neural network approach to
detect clouds in Landsat scenes using spectral and spatial information. Chenthan [30] has compared
Linear, Polynomial, and Gaussian-RBF kernel in SVMs and concluded the combination of texture and
Linear SVM with correct classification rate of 92.30% in cloud detection. Başeski [31] used color and
line based elimination as well as texture based SVM classification to detect cloud on RGB images. Latry
considered SVM cloud detection within PLEIADES-HR framework [32]. Although many researchers
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have studied cloud detection classification methods based on features, many of these approaches are
based on spectral and texture information, and do not exploit other features, such as shape and NDVI
or combine multi-features in machine learning. The integration of multi-feature and machine learning
strategies to detect clouds could not only allow features to complement each other, but also make full
use of the remote sensing image information.

In this paper, we propose a new cloud detection approach based on machine learning and
multi-feature fusion. It does not use the thermal band or rely on time information and is suitable for
different clouds types, sizes, and densities, and different underlying surface environments. This paper
is organized as follows. The first section describes the experimental data, discusses typical cloud
features in Gao Fen-1/2(GF-1/2) satellite images, details the selection of the typical characteristics of
various images, and discusses the construction of feature space and multi-feature fusion. The second
section details our results. The third section includes a discussion and the last section includes
conclusions drawn from our research.

2. Materials and Methods

2.1. Experimental Data

A total number of 102 GF-1/2 images were acquired from National Disaster Reduction Center
of China to evaluate our proposed method. The testing 102 images were acquired between March
2014 and May 2016. The training data of each scene are randomly selected from within the scene.
Each testing image is an inset of the scene with a size of 2000 × 2000 pixels in order to speed up the
detection process since not the entire image is covered by clouds. The testing insets are carefully
selected, covering various underlying surface environment. Eight representative images are shown
in Table 1, as it is not possible to show all of the images. Only the blue (0.45–0.52 µm), green
(0.52–0.59 µm), red (0.63–0.69 µm), and near infrared (0.77–0.89 µm) bands of the GF images were
used in our experiments, panchromatic bands were excluded. GF-1/2 image resolution is eight
meters and four meters, respectively, while the correction level of the tested images was Level 1A.
All images have not been resampled. The majority of the images in the datasets contain both cloud
and non-cloud regions. Cloud regions include small, medium, and large size clouds; the backgrounds
are common underlying surface environment including mountains, buildings, roads, agriculture,
and rivers. In addition, we do not consider impact of season on the clouds.

Table 1. Experimental data sources and descriptive information for eight selected images.

Abbreviation/Image
Information

High Resolution
Image Date

Solar Zenith
Angle (Degree) Cloud Types Scene Description

GF-1-145
L1A0000232145 22 May 2014 73.6156 Medium, low

density clouds
Agriculture, high reflectance

buildings and road

GF-1-270
L1A0000268270 6 July 2014 74.5897 Medium, low

density clouds
vegetation, high reflectance

buildings and road

GF-1-419
L1A0000232419 22 May 2014 74.1973 Medium, high

density clouds
Mountainous area with high

reflectance bare soil slope

GF-1-963
L1A0000264963 2 July 2014 75.0930 Small, high

density clouds
Mountainous area with high

reflectance bare soil slope

GF-2-865
L1A0001028865 21 May 2015 17.6541 Large clouds Urban area with high

reflectance buildings and road

GF-2-193
L1A0001451193 5 March 2016 36.4954 Large clouds Mountainous area with high

reflectance bare soil slope

GF-2-042
L1A0000836042 31 May 2015 16.4647 Medium, low

density clouds
Agriculture, high reflectance

buildings and road

GF-2-975
L1A0000835975 31 May 2015 16.4336 Medium, high

density clouds
Agriculture, high reflectance

buildings and road
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The GF-1/2 level-1A product only contains DN information, and does not directly contain
reflectivity data. For spectral feature extraction, we needed surface reflectance values. The radiometric
calibration is a fundamental process to eliminate radiometric errors and distortion [33,34]. Atmospheric
correction eliminates the effects of the atmosphere on the reflectance values of images taken by satellite
or airborne sensors [35]. Radiometric calibration and atmospheric correction parameters were obtained
from the attached XML file along with GF data. Radiometric calibration was carried out using
ENVI software and we used the Fast Line-of-sigh Atmosphere Analysis of Spectral Hypercubes
(FLAASH) [36] for atmospheric correction.

