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České Budějovice 37005, Czech Republic; berec@entu.cas.cz

5 Institute for Environmental Studies, Faculty of Science, Charles University in Prague, Benátská 2,
12801 Prague 2, Czech Republic

6 College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 114 Wilkinson Hall,
Corvallis, OR 97331, USA; rkennedy@coas.oregonstate.edu

7 Department of Forest Ecosystems and Society, Oregon State University, 321 Richardson Hall,
Corvallis, OR 97331, USA; justin.braaten@oregonstate.edu

* Correspondence: martin.hais@seznam.cz; Tel.: +420-3-8777-2310

Academic Editors: Angela Lausch, Marco Heurich, Randolph H. Wynne and Prasad S. Thenkabail
Received: 30 May 2016; Accepted: 16 August 2016; Published: 22 August 2016

Abstract: Tree mortality caused by bark beetle infestation has significant effects on the ecology and
value of both natural and commercial forests. Therefore, prediction of bark beetle infestations is
critical in forest management. Existing predictive models, however, rarely consider the influence
of long-term stressors on forest susceptibility to bark beetle infestation. In this study we introduce
pre-disturbance spectral trajectories from Landsat Thematic Mapper (TM) imagery as an indicator of
long-term stress into models of bark beetle infestation together with commonly used environmental
predictors. Observations for this study come from forests in the central part of the Šumava Mountains,
in the border region between the Czech Republic and Germany, Central Europe. The areas of bark
beetle-infested forest were delineated from aerial photographs taken in 1991 and in every year from
1994 to 2000. The environmental predictors represent forest stand attributes (e.g., tree density and
distance to the infested forest from previous year) and common abiotic factors, such as topography,
climate, geology, and soil. Pre-disturbance spectral trajectories were defined by the linear regression
slope of Tasseled Cap components (Wetness, Brightness and Greenness) calculated from a time series
of 16 Landsat TM images across years from 1984 until one year before the bark beetle infestation.
Using logistic regression and multimodel inference, we calculated predictive models separately
for each single year from 1994 to 2000 to account for a possible shift in importance of individual
predictors during disturbance. Inclusion of two pre-disturbance spectral trajectories (Wetness slope
and Brightness slope) significantly improved predictive ability of bark beetle infestation models.
Wetness slope had the greatest predictive power, even relative to environmental predictors, and was
relatively stable in its power over the years. Brightness slope improved the model only in the middle
of the disturbance period (1996). Importantly, these pre-disturbance predictors were not correlated
with other predictors, and therefore bring additional explanatory power to the model. Generally,
the predictive power of most fitted model decreases as time progresses and models describing the
initial phase of bark beetle outbreaks appear more reliable for conducting near-future predictions.
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The pre-disturbance spectral trajectories are valuable not only for assessing the risk of bark beetle
infestation, but also for detection of long-term gradual changes even in non-forest ecosystems.

Keywords: forest disturbance; spectral trajectories; bark beetle; Landsat

1. Introduction

Forest disturbances caused by wind, fire and insects are prominent forces controlling forest
ecosystem dynamics across the world [1]. Insect forest disturbances represent slower events relative
to wind and fire, but have strong effects because of irreversible defoliation and subsequent dieback
of mature trees [2]. Bark beetles are among the most common insect disturbance agents in temperate
coniferous forests, affecting tens of millions of hectares in recent decades [3,4]. Moreover, the affected
forest area is predicted to double in the next two decades because of climate change and cultivation
of large areas of coniferous plantations outside their natural distribution [5]. Even though bark
beetle disturbances are a part of the natural dynamics of coniferous forest [6–8] they also represent a
significant threat for timber production and certain forest-provided ecosystem services [9]. Therefore,
the need for both detection and prediction of bark beetle infestation is increasing.

Bark beetle outbreaks are commonly detected from satellite imagery using spectral indices, which
are primarily based on differences and/or ratios between multiple spectral bands [10]. While the first
studies of bark beetle infestation used changes in red and near-infrared (NIR) bands (i.e., normalized
difference vegetation index (NDVI)), indices based on NIR and shortwave infrared (SWIR) have
become the standard, mostly because of their greater sensitivity to forest canopy defoliation caused
by bark beetle infestation [11]. The widely used Tasseled Cap (TC) linear transformation has three
components: Brightness, Greenness, and Wetness [12,13]. Among these three components, Wetness is
often used to identify bark beetle forest disturbances. It is a combination of all Landsat TM or Enhanced
Thematic Mapper Plus (ETM+) spectral bands except the thermal band, with the greatest weight given
to the SWIR channel (e.g., [14]).

