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Abstract: Changes in the snow cover extent are both a cause and a consequence of climate change.
Optical remote sensing with heliosynchronous satellites currently provides snow cover data at high
spatial resolution with daily revisiting time. However, high latitude image acquisition is limited
because reflective sensors of many satellites are switched off at high solar zenith angles (SZA) due
to lower signal quality. In this study, the relevance and reliability of high SZA acquisition are
objectively quantified in the purpose of high latitude snow cover detection, thanks to the PROBA-V
(Project for On-Board Autonomy-Vegetation) satellite. A snow cover extent classification based on
Normalized Difference Snow Index (NDSI) and Normalized Difference Vegetation Index (NDVI)
has been performed for the northern hemisphere on latitudes between 55◦N and 75◦N during the
2015–2016 winter season. A stratified probabilistic sampling was used to estimate the classification
accuracy. The latter has been evaluated among eight SZA intervals to determine the maximum usable
angle. The global overall snow classification accuracy with PROBA-V, 82% ± 4%, was significantly
larger than the MODIS (Moderate-resolution Imaging Spectroradiometer) snow cover extent product
(75% ± 4%). User and producer accuracy of snow are above standards and overall accuracy is stable
until 88.5◦ SZA. These results demonstrate that optical remote sensing data can still be used with
large SZA. Considering the relevance of snow cover mapping for ecology and climatology, the data
acquisition at high solar zenith angles should be continued by PROBA-V.
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1. Introduction

Up to six months per year, high latitude land surfaces are covered by snow [1]. It plays a major
role in the water cycle: snowmelt provides water for many mid-latitude populations [2] and the
freshwater discharge into the ocean modulates ocean circulation [3]. Furthermore, the high albedo
of snow mitigates global warming by reducing the radiative warming of the Earth [4]. However, the
extent of snow cover is in turn influenced by meteorological fluctuations: huge differences of snow
cover extent have been observed between two consecutive years. In the context of climate change,
these meteorological events are susceptible to increase in amplitude and frequency, which will affect
snow cover extent.

Snow cover also has large impacts on animal traits and ecosystem processes [5]. The presence of
snow influences the start and the end of the plants growing periods and the life cycles of many animal
species. For instance, the knowledge of the place and the time of occurrence of snow anomalies allows
toexplain some variations in ecological processes like migration of populations [6], reproduction [7]
and population growth [8]. On the other hand, the start, the end and the duration of the snow period
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help to understand spatial repartition of some species [9] and population growth outbreak [10,11].
Therefore, accurate mapping of snow cover extent is an important goal to achieve.

Three global snow cover products are based on remote sensing image analysis: Ice Mapping
System (IMS) [12], Globsnow [13] and MOD10 [14] snow cover. These three products have a daily
temporal resolution but differ in terms of spatial resolution. IMS has been produced at 4 km since 2004
and 1 km since 2014. Before 2004, there was only a 24 km version. Globsnow is currently available
at 1 km and MOD10 has the highest spatial resolution (500 m). Each product uses its own snow
classification algorithm. However, the IMS processing chain is semi-automated (it needs human
supervision) while Globsnow and MOD10 are fully automated.

IMS uses remote sensing measurement (imagery) and ancillary data to create its snow product.
Visible and infrared reflectances from geostationary satellites are primary sources of information.
Raw satellite input data come from National Oceanic and Atmospheric Administration (NOAA) polar
orbiters (POES), NOAA geostationary (GOES) data, Japanese geostationary meteorological satellites
(GMS), European geostationary meteorological satellites (METEOSAT), US Department of Defense
(DOD) polar orbiters and Defense meteorological satellite program (DMSP). Through the decades,
some other satellite inputs were added like data from Advanced Very High Resolution Radiometer
(AVHRR) channel 3A, Moderate Resolution Imaging Spectroradiometer (MODIS) and Multifunctional
Transport Satellites (MTSAT). Besides remote sensing imagery, meteorological conditions, albedo,
snow climatology and data from the National operational hydrologic remote sensing center (NOHRSC)
are used in IMS snow product. Digital elevation model (DEM) data are also used for mapping snow
cover in hilly areas [12]. However, the type of input data varies with seasons. Visible imagery from
orbiting satellites will be used more during summer while alternative data sources like microwave
data, meteorological conditions and albedo are more used in winter or in the case of cloud obstruction.
Moreover, analysts rely on snow climatology to estimate snow cover. The methodology of snow
mapping therefore involves human judgment for the evaluation of the reliability of information and
for the choice of the information to be used in case of conflict between two datasets [12]. The final
snow map is often the result of merging the information coming from different sources.