Our algorithms were applied to distinguish clouds in different situations with different clouds
types, cloud sizes, densities, and different underlying surface environments, except for very thin clouds,
which are shown in Figure 1. In order to verify the accuracy of the cloud detection, we obtained the
manual cloud mask of all tested images from National Disaster Reduction Center of China. Very thin
clouds in the manual cloud mask are transparent and therefore not treated as cloud objects; we consider
the ground targets under the thin cloud cover as useful in applications.
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Figure 1. Clouds on Gao Fen-1(GF-1) images: (a) thin clouds and (b) very thin clouds.

2.2. Typical Cloud Features

Cloud types vary widely, but despite differences, their inherent physical properties are essentially
the same; and, specifically, the overall radiation characteristics of cloud particles are similar [37].
In the visible band (0.4–0.8 µm), the optical properties of water droplets and ice particles not only
make clouds very reflective, but also increase light absorption thus reducing the transmittance of the
radiation information from the surface of materials [38]. To reflect typical spectral characteristics of the
clouds and other backgrounds in GF-1/2 satellite images, we selected sample areas from 102 GF-1/2
images randomly to calculate the mean reflectance spectra of thick clouds, thin clouds, vegetation,
highly reflective buildings, general buildings, and water covered areas. Figure 1 presents the mean
reflectance spectra of those targets commonly found in GF-1/2 satellite images.

As shown in Figure 2, cloud reflectance in the visible band is generally higher than that of most
natural surface features, but is similar to buildings with the highest reflectance. Therefore, spectral
characteristics by themselves are insufficient for discriminating clouds from highly reflective buildings.

In contrast to low spatial resolution satellite images, high spatial resolution remote sensing
images show richer texture information, clearer geometry shape attributes, and a more distinct spatial
distribution of gray features. Figure 2 illustrates textures of the cloud, water, building, and mountain
textures as found in our dataset.

In Figure 3, the gray value changes very little between adjacent pixels of clouds and water, but the
textures of buildings and mountains are very different. Thus, cloud texture is uniform and smooth,
with low contrast in these high-resolution images, making clouds easily distinguishable from buildings
and mountains. At the same time, however, clouds can be easily confused with water.

In geometry shape attributes, cloud shapes are more natural and irregular; road shapes are
relatively narrow and linear; and building shapes have relatively, regular shape outlines. Compared to
low-resolution satellite images, shape features of high-resolution satellite images are highly reflective.



Remote Sens. 2016, 8, 715 5 of 21

In other attributes such as the Normalized Difference Vegetation Index (NDVI), pixels from
vegetated areas yield high positive value for NDVI due to high near-infrared reflectance and low red
reflectance. Bare soil and rocks generally show similar reflectance in the near-infrared band and visible
bands, generating positive but lower NDVI value close to 0. The visible bands reflectance of water,
clouds, and snow are larger than their near-infrared reflectance, producing negative NDVI value.
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Figure 2. The mean reflectance spectra of thick clouds, thin clouds, vegetation, general buildings,
highly reflective buildings, and water covered areas commonly found in GF-1/2 satellite images.
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Figure 3. Image textures for: (a) clouds; (b) water; (c) buildings and (d) mountains. Near infrared red,
red and green bands are chosen for making these false color images.
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2.3. Feature Selection

According to analysis of the typical cloud features, we cannot use a single feature to
separate clouds from backgrounds, we must select features from the spectral, texture, and other
features simultaneously.

2.3.1. Selection of Spectral Features

In multispectral images, clouds and background exhibit different spectral characteristics [39].
Clouds generally scatter various wavelengths evenly, so clouds have high reflectivity in the visible and
near infrared bands, but the cloud spectral reflectance decreases slowly with increasing wavelength.
Accordingly, the reflectance values of blue, green, red, and near infrared bands are used to obtain
spectral features of clouds.