While the use of remote sensing for detection of bark beetle infestation is well established,
its application for prediction or risk assessment is rather rare [15–17]. Empirical bark beetle
risk-assessment models commonly use environmental predictors including topography, climate, or soil
types [18–20]. While these environmental predictors are important for bark beetle population dynamics
and tree vitality, the forest stand attributes like structure, composition and spatial configuration have
at least the same importance; however, they differ at various phases of infestation [16,21,22].

Information on tree vigor, which is the crucial factor shaping the risk of infestation, is usually
missing in the standard forest inventory data. Earth observation imagery, specifically from the Landsat
sensor family, can fill this lack of information by providing data on tree vitality and forest health
status [23]. When analyzed as a time series, Landsat can provide information regarding pre-disturbance
change events (e.g., windstorm) or gradual changes in forest vitality (e.g., soil depletion or air pollution),
which increase the stand’s vulnerability to bark beetle infestation [24–27]. Besides the tree to stand-level
factors, the risk of bark beetle infestation is increased by large-scale drivers, which include climatic
variables and/or landscape connectivity [28]. Most of these latter changes are well reflected in
spectral indices and can be documented using multi-temporal remote sensing [29]. Free access to
the Landsat data archive by the US Geological Survey (USGS) in 2008 accelerated the use of these
data for multi-temporal change detection [30]. Subsequently, temporal segmentation algorithms
and spectral trajectory processing tools like LandTrendr [31] and TimeSync [32] were developed
to extract the main features (e.g., greatest disturbance segment, segment duration, and magnitude)
from spectral time series trajectories. These approaches have enabled a wide use of Landsat data
for broad scale ecosystem studies [33]. The use of spectral trajectories based on Landsat imagery
helped to describe forest disturbance history since 1972 [34], encouraging forest recovery [35], and
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detecting bark beetle-affected forest stands more precisely [36]. The following studies distinguished
different defoliator and bark beetle effects [37], duration and severity of insect disturbances [38], and
large-scale drivers of primary forest disturbance events [39]. A similar trajectory-based approach could
be used to detect less pronounced pre-disturbance forest state changes which predispose the forest to
disturbances [40].

We hypothesize that gradual changes in forest vitality significantly increase forest vulnerability
to bark beetle infestation. Therefore our primary objective is to determine if pre-disturbance spectral
trajectories are useful predictors of bark beetle infestation. In particular, we examine how explanatory
and predictive power of models that include pre-disturbance spectral trajectories change relative to
models in which these variables are excluded. For this purpose, we combine pre-disturbance predictors
with environmental predictors in a logistic regression model combined with multimodel inference
using several sets of models to assess the importance of pre-disturbance spectral trajectories.

2. Data and Methods

2.1. Study Area

The study area (1376 ha, centroid N 48◦57.78435′, E 13◦28.33847′) is located in the central part
of the Šumava Mountains, in the border region between the Czech Republic and Germany, Central
Europe (Figure 1). It is part of the Šumava National Park (Czech Republic) and is adjacent to the
Bavarian Forest National Park (Germany). The dominant natural vegetation unit is Norway spruce
forest (Picea abies L. Karst.) [41,42]. Where the area is not covered by forest, mostly peats and mountain
meadows occur. The relief of the study area is created by a peneplain with numerous local hills.
The elevation ranges from 700 m to 1453 m with an average elevation of 1093 m.

Remote Sens. 2016, 8, x FOR PEER  3 of 21 

 

distinguished different defoliator and bark beetle effects [37], duration and severity of insect 

disturbances [38], and large-scale drivers of primary forest disturbance events [39]. A similar 

trajectory-based approach could be used to detect less pronounced pre-disturbance forest state 

changes which predispose the forest to disturbances [40].  

We hypothesize that gradual changes in forest vitality significantly increase forest vulnerability 

to bark beetle infestation. Therefore our primary objective is to determine if pre-disturbance spectral 

trajectories are useful predictors of bark beetle infestat ion. In particular, we examine how explanatory 

and predictive power of models that include pre-disturbance spectral trajectories change relative to 

models in which these variables are excluded. For this purpose, we combine pre-disturbance 

predictors with environmental predictors in a logistic regression model combined with multimodel 

inference using several sets of models to assess the importance of pre-disturbance spectral 

trajectories.  

2. Data and Methods 

2.1. Study Area 

The study area (1376 ha, centroid N 48°57.78435′ , E 13°28.33847′) is located in the central part of 

the Šumava Mountains, in the border region between the Czech Republic and Germany, Central 

Europe (Figure 1). It is part of the Šumava National Park (Czech Republic) and is adjacent to the 

Bavarian Forest National Park (Germany). The dominant natural vegetation unit is Norway spruce 

forest (Picea abies L. Karst.) [41,42]. Where the area is not covered by forest, mostly peats and mountain 

meadows occur. The relief of the study area is created by a peneplain with numerous local hills. The 

elevation ranges from 700 m to 1453 m with an average elevation of 1093 m.  