Globsnow uses data from Along Track Scanning Radiometer (ATSR-2) and Advanced Along-Track
Scanning Radiometer (AATSR) . The preprocessing includes topographic radiometric correction.
The method is based on the ratio of the cosine of the observed SZA and the cosine of the solar incidence
angle at the local terrain normal. Several indices are then used for the cloud detection, including the
Normalised Difference Snow Index (NDSI, Equation (1)).

NDSI =
ρRED − ρSWIR
ρRED + ρSWIR

. (1)

With ρRED and ρSWIR the red and shortwave infrared (SWIR) reflectances, respectively. Finally,
land cover maps, forest transmissivity maps and snow-free ground reflectance maps are used to refine
the classification process. The final product consists of four classes of Fractional Snow Cover (FSC):
0% ≤ FSC ≤ 10%; 10% < FSC ≤ 50%; 50% < FSC ≤ 90%; 90% < FSC ≤ 100% [13].

MOD10 is based on MODIS images and its snow cover classification algorithm primarily relies on
NDSI. The NDSI is computed on atmospherically corrected images. Pixels for which the NDSI value is
equal or greater than 0.4 are labelled as snow or ice [14]. However, Klein et al. [15] showed that forests
under snow could have an NDSI below 0.4. The threshold is therefore modified when the dominant
land cover of a pixel is forest: the NDSI and the Normalised Difference Vegetation Index (NDVI) are
then combined to classify the pixels. In addition, the pixel reflectance in the red band has to be higher
than 10% of the maximum reflectance for the pixel to be processed. Likewise, the reflectance in band 4
has to be higher than 11% [14].

Much satellite data, such as PROBA-V, Sentinel-2 or Landsat, are distributed with snow cover
flags as part of their quality flags. Those flags are used to discard useless observation for land cover
mapping and therefore tend to overestimate snow cover in order to avoid the contamination of clear
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land pixels. The Sentinel-2 flag, for example, is based on four thresholds for snow detection with
a fifth threshold on SWIR to refine the boundaries (Figure 1). PROBA-V internal snow flag is based
on five thresholds (Table 1). Pixels that satisfy all thresholds are considered as snow. Landsat-8 snow
detection is also based on a combination of thresholds and mathematical morphology, which are
implemented in the Fmask [16]. Additional methods are largely discussed in [17].

Remote Sens. 2016, 8, 699 3 of 16 

 

fifth threshold on SWIR to refine the boundaries (Figure 1). PROBA-V internal snow flag is based on 
five thresholds (Table 1). Pixels that satisfy all thresholds are considered as snow. Landsat-8 snow 
detection is also based on a combination of thresholds and mathematical morphology, which are 
implemented in the Fmask [16]. Additional methods are largely discussed in [17]. 

 

Figure 1. Scheme of the snow classification processing chain of Sentinel-2. Source: [18]. 

Table 1. Indices and thresholds used in PROBA-V snow classification. Source: [19]. 

Indices Indice Calculation Thresholds 
S1 Red >0.3075 
S2 SWIR ≤0.2405 
S3 (Blue − NIR)/(Blue + NIR) >−0.3865 
S4 (Blue − SWIR)/(Blue + SWIR) >0.0435 
S5 (Blue + Red)/2 − SWIR >0.0385 

In winter, the snow cover extent increases towards the equator, with historical extremes of 
25.5°N and 33°S during the last century. However, the majority of the snow fall occurs at high 
latitude, where the solar zenith angles (SZA) become very high at satellite overpass time. At high 
SZA, three phenomena affect the radiometric quality of Earth Observation images. First, the 
atmospheric path length is longer. This impacts the spectral distribution of the irradiance and hence 
the reflected spectral signature captured by the satellite. For example, shorter wavelengths are more 
scattered by Rayleigh diffusion and aerosol scattering compared to longer wavelengths [20]. This has 
an effect on many indices because they are basically ratios of wavelengths (Equation (1), Table 1). The 
measurement of albedo is also affected by the diffusion of light and [21] recommended to limit the 
use of albedo products to SZA below 70°. Second, the irradiance is weaker at high SZA. This implies 
a smaller signal/noise ratio, i.e., lower radiometric quality. This affects the reliability of several 
indices, including NDVI [22] and NDSI [23]. Third, the area covered by topographic shadows is 
larger. The proportion of shadows is illustrated in Figure 2. For those reasons, image providers have 
set maximum SZA cut-off angles for heliosynchronous satellites above which atmospheric 
corrections are not applied. Some examples of SZA cut-off angles are given in Table 2. 