2.3.2. Selection of Texture Features

The use of a Grey Level Co-occurrence Matrix is a standard texture extraction method [40],
and has demonstrated validity in dealing with high-resolution images [41,42], hence we use Grey
Level Co-occurrence Matrix (GLCM) to extract texture features. We need consider three key issues
including band selection, window size, and direction in GLCM method.

1. Band selection
We obtain the first and second principal component (PC) comprising 95% of the image information

from the GF-1/2 images using principal component analysis, and then conduct texture analysis by
utilizing PC1 and PC2.

2. Window size
Window size for texture analysis is related to image resolution and the contents within the

image [43]. The Variation Coefficient (VC) was used to measure if window size of the texture measures
was suitable or not [43,44]. If the VC is large, the variation amplitude is large, and unstable. Therefore,
the chosen optimal window size is at the point where the value of the coefficient of variation starts to
stabilize and has the smallest value. The VC is defined as follows [43]:

VC = S/SV (1)

S =

√
∑ sv2 − ∑ sv2

n
n− 1

(2)

SV =
1
n

n

∑
1

svn (3)

where S denotes standard deviation, SV is an average value, sv is the sample value, and n is the
number of samples.

Window size of the texture measures is shown as follows:

W = argmin
w
{VC} (4)

3. Direction
Pesaresi et al. demonstrated that rotational invariance properties can be obtained when texture

features in different directions are selected [41]. Therefore, the mean, variance, uniformity, contrast,
correlation, and entropy values for 0◦, 45◦, 90◦, and 135◦, respectively, were calculated to derive the
average value of the each parameter of four directions.
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2.3.3. Selection of Other Features

NDVI can help researchers to distinguish between clouds and other surface features. Therefore,
NDVI was chosen as a supplement to spectral and texture features during cloud detection.

NDVI values of all pixels are calculated after radiometric and atmospheric correction and serve as
another feature.

2.4. Methods

In this paper, we used a single classifier method for multi-feature fusion, based on SVM [45].
SVMs are particularly appealing in the remote sensing field due to their ability to generalize even
with limited training samples [46]. SVMs perform better than neural networks, particularly in the
case of small samples [23]. SVMs are very effective tools in many classification methods incorporating
machine learning and multiple feature fusion to separate clouds from backgrounds.

2.4.1. SVM Classification

The basic principle is as follows:
In the given trainings T {(x1, y1) , (x2, y2) , . . . , (xn, yn)}, where xi ∈ X = Rn, X is called the input

space. Each point xi in the input space is composed of spectral characteristics, texture features and
NDVI feature. When y = 1, the sample is a cloud; when y = −1, the sample is part of the background.
The classification function f (x) is used to infer the corresponding value of y to any pattern x.

For linearly separable cases, seeking the optimal hyper-plane on two class patterns involves
finding the hyper-plane that can separate classes from each other with a maximum margin, solving
yi(ω

∗ ∗ x + b∗) ≥ 1, when 1
2‖ ω ‖

2 is minimized. The optimal hyper-plane defined by the weight
vectorω∗εRn and the bias b∗εRn is the one that minimizes a cost function that expresses a combination
of two criteria, namely: (1) margin maximization; and (2) error minimization.

The Lagrange function is introduced, solving the optimal solution for the equation:
ai(yi(ω

∗ ∗ x + b∗)− 1) = 0, where ai is a Lagrange multiplier of corresponding samples and not zero,
and the corresponding sample is the support vector. When this meets the constraints of ∑n

i=1 yiai = 0,
solving for the maximum value of the following functions can be calculated as:

ω (a) =
n

∑
i=1

ai −
1
2

n

∑
i,j=1

aiajyiyj
(
xixj

)
(5)

where ai ≥ 0. Then, to find the optimal function:

f (x) = sign {(ωx) + b} = sign

{
n

∑
i=1

ai
∗yi (xix) + b∗

}
(6)

where f (x) represents the discriminant function associated with the hyper-plane.
Where summation is only for support vectors, b∗ is the classification threshold; and can be

obtained by any support vector. When the linear SVM classification is extended to the case of
a non-linear surface, the kernel function is used. The principle idea is that: (1) the problem is
transformed into a linear problem in high-dimensional space by a non-linear change; and, therefore;
(2) the optimal hyper-plane in a high-dimensional space is found. First, the input space sample is
mapped in high-dimensional space features by ψ: H : ψ : Rd → H thus avoiding a direct mapping of
the samples to the high-dimensional space, by constructing a kernel function. In the SVM, the choice of
kernel is critical, we use the radial basis function (RBF) kernel based on its performance characteristics
in several applications [47,48].