 

Figure 1. Study area located in the Šumava Mountains, Czech Republic–Germany border region. Figure 1. Study area located in the Šumava Mountains, Czech Republic–Germany border region.



Remote Sens. 2016, 8, 687 4 of 22

Over the last 25 years, several outbreak waves of the European spruce bark beetle (Ips typographus L.)
have caused extensive spruce forest dieback in this area. The outbreak originated in wind-fallen
trees (173 ha) in 1983 and 1984, following two windstorms in the western part of the Bavarian Forest
National Park. These fallen and heavily damaged trees provided suitable conditions for the start
of the outbreak [43,44]. At the beginning of the 1990s the first infested trees occurred in the Czech
region. Because of the subsequent bark beetle dispersal, the Šumava NP administration applied
two management approaches to the infested forests in 1995: (1) a small portion of the stands in the
core zone was left unmanaged (more than 2.000 ha); and (2) the stands in the surrounding buffer
zone were cut to prevent the spread of bark beetles. We analyzed the area in the unmanaged zone
where we expect a dominant role of natural predictors of tree infestation. The bark beetle infestation
accelerated between 1995 and 1997 when the largest area in the central part of Šumava Mountains was
affected [45]. By the end of the year 2000, most of the spruce stands lost all canopy trees and only
small patches of living trees persisted, mostly near peat bogs or at forest edges. After the main dieback
in the study area the forest regenerated successfully towards a natural mountain spruce forest [46,47].

2.2. Aerial and Satellite Data

Groups of trees infested by bark beetle (grey-attack stage) were delineated from ortho-rectified
aerial photographs, which were acquired in 1991 and every year for the period 1994–2000. The smallest
polygon was defined as a group of five adjacent dead trees (0.03 ha). Simultaneously, living spruce
forest, clear-cuts and non-forest areas (meadows, peat-bogs) were also delineated. To avoid their
influence on values of mixed pixels, we excluded all pixels up to 100 m to clear-cuts and non-forest
areas. The resulting land cover polygon layers were transformed to UTM Zone 33 North coordinate
system and overlaid on a 30 m× 30 m grid to make them compatible with Landsat imagery. Pixels were
defined as declined when the dieback was higher than 50% of its area. We used 16 Landsat TM images
from 1984 to 1999 (Table 1). For some years (1988, 1994), multiple images were used to cover no data
areas because of clouds and their shadows. To avoid phenological differences among the images,
only data acquired during the high summer season were used (nominally July and August with
an exception in 1999). The imagery was obtained from the USGS data archive (glovis.usgs.gov).
All images were radiometrically normalized to a common image (acquired on 4 August 1990) using
the MADCAL approach of Canty et al. [48], following Schroeder et al. [49].

Table 1. List of Landsat TM5 images (path 192, row 25).

Acquisition Date

3 August 1984
9 August 1986

11 July 1987
6 August 1988

5 July 1988
8 July 1989

4 August 1990
7 August 1991
9 August 1992

31 August 1994
14 July 1994
30 July 1994
1 July 1995

7 August 1997
10 August 1998

14 September 1999
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2.3. Spectral Trajectories

Based on the study of Hais et al. [40], which shows the potential of spectral trajectories to describe
forest vigor decline before bark beetle infestation, we used this approach to test the significance of
these predictors for modelling bark beetle infestation risk. The abovementioned approach uses linear
regression to fit multi-temporal spectral data. In our study, we consider all three TC components
(Wetness, Brightness and Greenness), though mainly Wetness and Brightness have been shown
as the appropriate multi-spectral vegetation indices to describe forest structure [50] and forest
health in relation to insect disturbance [14,51–53]. To obtain the pre-disturbance spectral trajectories,
we calculated the linear regression slope of each TC component from 1984 to one year before the year
for which the model was calibrated. The slope was calculated for each 30 m × 30 m pixel except
those already infested in previous years. Slopes for non-affected stands were calculated from the same
years as the affected ones in the one-year model. An example of Wetness slope is shown in Figure 2.
These slopes, which represent historical stand condition (e.g., stress, stability, growth), were included
as a model predictor together with commonly used environmental predictors in models of bark beetle
infestation risk.
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Figure 2. Spectral trajectory of Wetness TC component in a given pixel calculated as the slope of linear
regression of Wetness for consecutive years from 1984 to one year before the year for which the model
was calibrated. Slope was calculated for both infested and non-infested pixels; the infested one is
shown as an example.