Table 2. Maximum Sun Zenith Angle cut-off for optical heliosynchronous satellites with systematic 
global coverage. 

Satellite/Sensor SZA Cut-Off Angle 
Max Latitude on  

21 December 2015 
MODIS 86.5° ~61.5°N 

PROBA-V 82° ~56°N 
Sentinel-3 (OLCI) 80° ~55°N 

Sentinel-2 84.5° ~58.5°N 
Landsat-8 84.5° ~58.5°N 

Figure 1. Scheme of the snow classification processing chain of Sentinel-2. Source: [18].

Table 1. Indices and thresholds used in PROBA-V snow classification. Source: [19].

Indices Indice Calculation Thresholds

S1 Red >0.3075
S2 SWIR ≤0.2405
S3 (Blue − NIR)/(Blue + NIR) >−0.3865
S4 (Blue − SWIR)/(Blue + SWIR) >0.0435
S5 (Blue + Red)/2 − SWIR >0.0385

In winter, the snow cover extent increases towards the equator, with historical extremes of 25.5◦N
and 33◦S during the last century. However, the majority of the snow fall occurs at high latitude,
where the solar zenith angles (SZA) become very high at satellite overpass time. At high SZA,
three phenomena affect the radiometric quality of Earth Observation images. First, the atmospheric
path length is longer. This impacts the spectral distribution of the irradiance and hence the reflected
spectral signature captured by the satellite. For example, shorter wavelengths are more scattered by
Rayleigh diffusion and aerosol scattering compared to longer wavelengths [20]. This has an effect on
many indices because they are basically ratios of wavelengths (Equation (1), Table 1). The measurement
of albedo is also affected by the diffusion of light and [21] recommended to limit the use of albedo
products to SZA below 70◦. Second, the irradiance is weaker at high SZA. This implies a smaller
signal/noise ratio, i.e., lower radiometric quality. This affects the reliability of several indices, including
NDVI [22] and NDSI [23]. Third, the area covered by topographic shadows is larger. The proportion
of shadows is illustrated in Figure 2. For those reasons, image providers have set maximum SZA
cut-off angles for heliosynchronous satellites above which atmospheric corrections are not applied.
Some examples of SZA cut-off angles are given in Table 2.

Table 2. Maximum Sun Zenith Angle cut-off for optical heliosynchronous satellites with systematic
global coverage.

Satellite/Sensor SZA Cut-Off Angle Max Latitude on 21 December 2015

MODIS 86.5◦ ~61.5◦N
PROBA-V 82◦ ~56◦N

Sentinel-3 (OLCI) 80◦ ~55◦N
Sentinel-2 84.5◦ ~58.5◦N
Landsat-8 84.5◦ ~58.5◦N
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Figure 2. Representation of the impact of high Sun Zenith Angle SZA on shadows (no incident light)
in a part of Scandinavia. The SZA in the center of the subsets is equal to 47.5◦ on 21 June 2015 and to
87.25◦ on the 21 December 2015 at the PROBA-V overpass time.

Obviously, the SZA cut-off reduces the data that is effectively available for high latitude studies.
Our hypothesis is that some applications could reliably use data at larger SZA than the one chosen by
image providers. In order to test snow detection at larger zenith angles, we benefited from an extension
of the maximum SZA cut-off on PROBA-V for the winter 2015–2016. In this study, we therefore
investigated the impact of large SZA (up to 90◦) on the accuracy of snow cover mapping using
PROBA-V atmospherically uncorrected images at 333 m spatial resolution.

2. Method

2.1. Data and Study Area

PROBA-V is a small satellite that has been developed to assure the continuation of the
vegetation instruments on-board SPOT-4 (Satellite Pour l’Observation de la Terre) and SPOT-5 with an
improved spatial resolution [24]. PROBA-V images are composed of four spectral bands: Blue, Red,
Near-InfraRed (NIR) and Short Wave-InfraRed (SWIR). Its three cameras provide global daily image
coverage at 333 m spatial resolution while the central camera achieves 100 m with a revisiting time
of approximately five days at the equator. Overpassing time of this heliosynchronous satellite was
about 10:45 a.m. at launch time, but it changes over time due to the absence of on-board propellant for
orbital drift correction.