The RBF kernel is defined as [49]: k
(
xi, xj

)
= e−γ‖xi−xj‖2

.
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2.4.2. Feature Fusion

Feature fusion is a popular term that has been used in a variety of remote sensing projects.
Texture features have been fused in remote sensing classification applications [50,51] and image
segmentation [52]. Classification performance can benefit from proper feature fusion [53]. Features
fusion involves normalizing a variety of features and then merging the normalized features into
a single feature set; this allows the user to focus on feature selection from this feature set to obtain
the best feature subset. The basic principle of feature fusion is to select the features that are related to
categories and to exclude redundant features. Here, we focus on a methods used to fuse features using
different typical features of clouds.

Feature fusion methods can be broadly divided into two categories: multiple sets of feature
vectors are created from head to tail to generate a new feature vector, and we use the new vector to
classify the target features; and, multiple sets of features are combined by complex vectors, and we use
the complex vector space to classify the target features. The first method is used to classify objects.
Spectral, textural and NDVI features are selected as multi-type features. The multi-type features are
normalized to [0, 1] and thus could be input into SVMs to perform classification. For comparative
purposes, other experiments use different features combinations. The accuracy assessment can be
seen below.

αi = {αi1,αi2,αi3,αi4} are spectra features andβi = {βi1,βi2,βi3,βi4,βi5,βi6,βi7,βi8,βi9,βi10,βi11,βi12}
are texture features. εi = {εi1} is NDVI feature. We use the normalization equation to each feature first. Then,
Features are combined from head to tail t = {x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14, x15, x16, x17}.
We construct feature space based on SVM.

The normalization equation is shown as below:

x =
(r f − r fmin)

r fmax− r fmin
(7)

where r f represents raw feature data, and x denotes feature data after normalizing.

2.4.3. SVM-Based Multi-Feature Fusion

SVM-based multi-feature fusion steps and diagram (Figure 4) are as follows:
Step 1: Based on our analysis of typical cloud characteristics, spectral, textural and other features

are extracted, and then normalized to construct a feature space.
Table 2 shows the feature selection and feature space construction:

Table 2. Feature selection indicators.

Features Feature Space

Spectral features Band 1, Band 2, Band 3, Band 4

Texture features
Mean, Variance, Homogeneity, Contrast, Correlation, Entropy

Window Size = argmin
w
{VC}

Band selection: PC1 and PC2

Other features NDVI

Step 2: Extract training samples. Samples are extracted randomly from cloud and non-cloud regions.
Step 3: Spectral, textural and NDVI features are extracted from both cloud and non-cloud regions.

The spectral, textural and NDVI features of a sample are referred to as a characteristic description for
image pixel content information.

Step 4: A Support Vector Machine-Radial Basis Function (SVM-RBF) classification model is
constructed to train samples of cloud and non-cloud regions to obtain a group of non-parallel
hyperplanes parameters.
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Step 5: Spectral, textural and NDVI feature for an obtained high-resolution image are then
extracted. The extracted dimensional feature vector is input into the SVM-RBF classifier for
classification, and cloud detection results of all the pixels are obtained.
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3. Results

3.1. Cloud Detection Experiment

Cloud detection experiment results based on SVM and feature fusion are as follows.
The training samples in cloud detection experiment for eight selected images include both cloud

and non-cloud regions, as shown in Table 3.

Table 3. Training samples for eight selected images.