2.4. Environmental Predictors of Bark Beetle Infestation

Despite a large amount of environmental predictors tested for the risk of bark beetle
infestation [19,21], we selected representatives of each group (see Table 2) to cover all types of possible
influences. Forest stand susceptibility to bark beetle infestation is determined by forest condition itself
or abiotic environmental factors, which in turn influence forest vigor. One of the most significant forest
attributes for bark beetle dispersal is distance to the nearest infested forest [21]. Despite just 100 m
buffer zones of forest in each year, it is still possible to test the distance to the nearest declined forest
inside these buffer zones. In addition, we tested the direction to the nearest declined forest in the
previous year. The direction azimuth value was transformed to eight 45◦ wide classes (N, NE, E, ES,
S, SW, W and NW). Distance to the nearest clear-cut area and distance to the nearest natural forest
edge were taken as a static variable from aerial photograph acquired in 1991. We hypothesize that
the clear-cut edges might ease the entry of bark beetles into the stand while the natural forest edges
represent a physical barrier for the beetles. Moreover, the trees in forest edge adjacent to clear-cut
may suffer from water stress due to higher amount of solar radiation [20,54]. The degree of forest
“naturalness” was calculated as a difference between current forest inventory and potential natural tree
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species composition [55], derived from modified Czech typological maps (natural forest types [56]),
which followed a similar concept as potential natural vegetation [57]. Stand age represents an important
attribute and we used age of dominant (>50%) tree layer because bark beetles preferentially attack
trees older than 60 years [44]. If any tree layer does not reach 50%, we calculated age as a mean value
from the first and second dominant tree layer age. Similarly, the dominant tree layer was used for
determining the tree density. In fact, there was mostly one dominant tree layer and one small layer of
young trees. Soil is characterized by edaphic category, using the Czech typological system. It combines
soil texture, nutrient richness and soil moisture [58]. The age, tree density and edaphic category are
from the Forest Management Institute (FMI) database (www.uhul.cz). The geology parameters are
from Czech Geological Survey maps (www.geology.cz). We calculated the distance to two merged
geological classes (7th moor, peat and 8th sediment), because we anticipated that the distance to these
geology classes reflect wet or aquatic conditions or water supply. Altitude and other topographic
variables were derived from a digital elevation model (DEM) with high spatial resolution (5 m) and
vertical error of 1 m (DMR 4G from ČÚZK, www.cuzk.cz). We have used the heat load index (HLI)
which describes the variation in potential solar radiation and increasing temperature on SW slopes [59],
and the area solar radiation (ASR12), which is a cumulative value of potential solar radiation for entire
year (watt hours per square meter—Wh/m2) with maximum value on south slopes. Topographical
wetness index (TWI), reflecting potential wetness was calculated using SAGA GIS 2.1.0. We expect
that water availability may positively influence the tree resistance against the bark beetle infestation.

Table 2. List of predictors for bark beetle infestation including pre-disturbance indices describing forest
susceptibility and predictors of bark beetle dispersal.

Variable Name and Description Abbreviation State Units Data Source

Forest structure

Distance to the nearest infested forest
in the previous year Dist-source dynamic (m) map of land cover

Direction to the nearest infested forest
in the previous year Dir-source dynamic 8 classes map of land cover

Distance to the nearest clear-cut D-clear-cut static (m) map of land cover

Distance to the natural non
forested area D-natur-edg static (m) map of land cover

Degree of naturalness of forest stand Dg-natur static 6 classes [55,60]

Age of dominant tree layer Age static years FMI database

Tree density of dominant tree layer Density static trees no./ha FMI database

Pedology and geology

Edaphic category Edaphic static 11 classes FMI database

Distance to wet or aquatic conditions Geol-wet static (m) Geological map

Topography and climate

Altitude DEM static (m) DMR 4G DEM

Heat load index HLI static unitless DMR 4G DEM

Area solar radiation for entire year ASR12 static Wh/m2 DMR 4G DEM

Topography wetness index TWI static unitless DMR 4G DEM

Pre-disturbance forest conditions

Slope of Brightness index Bright-sl dynamic unitless Landsat imagery

Slope of Wetness index Wet-sl dynamic unitless Landsat imagery

Slope of Greenness index Green-sl dynamic unitless Landsat imagery
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2.5. Statistical Models

Bark beetle dispersal results in gradual infestation of adjacent stands from year to year, which
carries the possibility of changes in predictor significance during the outbreak period [21]. To assess
predictor significance changes, we built an individual statistical model of bark beetle infestation for
every year within the studied period. The model for a given year included declined and living forest
limited by the 100 m buffer zone around declined forest in the previous year because more than 90% of
affected trees for every year were located in this zone. Because of gaps in data on bark beetle dispersal
for 1992–1993, we used a 250 m buffer zone between the years 1991 and 1994.