According to the SZA information in the geometric file of PROBA-V Top-of-Atmosphere (TOA)
images provided by the Flemish Institute for Technological Research (VITO) [25], the maximum solar
zenith angle of PROBA-V for TOA images was initially set to 82◦, which corresponds to a maximum
latitude of 57.5◦N at the winter solstice. However, this cut-off angle condition was removed on
28 October 2015, allowing image acquisition up to 83.5◦ SZA. The final change to 90◦ SZA was made on
26 November 2015. Daily synthesis (S1) TOA images have been used for the classification because the
atmospheric correction algorithm does not provide reliable information for such high SZA. Moreover,
the long path of light in the atmosphere also implies failures in the plane-parallel approximation of the
atmosphere used in the atmospheric correction algorithm.
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Modifying the SZA cut-off angle implies a change of data acquisition only above 57.5◦N.
Furthermore, maximum latitude of acquisition of PROBA-V is equal to 75◦N. This study therefore
focuses on the top two rows of 10◦-by-10◦ tiles between −180◦ and 180◦ of longitude. The study area
was covered daily between 1 November 2015 and 8 March 2016. On one hand, 1 November 2015 is
one of the first days from which a change of SZA occurred. On the other hand, 8 March 2016 is the last
day of 2016 for which the modified maximum SZA affects the extent of data acquisition.

The MOD10A1 snow product and the first, third and the fourth band of MOD09GA product
were used for benchmarking. These products have a resolution of 500 m and come from the MODIS
instrument on board the Terra satellite. The overpassing time of this heliosynchronous satellite is
approximately 10:30 a.m. at local time. There is thus a difference in overpassing time with PROBA-V,
which will have implications in the benchmarking.

2.2. Classification Algorithm

A threshold-based classification algorithm has been used in this study in order to focus on
spectral information provided in the images. Four classes—snow, clouds, no snow, and shadows—are
identified based on the combination of four thresholds. A Global map of open water bodies and
coastlines at 300 m (CCI-LC WBv3.0) is used to set classification values to NoData in water bodies [26].
This map of 2014 is based on Synthetic Aperture Radar (SAR), Shuttle Radar Topography Mission
(SRTM) Water Body Data (SWBD) and Medium-Spectral Resolution Imaging Spectrometer (MERIS)
data. Snow detection is primarily based on the NDSI index. Pixels with an NDSI value above 0.4 have
been labelled as snow as in [14]. In addition to this index, the NDVI has been used to discriminate
vegetation and avoid snow commissions. Due to the high latitude, bare soil or lichens are usually
covered by snow during this period so that it is assumed that vegetation is always observable in the
absence of snow. According to [27], pixels with an NDVI above 0.2 can be considered as vegetation.
Finally, two thresholds have been applied on Red and NIR bands. On one hand, a threshold of 0.075
has been applied to the Red band in order to flag shadows from mountains and clouds. On the
other hand, non-snow pixels with a NIR band value above 0.35 are labelled as clouds. This threshold
has been applied to overcome chromatic aberrations on bright surfaces at very high SZA (above
86.5◦ SZA). Chromatic aberrations occur because the refraction of light depends on itswavelength.
Rays of different colors are thus shifted on the focal plane, especially with large incidence angles.
The atmosphere acts like a lens due to its heterogeneity (variations of air density as a function of height
due to pressure and temperature changes) and refracts the light passing through it. The diffusion and
scattering phenomena also need to be considered because they modify the intensity of the signals of
the different wavelengths. These phenomena exacerbate at high SZA because atmospheric path length
becomes larger.

2.3. Accuracy Assessment

The accuracy assessment was based on visual interpretation of images because snow, clouds
and shadows need to be considered at the exact time of image acquisition. A hierarchical
stratified probabilistic sampling was designed to compare the classification accuracy at different SZA.
The particularity of this stratification is that the position of the sun at overpass time is a function of the
date. The geographic position of pixels observed with a given SZA is therefore not a constant.

The first stratification level consists in randomly selecting 18 dates out of the 135 days between
1 November 2015 and 8 March 2016. For each date, a vertical strip composed of two PROBA-V tiles is
further selected out of the 36 longitudes of origins. Each strip covers 10◦ of longitude and ranges from
latitudes 55◦N to 75◦N.

The second stratification level was based on SZA values. Each strip was divided into eight SZA
classes, which are listed in Table 3. The strata were delineated based on the geometric files provided
in the PROBA-V metadata [25]. A preliminary qualitative evaluation suggested a drop in the snow
classification overall accuracy with increasing SZA. Therefore, the width of strata in terms of degrees
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of SZA has been adapted with thinner strata at high SZA. The SZA category above 89.5◦ was discarded
because the visual interpretation was no longer possible due to large chromatic aberrations and low
signal-to-noise ratio (SNR).

Table 3. Sun Zenith Angle classes used for the validation of the snow cover map as well as related
latitudes north at the winter solstice.