Sensor Types Training Samples

GF-1-145
Cloud 2207

Non-cloud 5444

GF-1-270
Cloud 2043

Non-cloud 5722

GF-1-419
Cloud 2714

Non-cloud 5671

GF-1-963
Cloud 2565

Non-cloud 5672

GF-2-865
Cloud 2041

Non-cloud 5365

GF-2-193
Cloud 2423

Non-cloud 5325

GF-2-042
Cloud 2356

Non-cloud 5671

GF-2-975
Cloud 2456

Non-cloud 5432

From Table 3, we see that in the training sample there were about 2000–3000 cloud pixels, while
non-cloud regions including buildings, vegetation, water and roads numbered about 5000–6000 pixels.
Our cloud detection model was constructed to train samples of cloud and non-cloud regions. Origin
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images, classification results and insets marked by red frame region for eight selected GF-1/2 images
are shown in Figures 5 and 6, respectively. The white regions in the classification results represent
our cloud detection results. The green frame refers to cloud detection misjudgments. To make the
extracted feature correlation index more accurate, radiometric calibration and atmospheric corrections
were carried out prior to cloud detection with the high-resolution imagery data set.

As can be seen in Figures 5 and 6, the overall cloud detection results for the tested GF-1/2 images
were visually accurate for different clouds types, cloud size, density, and different underlying surface
environments, suggesting that the method has good scalability and adaptation. As can be seen from
local classification maps, there are still some buildings and roads often are mistaken for clouds. Cloud
detection has better results on mountainous area than high reflective urban area. High reflectance
buildings and road, cloud edges and haze have the potential to reduce the algorithm performance.
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map, cloud classification map, and the magnified area corresponds to the red line regions of cloud
classification map for GF-1-145, respectively; (d–f) for GF-1-270; (g–i) for GF-1-419; (j–l) for GF-1-963.
The white regions in the classification results represent our cloud detection results. The green frame
refers to cloud detection misjudgments.
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Figure 6. The origin map and classification results of four selected GF-2 images: (a–c) the original
map, cloud classification map, and the magnified area corresponds to the red line regions of cloud
classification map for GF-2-975, respectively; (d–f) for GF-2-865; (g–i) for GF-2-193; (j–l) for GF-2-042.
The white regions in the classification results represent our cloud detection results. The green frame
refers to cloud detection misjudgments.

3.2. Object-Oriented Post-Processing

After the rough detection of clouds, buildings and roads are often mistaken for clouds;
morphological operators and shape features can be used to address this situation.

Step 1: Because clouds are natural features with irregular shapes when compared with the regular
shapes of roads and buildings, and because roads are narrow, we chose rectangles and the length–width
ratio shape index for classification.
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Step 2: Handle false positives through erosion and dilation operators.
A rectangle [54] is classified as follows:

R = A0/A (8)

where A0 denotes a regional area, and A is the minimum bounding rectangle area for this region.
When R = 1 or R = π/4, the target area is very probably rectangular or circular, respectively.
The length–width ratio [54] is classified as follows:

T = a/b (9)

where a and b are the length and width for the minimum bounding of a rectangle of this
region respectively.

When T = 1, this area is square or circular; and, when T > 1, the area is a slender shape.
Five GF-1/2 images including buildings and roads are selected to do object-oriented

post-processing. Figure 7 shows rectangle and length–width ratio histogram of rough cloud detection
for five GF-1/2 images.
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Figure 7. Rectangle and length–width ratio histogram of rough cloud detection for five GF-1/2 images.

In Figure 7, the rectangular values of most objects in the GF-1/2 images were concentrated in
0–0.8, and length–width ratio focused on 1–3.5. High-frequency targets are clouded in the images.
Therefore, low frequency objects whose rectangle values are not in the range of 0–0.8 and where the
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length–width ratio values are not in the range of 1–3.5, were removed. Then the map was examined
to detect erosion and dilation and to remove slight misjudgments so that the cloud detection results
could be finalized. Object-oriented post-processing results and accuracy for five GF-1/2 images are
shown in Figure 7 and Table 4, respectively.

Figure 8 illustrates that for five GF-1/2 images, Object-oriented post-processing removed buildings
and roads effectively using shape features.

Shown in Table 4, Object-oriented post-processing further improved the accuracy of our
method. The average accuracy reached 96.5%, which demonstrates the effectiveness of object-oriented
post-processing.

Table 4. Rough cloud detection accuracy and object-oriented post-processing accuracy for five
GF-1/2 images.

Sensor Overall Accuracy Kappa Coefficient Post Processing Accuracy

GF-1-145 96.6791% 0.8992 97.5263%
GF-1-270 95.4259% 0.8936 97.6589%
GF-2-975 95.2362% 0.8363 96.6701%
GF-2-865 96.6252% 0.9109 96.7713%
GF-2-042 96.4454% 0.9179 97.6235%
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(the fluorescent green regions in the picture represent our cloud test results).