To assess if pre-disturbance spectral trajectories improve the ability of a model to predict bark
beetle infestation, we first composed a maximum model that contains all environmental variables plus
all spectral trajectories (slopes). We used the square root transformation of the ASR12 variable to get
values comparable in order to those of the other variables. To assess potential collinearity between
any of the candidate predictors, we looked at the correlations between all combinations of variable
pairs, as well as variance inflation factors (VIFs), calculated from the corvif function, which quantifies
the severity of multicollinearity [61]. The highest correlation we found was between Brightness
and Greenness slopes, ranging between −0.89 and −0.97 for various years. Also, Greenness slope
achieved the highest VIF value every year, ranging between 80 and 130, but reaching as high as
430 in one year. A strategy to avoid multicollinearity is to remove the predictor with the highest VIF
value and recalculate the VIFs, repeating this process until all VIFs are smaller than a threshold value
commonly set to 3–10 [61]. Both approaches suggest removing Greenness slope from our subsequent
analyses. Doing this, maximum observed correlations between any two remaining variables reach
0.6–0.7, and all VIFs are mostly below 3, with one or two VIFs reaching 3.1–3.5 in some years. Thus,
except for Greenness slope, we keep all explanatory variables for the subsequent statistical modeling.

Since we fix three explanatory variables as mandatory parts of any model (DEM, Dist-source,
ASR12), 12 other explanatory variables are left as candidate predictors. From the previous analyses
we found that these three variables have relatively stable contribution to the models across years.
While the DEM has relatively low importance, the latter two variables played dominant roles for
models. Because these variables do not show any trend between the years, we decided to fix them.
Using the all-subset approach, we investigate the effect of the pre-disturbance variables by running a
total of M = 212 = 4096 candidate models.

Since our response variable is binary (30 m × 30 m forest on pixel is declined or not), we use
binary logistic regression for fitting a regression curve. Our data for years 1995 and 2000 suffer from
the problem of complete separation, meaning that a predictor or a subset of predictors is associated
with only one outcome value when the predictor is greater than a threshold. This occurs commonly
in small data sets when an event is rare, and this is also the case here. To cope with this, we use the
Bayesian generalized linear model approach (bayesglm function) implemented in the library arm in the
statistical software R version 3.1.1 [62,63]. We used the default procedure settings, i.e., an independent
Cauchy prior distribution for the model coefficients.

2.6. Multimodel Inference

Because of high uncertainty in model selection (several candidate models or even several dozens
of candidate models may describe data similarly well), we used the multimodel inference method as
a basis for investigating explanatory and predictive performance of the considered model variables.
In this approach, inference is based not on one, but several models in the candidate set [64–66].
In particular, the Akaike information criterion (AIC) is calculated for each model in the candidate set
(we actually calculate AICc, since our sample sizes are relatively small) and these models are ranked
according to their Akaike weights, defined for a model i as:
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wi =
exp

(
− 1

2 ∆AIC (model i)
)

∑M
k=1 exp

(
− 1

2 ∆AIC (model k)
)

In this formula, ∆AIC is the difference between AIC of the model with the minimum AIC value
and AIC of each respective model. The Akaike weight wi expresses the likelihood that the model i is
the best approximating model [66]. We note that AIC (and any of its variants) provides only a relative
measure of how good a model is, given the data and the candidate model set.

The Akaike weights allow estimating relative importance of every predictor variable in the full
model by summing the Akaike weights for each model in which an individual variable occurs [64,66].
We calculated this for all predictor variables, including with and without the pre-disturbance Wetness
and Brightness slopes, allowing assessment of importance of the remote sensing predictors relative
to the environmental variables. Similar to the Akaike weight, this relative importance (or predictor
weight) can be interpreted as equivalent to a likelihood that the respective variable is a part of the best
model [64,66].

We conducted the above-described procedure for four nested model groups. The first group
consists of all M candidate models (full model set). The second group consists of all candidate models
in which the predictor variable Brightness slope is absent and the only candidate pre-disturbance
predictor is the Wetness slope (Wetness slope model set). Similarly, the third group consists of
all candidate models in which the Wetness slope is absent and the only candidate pre-disturbance
predictor is Brightness slope (Brightness slope model set). Our final set of models did not contain
any pre-disturbance variable (plain model set). We used these four model sets to assess predictive
importance of the Wetness slope and Brightness slope variables. All calculations involving multimodel
inference were performed using the R package MuMIn [67].

2.7. Predictions

From each of the four model sets (the full, Wetness slope, Brightness slope and plain model sets),
candidate models with the highest Akaike weights (with summed Akaike weight of at least 0.95) were
selected. These were then used to predict probability of bark beetle attack in the years different from
those for which the models were fitted. This was done to assess whether models fitted for a specific
year in the outbreak cycle could be used to predict dynamics of the bark beetle attack in its other part
of the cycle or how robust the fitted models are across the outbreak. These “best” model sets contained
tens of candidate models, as opposed to thousands of models in the original model sets. We used
models fitted for the year F (referred to as F-models) to calculate probability of bark beetle attack in
the year P (referred to as P-predictions) as follows. Any F-model was used individually to calculate
P-predictions, using data from the year P as its “validation” data. These individual P-predictions were
then averaged, weighting specific P-predictions by the respective F-model Akaike weights [64,66].