SZA Latitude N (21 December 2015)

SZA < 81◦ <55.3◦

81◦ ≤ SZA < 85◦ 55.3◦–59.5◦

85◦ ≤ SZA< 87◦ 59.5◦–61.65◦

87◦ ≤ SZA < 88◦ 61.65◦–62.7◦

88◦ ≤ SZA < 88.5◦ 62.7◦–63.25◦

88.5◦ ≤ SZA < 89◦ 63.25◦–63.8◦

89◦ ≤ SZA < 89.5◦ 63.8◦–64.35◦

The number of points needed in each SZA class was determined by using Equation (2). A precision
of 95% and confidence interval of 5% on both sides of the overall accuracy values have been judged
sufficient for the validation. The number of points was defined in order to test that the overall accuracy
was larger than 85% for the four lowest SZA classes (n = 196) and 80% for the three largest (n = 246):

α = z ×
√

p × (1 − p)
n

. (2)

with α, the interval of acceptation; z, the 90% quantile of the Gaussdistribution; p, the a priori
probability to correctly classify a pixel and n, the number of pixels needed.

A probabilistic point-based sampling was used within each stratum. Due to the variable area of
SZA strata, it was important to force an even sampling probability. The number of points per strip and
per SZA class was therefore adjusted proportionally to the ratio between the area of the SZA class in
the tile and the total area of the SZA class at the selected date.

Finally, a comparison between observed and mapped classes has been realized and synthetized
in a confusion matrix. Three indices have been calculated to assess accuracy: the overall, the user
and the producer accuracy. These indices are described in [28] as primary measures for map accuracy
assessment. The overall accuracy is the sum of the correctly classified points divided by the total
number of points used for the accuracy assessment. The user and producer accuracies are defined
for all classification categories (i.e., snow, no snow, clouds or shadows). The user accuracy of snow is
the total number of correctly classified points in the snow category divided by the total number of
points classified as snow in this category. The producer accuracy of snow is meanwhile computed by
dividing the total number of the correctly classified points in the snow category by the total number of
points indicated as snow in the reference data (i.e., the photointerpreted data) [29].

3. Results

3.1. Qualitative Assessment of the Classification

The classification results were consistent for the full area of interest and at all dates based on
a qualitative inspection. Figures 3 and 4 represent a synthetic view of those results at three dates,
respectively, over North America and Greenland, and over Eurasia. Clouds and shadows account
for one-third to one-half of the area at each date, while patches of land not covered by snow are
visible even on 21 December 2015. All of these no snow patches are confirmed vegetation patches on
PROBA-V images.
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3.2. Quantitative Accuracy Assessment

3.2.1. Impact of the SZA

Figure 5 shows the overall accuracy of the different SZA classes. The overall accuracy ranges
between 73% and 85%. The hypothesis that the overall accuracy could be equal to 80% was only
rejected with a 5% confidence interval for the last SZA class.
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Figure 5. Overall accuracy of the snow cover classification for the different sun zenith angles classes.

Figure 6 shows that producer’s and user’s accuracies of the snow class have a different behavior
with a producer accuracy always above the user accuracy. Indeed, our methodology tries to optimize
the overall accuracy of the snow classification but without making a compromise between producer
and user accuracies for the snow class. The producer’s accuracy of the snow class is consistently above
90% and even increases at large SZA. On the other hand, the user’s accuracy is below 70% for the
lowest SZA class and reaches a maximum value of around 87.5◦ before decreasing as the SZA increases.

Concerning the clouds class, the producer accuracy drops with the increase in SZA. The overall
accuracy is not affected in Figure 5 because the proportion of clouds decreases and the proportion
of snow increases, except between the penultimate and the last class where the proportion remains
constant. This also affects user accuracy of snow as the main errors of classification are clouds detected
as snow. The decrease in snow user accuracy above 88◦ SZA is certainly due to lower image quality,
and, for the last interval, to the steadiness in the clouds proportion.
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Figure 6. Evolution of the producer and user accuracy of the snow cover class with sun zenith angle
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3.2.2. Comparison with MODIS

A comparison between our snow classification and the MOD10A1 snow product has been realized.
The purpose of this comparison was to benchmark the accuracy of our snow classification compared
to a snow product commonly used and known for being of good overall accuracy [23]. The accuracy
of the snow classification of MODIS has been analysed thanks to the same set of randomly sampled
points and on the same dates as for PROBA-V. The number of common points used for this comparison
is reduced because MODIS only captures information up to 86.5◦ SZA and the shadows class does
not appear in MOD10 classification. In total, the validation was thus based on 447 points. For a fair
comparison between the two sensors, each point was reinterpreted a second time on MODIS true
color images (MOD09GA) because clouds moved between PROBA-V and MODIS overpass time. This
information has been used for the computation of the overall, user and producer accuracies of MODIS.
The raw confusion matrices for PROBA-V and MODIS are presented in Tables 4 and 5, respectively.