4. Discussion

4.1. Accuracy Analysis of Multiple Features

To validate multi-feature fusion cloud extraction, different features were fused including
Spectra (S), Texture (T), Spectra + Texture (ST), Spectra + NDVI (SN), Texture + NDVI (TN),
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and Spectra + Texture + NDVI (STN) of 102 GF-1/2 images for cloud accuracy assessment and
analyzed. Considering cloud and non-cloud areas as two classes, the cloud producer accuracy and
cloud user accuracy, the overall accuracy and Kappa coefficients were calculated as below [55]:

CPA =
GA

GA + OC
(10)

CUA =
GA

GA + CC
(11)

where CPA denotes cloud producer accuracy; CUA denotes cloud user accuracy; GA denotes
agreement between ground truth and the algorithm mask; OC represents pixels that belong to clouds
in the ground truth but the classification technique has failed to classify them into clouds; and CC
represent pixels that belong to backgrounds that are labeled as belonging to clouds.

Table 5 shows the quantity of images of the six features combination grouped by producer
accuracy, 76%–80%, 80%–84%, 84%–88%, 88%–92%, 92%–96%, and 96%–100%, and the average
producer accuracy of each feature combination. Figure 9 is a corresponding histogram.

Table 5. Cloud producer accuracy for Spectra (S), Texture (T), Spectra + Texture (ST), Spectra + NDVI
(SN), Texture + NDVI (TN), and Spectra + Texture + NDVI (STN) feature fusion on 102 GF-1/2 images.

Cloud User
Accuracy 76%–80% 80%–84% 84%–88% 88%–92% 92%–96% 96%–100% The Average

Accuracy

S 40 45 11 6 0 0 83.33%
T 65 30 7 0 0 0 81.76%

ST 23 34 18 10 15 2 84.17%
SN 43 28 20 6 5 0 86.67%
TN 49 24 4 16 9 0 84.55%

STN 2 5 7 22 41 25 93.67%
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Figure 9. Bar of cloud producer accuracy for S, T, ST, SN, TN, and STN feature fusion on
102 GF-1/2 images.

Table 6 shows the quantity of images of the six features combination grouped by user accuracy,
86%–88%, 88%–90%, 90%–92%, 92%–94%, 94%–96%, and 96%–98%, and the average user accuracy of
each feature combination. Figure 10 is the corresponding histogram.
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Table 6. Cloud user accuracy for S, T, ST, SN, TN, STN feature fusion on 102 GF-1/2 images.

Cloud User
Accuracy 86%–88% 88%–90% 90%–92% 92%–94% 94%–96% 96%–98% The Average

Accuracy

S 29 45 16 11 1 0 90.16%
T 57 28 15 2 0 0 89.25%

ST 26 29 18 12 15 2 91.35%
SN 27 35 25 9 6 0 90.67%
TN 45 23 9 15 10 0 90.47%

STN 0 4 8 22 35 33 95.67%
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Figure 10. Bar of cloud user accuracy for S, T, ST, SN, TN, and STN feature fusion on 102 GF-1/2 images.

In order to compare the different feature fusion results, we show the partial enlarged view of total
class error results of cloud detection for S, T, ST, SN, TN, and STN feature fusion on GF-1-145 images in
Figure 11. Red pixel regions in the picture represent total classification error results in cloud detection.

From Figure 11, we see that total classification error results in cloud detection for STN was less
than in S, T, ST, SN, TN feature fusion. The main reason is that STN performs better on houses, roads,
and cloud edges in cloud detection than other feature fusion methods. These results suggest that
multi-feature fusion is effective in cloud detection and allows features to complement each other.

The overall accuracy of our approach reached more than 91.45%; the Kappa coefficient of all
images was more than 80%, which demonstrates the effectiveness of our method.