Binary logistic regression models allow modeling binary responses (presence/absence of
infestation) by linear regression via a logistic link function. As such, they can predict the probability of
infestation, which can then be classified into two discrete classes choosing a probability threshold [15].
Receiver Operating Characteristics (ROC) curves are a way of evaluating such binary models, since
they are threshold-independent [68,69]. The area under the ROC curve (AUC) is often taken as a typical
performance measure for a binary response variable since it provides a single measure of classification
accuracy [68,69]. We quantified a predictive power of our model-averaged predictions using the ROC
curves and AUC values. In particular, to assess an impact of considering the pre-disturbance spectral
trajectories for making predictions, we statistically tested the null hypothesis that relevant pairs of
the ROC curves (e.g., when both pre-disturbance variables are used vs. only one such variable is
used) are statistically insignificant. We used the R package pROC [70] for calculating the ROC curves,
AUC values, and statistical differences between any two ROC curves.
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3. Results

3.1. Pre-Disturbance Forest Condition

Both pre-disturbance predictors Wetness slope and Brightness slope show a similar spatial pattern
(Figure 3). The spatial variability of both of these predictors is quite high and the slope values vary
from negative to positive, with a clear spatial autocorrelation. Except for the highest Wetness slope
and Brightness slope in affected stands at the beginning of the outbreak relative to latter years of
infestation [40], the most obvious observation here is that the slopes of both indices vary most near
non-forested areas (Figures 3 and 4). While values of the Wetness slope decrease near clear-cuts
and locally increase near natural non-forested areas, the Brightness slope values demonstrate quite
opposite behavior (Figures 3 and 4). Its values increase near clear-cuts and decrease near natural
non-forested areas. Still, the correlation between Wetness and Brightness slopes is not that high
(r = −0.54). The linear regression of Wetness from 1984 to 1994 has mean values of coefficient of
determination for pixels with affected forest higher (R2 = 0.35; SD 0.32) than pixels with unaffected
forest until 1994 (R2 = 0.17; SD 0.33). Similar results show the linear regression of Brightness from
1984 to 1994 for affected forest, which has higher coefficient of determination (R2 = 27; SD 0.37) than
unaffected (R2 = 0.14; SD 0.38). More detailed information about the linear fitting of pre-disturbance
trajectories in our study area is given in [40].
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Figure 3. Spatial distribution of Wetness slope and Brightness slope values. Similar to Figure 2, the pixel
values were calculated as the slope of linear regression of Wetness/Brightness for consecutive years
from 1984 to one year before the year for which the model was calibrated. The maps are composed from
pixels combined among all evaluated years (1994–2000) according to the year of bark beetle infestation.
The lowest Wetness slope values and highest Brightness slope values are mostly adjacent to clear-cuts,
while the slope values in the vicinity of natural non-forested areas show opposite behavior, especially
in the Lusen valley.
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1 
 

 
Figure 4. Wetness slope and Brightness slope values as they vary with distance to the nearest clear-cuts
(A,B) and natural non-forested areas (C,D). The trend (blue line) of slope among distances is visualized
using local polynomial regression (loess) ±1 standard error mean (grey area).

3.2. Predictors of Bark Beetle Infestation

Statistical modelling based on the all-subsets approach and multimodel inference suggests that
when both pre-disturbance predictors are taken into account, Wetness slope is an important variable
to be considered for understanding the bark beetle infestation patterns (Table 3). Conversely, the
likelihood that Brightness slope is a part of the best model is often as low as 0.3 (Table 3). In addition,
whereas the high importance weights of Wetness slope are relatively stable over the years (with the
exception of 2000), the Brightness slope weights show an increase in the years 1994–1996 and then a
steady decline to lower values (≥0.28, see Table 3). The weights of other environmental predictors
show relatively high variability over the years. However, similar to the pre-disturbance predictors,
we recognize two basic trend-groups (Table 3). One group of predictors has a relatively high weight in
the initial years of bark beetle infestation, while gradually losing weight towards the last modelled year.
This group includes the edaphic category, which has high weight values until 1998 (with the exception
of 1995); heat load index (HLI) and distance to wet or aquatic conditions (Geol-wet) show similar trends.
The second group of predictors (TWI, AGE, and Dg-natur) reach the highest importance weights in
the middle of bark beetle outbreak (1996–1997) when the largest forest areas are declined in our study
area [45]. A special case of the opposite trend is represented by distance to clear-cut (D-clear-cut),
which has the highest weights at the beginning and the end of the outbreak. The remaining predictors
show somewhat fluctuating weights over the years.
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Table 3. Predictor importance weights based on multimodel inference when both pre-disturbance indices are used as predictors. The darkest/lightest green show the
highest/lowers predictor importance weights.