Table 4. Confusion matrix of PROBA-V for comparison with MOD10.

Classification Photo-Interpretation Clouds Snow No Snow Sum

Clouds 183 43 0 226
Snow 13 167 3 183

No Snow 9 11 18 38
Sum 205 221 21 447

Table 5. Confusion matrix of MOD10 for comparison with PROBA-V.

Classification Photo-Interpretation Clouds Snow No Snow Sum

Clouds 254 35 1 290
Snow 45 79 0 124

No snow 7 23 3 33
Sum 306 137 4 447

The surface and the number of points taken in each SZA class are variable. Therefore, the sampling
probability in each class varies. A weighting has been made to handle this variability (Equation (3)):

Wi =

∑i
Si
Ni

Si
Ni

∑i(
∑i

Si
Ni

Si
Ni

)
, (3)

with Si the surface of the SZA class i, Ni the number of points taken in class i, and Wi the weight of the
class i.

Weighted user, producer and overall accuracies of PROBA-V and MODIS classifications are
represented in Table 6. The overall accuracy of MOD10 product between 55◦N and 75◦N is about
74.6% ± 4% at 95% of confidence, while PROBA-V overall accuracy for the same points is about
81.9% ± 4%. It can be seen that both products underestimate the no snow at high SZA, as illustrated
in Figure 7. This is particularly true with MODIS.

Table 6. Weighted user, producer and overall accuracies of snow classifications of MODIS and
PROBA-V with the same points used for the comparison with MODIS (447 points) and PROBA-V with
all the points up to 88.5◦ SZA (1121 points). Confidence intervals at 95% are also mentioned.

User Accuracy Producer Accuracy
Overall Accuracy

Clouds Snow No Snow Clouds Snow No Snow

MODIS (n = 447) 84 ± 4 54 ± 8 71 ± 44 87 ± 4 64 ± 8 8 ± 9 75 ± 4
PROBA-V (n = 447) 89 ± 4 76 ± 6 79 ± 17 79 ± 5 91 ± 4 45 ± 16 82 ± 4

PROBA-V (n = 1121) 90 ± 3 74 ± 3 79 ± 13 77 ± 4 92 ± 2 50 ± 14 81.1 ± 2
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4. Discussion

The results of the quantitative accuracy assessment show that the overall accuracy of the snow
classification (81.1%) realized on TOA PROBA-V images at high SZA is above standards for a good
classification overall accuracy (i.e., 80% [30]). Concerning user and producer accuracies, results are
above the goal of 60% except for the producer accuracy of the no snow class, which is only about
50% (Table 6). The low producer accuracy of this class is mainly due to the low signal-to-noise ratio.
Nonetheless, large patches of land without snow cover are correctly detected. Lower snow user
accuracy and clouds producer accuracy are both due to clouds detected as snow (Table 4).

To our knowledge, there are no studies about the specific classification of snow at high SZA
with optical sensors. Acomparison between the well-known MOD10A1 snow product and PROBA-V
snow classification has therefore been realized. It shows that the snow classification with PROBA-V is
significantly higher than MODIS at these SZA. Underestimation of the no snow class and omission
errors in the snow class (due to misclassification as clouds) in the MODIS snow product (Table 5) are
primary causes for this result. However, three other factors could impact the differences observed
between the two snow classifications. First, the classification that has been developed here with
PROBA-V is applied at a global scale but is specific and optimized for high SZA snow mapping,
while the MOD10A1 snow product has been created to be consistent in a large SZA range and not
specifically for high SZA. Indeed, the overall accuracy of MOD10A1 snow product has been assessed
by [31] to be between 80% and 100% for a wide range of SZA. However, accuracy was lower for images
taken at high SZA. For lower SZA, the MOD10A1 overall accuracy is therefore at least as good as the
PROBA-V one. Secondly, the images that have been used in our snow classification are TOA images
while Top-Of-Canopy (TOC) images are used in MOD10A1 snow products. In theory, the use of TOC
images should lead to a better snow classification in MOD10A1 product, but this was not observed
at large SZA. However, it is known that atmospheric corrections at high SZA become challenging.
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It could be possible that atmospheric corrections at these SZA do not improve the MOD10A1 product
anymore. Thirdly, the overpassing time difference between the two satellites induce a variation in the
SZA of images. This difference varies between 0.6 and 1◦ SZA as a function of the date and the latitude.
This implies that MODIS images have been taken when the sun was lower than for PROBA-V images.
It may lead to an overestimation of the overall accuracy of PROBA-V in comparison with MODIS.
However, this variation of SZA is small with respect to the differences in SZA that are investigated
and to the low impact of the SZA on the overall accuracy of PROBA-V snow classification.(Figure 5).