From Tables 5 and 6, and Figure 9, we see STN feature combinations delivered greater accuracy
than other methods, the cloud producer accuracy reached 93.67% and cloud user producer accuracy
reached 95.67%, indicating that feature combinations are effective in cloud detection. Our results
show that multi-feature classification has higher accuracy than a single feature classification. Feature
combinations with spectral features have a higher accuracy than feature combinations without spectral
features. Our results demonstrate that a single feature cannot represent the image content. Using only
a single feature to classify all categories does not make full use of all the discriminative information;
hence, classification accuracy is low. Multi-features fusion can take advantage of every feature,
and therefore delivers accurate results. Thus, we conclude that spectral feature is important for
cloud detection.
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Figure 11. The partial enlarged view of total classification error results in cloud detection for
Spectra (S), Texture (T), Spectra + Texture (ST), Spectra + NDVI (SN), Texture + NDVI (TN),
and Spectra + Texture + NDVI (STN) feature fusion on GF-1-145 images (red regions in the picture
represent total classification error results in cloud detection).

4.2. The Scalability of the Algorithm

Because our method carry out spectral attributes, texture attributes and NDVI feature fusion
based on machine learning to achieve cloud detection, our method is suitable for high-resolution
image data include near-infrared bands. To demonstrate the scalability of the algorithm, the algorithm
is applied to two OrbView-3 images and one IKONOS-2 image, and the cloud classification maps are
shown in Figure 12. Figure 12a–c the original map, cloud classification map, and the magnified area
corresponds to the red line regions of cloud classification map for one OrbView-3 image, respectively;
Figure 12d–f for other OrbView-3 image; and Figure 12g–i for IKONOS-2 image;

As can be seen from the figure, our method has good cloud detection results on OrbView-3 and
IKONOS-2 images, which indicates that our method is not only suitable for GF-1/2 satellite imagery,
but also suitable for other high satellite image data with near-infrared bands.
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image: (a–c) the original map, cloud classification map, and the magnified area corresponds to the
red line regions of cloud classification map for one OrbView-3 image, respectively; (d–f) for other
OrbView-3 image; and (g–i) for IKONOS-2 image.

4.3. Summary of Advantages and Disadvantages

The proposed method has substantial advantages over conventional methods. In this paper,
machine learning and multi-feature fusion are used for cloud detection. This method makes full use of
the multi-feature information and has good accuracy than a single feature. Moreover, our method does
not rely on thermal bands and multi-temporal information. It is suitable for various high-resolution
earth observation sensors with near-infrared bands. Our proposed method is applicable in a variety
of scenarios including high reflectance buildings, roads, agriculture and mountains. Furthermore,
our method has good cloud detection results on large, medium, and small clouds and also has good
effect on high, medium, and low density clouds.

However, our method has some disadvantages. We focus on machine learning and multi-feature
fusion, but do not consider distinguishing between cloud and other objects including bare soil, desert,
snow, and ice. In addition, we do not consider impact of season on the clouds. In future study, we will
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try to apply machine learning and feature fusion method to distinguish between cloud and special
underlying surface environments including bare soil, desert, snow, and ice.

5. Conclusions

In this paper, we propose a novel approach for cloud detection using machine learning and
multi-feature fusion based on a comparative analysis of typical spectral, textural, and other feature
differences between clouds and backgrounds in GF-1/2 images. The core principles are to select typical
features and feature fusion based on machine learning for cloud detection. Cloud detection results
showed that the proposed algorithm performed well on different clouds types, sizes, and densities,
and different underlying surface environments. Furthermore, we experimentally demonstrate
that multi-feature fusion yields more accurate cloud detection than a single feature approach and
the spectral features in cloud detection are particularly important. We applied object-oriented
post-processing in the final step by using rectangles and a length–width ratio shape index further
reducing misclassification of highly reflective buildings and roads. Our proposed method is applicable
in a variety of scenarios and is reliable in cloud detection. It can be applied to images from various
high-resolution earth observation sensors with near-infrared bands. A shortcoming of our proposed
method is that we need to select the training samples manually. Our future research will address
automatic training samples selection and feature learning approaches. In addition, our research is
designed to meet the needs of disaster reduction project of China, which focused on drought and
floods in southern China, experimental data were selected from southern China. Thus, currently we
do not consider other underlying surface environments including bare soil, desert, snow, and ice.
There are other regional and seasonal data that need to be addressed in follow-up study, and we will
improve methods to suit different underlying surface environments.
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