Year Wet-sl Bright-sl Dir-Source D-Clear-Cut D-natur-Edge Dg-Natur AGE Density Edaphic Geol-Wet HLI TWI Legend

1994 0.93 0.38 1 1 0.96 0.53 0.65 0.36 1 0.98 1 0.62 ≤0.2
1995 0.81 0.57 0.09 0.33 0.53 0.56 0.36 0.48 0.01 0.42 0.84 0.62 0.21–0.40
1996 1 0.86 0.07 0.32 1 1 0.61 0.3 1 1 0.7 1 0.41–0.60
1997 1 0.54 0.95 0.45 0.29 1 1 1 1 0.53 0.74 1 0.61–0.80
1998 1 0.27 1 0.26 1 0.3 0.3 0.37 0.99 0.29 0.54 0.61 0.81–1.00
1999 0.99 0.28 0.45 0.68 0.4 0.86 0.31 0.93 0.47 0.48 0.29 0.3
2000 0.26 0.28 0.01 0.95 0.32 0.38 0.26 0.32 0.01 0.37 0.66 0.43
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To examine how explanatory power of models that include our two considered remote sensing
variable changes relative to models in which one of these variables is excluded, we repeated the
above analysis considering all environmental predictors but only with either Wetness or Brightness
slope. With just Wetness slope (i.e., without Brightness slope), its importance weight and those of
all environmental variables remained virtually unchanged (compare Table 3 and Table A1). On the
contrary, with just Brightness slope (i.e., without Wetness slope), its importance weight increased in
several years (1994, 1996), but decreased in other ones (1995, 1997; compare Table 3 and Table A2).
These changes in the Brightness slope importance weights were accompanied by changes in the HLI
importance weights. In particular, the HLI importance weight generally increased, with the highest
increase in the years 1996 to 1998 being in the range of 10% to 20%. Similar importance weight changes
were observed when the results based on the Wetness model set were compared with those based
on the plain model set (high importance of Wetness slope; Table A3), and when the results based on
the Brightness model set were compared with those based on the plain model set (low to medium
importance of Brightness slope; Table A3).

3.3. Model Predictions

We assessed the predictive power of our fitted models by calculating the ROC curves and the
corresponding AUC values for all years except the training year of the model. Regardless of the
modelling scenario used, the trend is quite similar. Table 4 shows the results of models including both
Wetness and Brightness slope. Generally, the predictive power of most fitted models decreases as time
progresses. Further, models fitted at the beginning of bark beetle outbreak have higher predictive
power than models fitted after outbreak culmination. The models describing an initial phase of
bark beetle outbreaks thus appear more reliable for conducting near-future predictions. The higher
predictive power of a few models for the year 2000 breaks this rule, but at the end of outbreak, reliability
of models somewhat decreases because of low sample size.

Table 4. Ability of fitted full models for each individual year (rows) to predict bark beetle forest
infestation in the years 1994 to 2000 (columns), except the same year for which the model was fitted,
evaluated using AUC. Higher AUC values mean higher predictive power of the respective models;
value 0.5 represents random prediction.

Years of Prediction
Legend

1994 1995 1996 1997 1998 1999 2000

Years of
Model Fit

1994 - 0.76 0.75 0.66 0.49 0.50 0.62 ≤0.5
1995 0.79 - 0.77 0.71 0.60 0.52 0.47 0.51–0.60
1996 0.81 0.83 - 0.73 0.54 0.51 0.66 0.61–0.70
1997 0.73 0.75 0.79 - 0.65 0.57 0.53 0.71–0.80
1998 0.65 0.68 0.63 0.69 - 0.57 0.76 0.81–0.90
1999 0.69 0.62 0.63 0.67 0.65 - 0.82
2000 0.70 0.66 0.63 0.67 0.65 0.65 -

Inclusion of the pre-disturbance indices generally increases model predictive power (Table 5).
Although the improvement may seem marginal, it is statistically significant in many cases (Table A4).
Interestingly, an increase is generally higher with backward prediction (Table 5, values below the
diagonal) than forward one (Table 5, values above the diagonal). Differences in Table 5 would not
change much if we replace the plain model set with the Brightness model set. On the other hand, if we
consider differences between AUC values corresponding to the full model set and the Wetness model
set, they are all virtually zero and statistically insignificant. This also suggests that with respect to the
model predictive power, the Wetness slope plays a more important role than the Brightness slope.
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Table 5. Difference between AUC values corresponding to the full model set (with both Wetness and
Brightness slopes) and the plain model set (with no remote sensing variable).