The uncertainty (95% confidence intervals) on the overall accuracy estimates was smaller than
5 percent. The uncertainties were also small (<10%) for the producer and the user accuracies of the
snow and clouds classes (Table 6). However, uncertainties on user and producer accuracies of the
non-snow class are high (up to 44 percent). This is due to the small number of sample points in this
class. As a matter of fact, little can be said on these accuracies. The estimated non-snow user accuracy
of the PROBA-V classification is larger than MODIS, but this is not statistically significant.

NDSI and NDVI thresholds based on [14,27], which have been used for the snow classification
with PROBA-V TOA images, were found to be consistent for the snow classification. Red and NIR
band thresholds have been added to avoid classification problems due to low and high spectral values.
This increases the quantity of no-data in images, but this is not a major issue as images are captured at
a daily basis.

Considering performances of the automated classification even based on TOA images, it seems
reasonable to continue image acquisition at least up to 88.5◦ SZA. Net gain of surface and latitude has
been computed based on the maximum SZA of 88.5◦, where user and producer accuracies of almost all
classes are above 60% (Table 6). The maximum gain of land surface was approximately 11.5 million km2

on 18 January 2016 (Figure 8). It represents a bit more than the area of Europe. This large area would
be lost every year during winter with the use of previous cut-off angles. This graph is only accurate
for winter 2015–2016 because, on one hand, PROBA-V has no onboard propellant, and it is therefore
subject to orbital drifting [17]. On the other hand, the maximum latitude gain is a function of the
equation of time, which is the astronomical model that describes the difference existing between real
and mean solar time. This difference is caused by the tilt of the Earth’s axis and the elliptical orbit of
the Earth around Sun [32].The maximum gain of latitude is approximately 8◦: it is almost constant
between early-November and mid-February. The equation of time does not generate large variations
around the latitude values computed for winter 2015–2016.Remote Sens. 2016, 8, 699 12 of 16 
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Figure 8. Evolution of the gain in terms of surface (blue) and decimal degree of latitude (red) during
winter 2015–2016 due to the change from 82◦ to 90◦ sun zenith angle SZA. The asymmetry of gain for
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The large majority of land surface at high latitude are covered with snow during winter. It is
therefore important to detect patches of remnant areas without snow. In order to evaluate the interest
of snow and no snow maps at high SZA, the probability of remnant no snow areas need to be
considered. As [23] and our results show that MOD10 overestimates snow cover at large SZA (Figure 7),
the probability of no snow for the different SZA classes was estimated for this winter using the random
sample points. Table 7 shows that the absence of snow cover is observed with SZA as high as 88.5◦.
This value is likely to be underestimated because the change of cut-off angle was only effective on
27 October 2015, while its impact on the observed region starts in early October. Due to the lower snow
cover probability at the beginning of the season, one could indeed expect to observe more snow cover
absence during this period. Furthermore, General Circulation Models (GCMs) predict that the effects
of anthropogenic greenhouse warming will be amplified in the northern high latitudes due to feedback
in which variations in snow and sea ice extent play key roles [33]. Future snow cover proportions at
high latitudes could therefore be affected. This could require the monitoring of snow cover above 88.5◦

SZA even if, during the winter of 2015–2016, regions above the latitude corresponding to 88.5◦ SZA
were fully covered by snow.

Table 7. Percentages of observed no snow pixels and no snow/snow ratios of the SZA classes used in
the validation.

SZA Percentage of Observed
No Snow Pixels

Percentage of No Snow Per
Valid Observations

SZA < 81◦ 11 26
81◦ < SZA < 85◦ 7 15
85◦ < SZA < 87◦ 3 6
87◦ < SZA < 88◦ 2 3

88◦ < SZA < 88.5◦ 1 2
88.5◦ < SZA < 89◦ 0 0
89◦ < SZA < 89.5◦ 0 0

In the specific context of snow cover mapping at high latitude, the confusion between snow
and clouds has a lesser impact on the product fitness-to-purpose than the discrimination between
vegetation and snow. The probability to observe snow under clouds is indeed very high. The algorithm
that has been used is very fast and sufficiently accurate for the purpose of the study. A non-parametric
separability analysis [34] was used to assess the potential of PROBA-V to discriminate classes.
This analysis yields the probability of the discrimination error between two classes considering
the same probability of occurrences. The results of the separability analysis of the different bands show
that the probability of misclassification is about 20% for our indices (Figure 9). Therefore, the highest
accuracy of classification is about 80% with those indices and observation conditions (SZA, sensor,
etc.). The lower probability of misclassification is 10% only for the class no snow—clouds using the
red band. The snow classification could therefore not be greatly improved thanks to another algorithm.
Nevertheless, the results of the threshold-basedclassification are consistent and proved to be better
than MOD10.
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Figure 9. Probability of misclassification (classification error) of major classification classes for different
indices of separation. Red, Near InfraRed (NIR), Blue and Short Wave InfraRed (SWIR) correspond
to the four bands of PROBA-V, Normalized Difference Vegetation Index (NDVI) and Normalized
Difference Snow Index (NDSI) are the two indices used in our classification, simple Ratio (SR) BlueRed
is the index used in Sentinel-2 snow classification (Figure 1) and S3 to S5 are indices used in the
PROBA-V snow quality flag (Table 1).

The improvement of the snow classification would require further work on atmospheric
corrections, which would improve radiometric quality. As we have seen, data between 81◦ SZA
and 88.5◦ SZA bring useful information on a qualitative point of view (a snow classification is
a qualitative information about land cover). Moreover, spaceborne sensors are constantly improving
their capabilities in the treatment of low signal-to-noise ratio images. To our knowledge, problems that
limit the use of atmospheric corrections at high SZA (above 82◦) are the computation time, the lack of
remote sensing data at these SZA, and the error introduced when assuming a plane parallel atmosphere.
By managing these limitations, the acquisition of data at high SZA could therefore not only be useful
for qualitative purposes like classifications but also for quantitative ones like albedo measurements.
However, new developments would be impossible without test data at high SZA.

5. Conclusions

In this study, Top Of Atmosphere images at 333 m spatial resolution and daily temporal resolution
from PROBA-V have been used to classify snow at very high latitudes (i.e., very high solar zenith
angles). This was made possible by the change of cut-off angle of PROBA-V from 82◦ to 90◦ of solar
zenith angle. To our knowledge, snow classification with optical images has never been realized at
such high solar zenith angles. The overall accuracy of the snow classification is 81.1% ± 4% and user
and producer accuracies are above 70% and have small confidence intervals (except for the no snow
class) at least up to 88.5◦ of solar zenith angle. The snow classification has been compared to the
MOD10A1 snow product and showed better results as the overall accuracy of the latter is 75% ± 4% at
these SZA. Moreover, all producer and user accuracies of our snow classification except the producer
accuracy of the clouds class were above MOD10A1.

This study demonstrates that it is both relevant and technically possible to use optical remote
sensing images to map snow at solar zenith angles of at least 88.5◦. Above this SZA, the classification
accuracy is affectedd by chromatic aberrations, high atmospheric diffusion and aerosol scattering and
low signal-to-noise ratio.

Considering the relevance of snow cover mapping for ecology and climatology, more information
should be derived from optical Earth Observation satellites at high latitude by changing this cut-off
angle. In addition to representing a clear added value to the mission, this change would basically have
no cost (apart of downlink capacity) and no impact on other applications.
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Abbreviations

The following abbreviations are used in this manuscript:

SZA Solar Zenith Angle
NDSI Normalised Difference Snow Index
NDVI Normalised Difference Vegetation Index
IMS Ice Mapping System
NOAA National Oceanic and Atmospheric Administration
POES NOAA Polar Orbiters
GOES NOAA Geostationary Satellites
GMS Japanese Geostationary Meteorological Satellites
METEOSAT European Geostationary Meteorological Satellites
DOD US Department of Defense
DMSP Defense Meteorological Satellite Program
AVHRR Advanced Very High Resolution Radiometer
MODIS Moderate Resolution Imaging Spectroradiometer
MTSAT Multifunctional Transport Satellites
NOHRS CNational Operational Hydrologic Remote Sensing Center
DEM Digital Elevation Model
ATSR-2 Along Track Scanning Radiometer
AATSR Advanced Along-Track Scanning Radiometer
FSC Fractional Snow Cover
NIR Near-InfraRed
SWIR ShortWave-InfraRed
VITO Flemish Institute for Technological Research
TOA Top of Atmosphere
SAR Synthetic Aperture Radar
SRTM Shuttle Radar Topography Mission
SWBD Shuttle Radar Topography Mission Water Body Data
MERIS Medium-Spectral Resolution Imaging Spectrometer
SNR Signal-to-Noise Ratio
TOC Top of Canopy
GCMs General Circulation Models
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