Year of Prediction

1994 1995 1996 1997 1998 1999 2000

Year of
Model Fit

1994 - 0.01 0.01 0.02 0.01 −0.01 −0.04
1995 0.03 - 0.02 0.02 0.03 −0.01 0.01
1996 0.04 0.01 - 0.01 0.01 0.01 −0.02
1997 0.06 0.04 0.03 - 0.02 0.03 0.03
1998 0.06 0.07 0.05 0.01 - 0.12 0.02
1999 0.10 0.06 0.06 0.02 0.02 - −0.02
2000 0.00 0.00 0.00 0.00 0.00 0.00 -

4. Discussion

4.1. Spectral Indices Reflecting the Forest Health Change

Our results clearly demonstrate that long-term changes of TC Wetness and Brightness are related
to the probability of bark beetle infestation during outbreak. This corroborates our hypothesis that
bark beetles preferably affect the weakened forest stands, and that these changes in forest health or
tree vigor are detectable in spectral signal change. In general the nature of spectral signal change
is connected with the tree defoliation [37], chlorophyll fluorescence change and/or water content
decrease in needles due to water stress [71]. This spectral change is well detected in NIR and SWIR
spectral region [11]. In particular the SWIR-based indices (NDMI, Wetness, Brightness, NBR) are
often used to assess change in forest health due to acid rain [72], defoliation following insect attack
(e.g., [51]), or forest mortality (e.g., [73]). For this study, we selected Wetness and Brightness indices.
These two indices show almost opposite behavior in reaction on forest decline [45]. In contrast, some
authors have reported success using NIR-based indices. For example, Senf et al. [37] found stronger
association of spruce budworm disturbance with Greenness than two other TC indices. However,
the same study describes the highest sensitivity of Wetness and Brightness to mountain pine beetle
disturbance. We removed Greenness early during our statistical analysis due to correlation and
collinearity. Moreover, previous results from the same study area [45] support this removal, because
they showed the inconsistent response of Greenness to the forest decline, when the magnitude of
change was lower and the values changed with delay after forest decline. A possible reason could be
the variability in understory composition; a dying canopy may uncover either soil and litter, or a green
shrub/herbaceous layer. The sensitivity in spectral response to these contrasting cover types may be
greater in Greenness than Wetness or Brightness and lead to inconsistent spectral-temporal trends
associated with infestation-related tree mortality.

Further understanding of ecological processes underlying changes in Wetness and Brightness can
be inferred from index trends we observed near forest edges. The decrease of Wetness and increase of
Brightness and/or high variability of both predictors near clear-cuts may be related to water stress
due to higher amount of solar radiation, particularly in southern and western forest edges [20,54].
Similar results were reported by Dantas de Paula et al. [74] in a Landsat-based study, where the
tree cover variation increases towards the forest edge. The authors suggested the underlying causes
for this variability to be degradation debt, hyperdynamism and environmental factors (topography,
soil conditions etc.). In contrast to clear-cuts, the natural forest edges do not show obvious change
of variability in the pre-disturbance indices. Nevertheless, some of these edges have higher Wetness
slope values than do areas inside the forest. This effect is pronounced at the margin between forest and
meadows (e.g., Lusen valley), where the high canopy closure protects the soil against drying, or denser
canopies may serve as a physical defense to bark beetle infestation.
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4.2. Pre-Disturbance Forest Conditions

If the trend in both indices indicates changes in forest health status or stand vigor, we should
be able to describe their main causes. One of the strongest factors responsible for forest decline
in Central Europe and North America in the second half of the last century was anthropogenic air
pollution causing acid deposition. Even though the Šumava Mountains do not belong to the most
heavily polluted areas in Czech Republic (e.g., the “black triangle” in northern Czech Republic with
large historical forest decline), there is evidence from ground observations of forest decline due to
air pollution in the last century [75,76]. Other retrospective methods suggest the consequences of
acid deposition on forest health can be still recognized. Šantrůčková et al. [76] found a proportional
relation between ∆ 13C in tree rings and soil acidification (pH decrease). Polák et al. [77] describe tree
defoliation followed by crown regeneration using secondary shots that were detectable even after
30 years. It is therefore likely that multi-temporal imagery captures this forest health decline due to
acid deposition, which is in concordance with results reported by Rock et al. [72]. Another possible
long-term stress factor in the Šumava Mountains is stand damage due to repeated windstorms or
snow [7]. The repeated windstorms may damage the tree roots and cause tree vigor decrease. Drought
is another possible long-term factor [28], and its role probably increases during bark beetle infestation.

All the aforementioned factors may reflect the spatial variability resulting from climate and
topography differences from local to regional scales. Even though some studies mention no significant
relation between forest health and bark beetle attack (e.g., [78]), Bytnerowicz et al. [79] suggested that
long-term elevated levels of atmospheric N and S depositions and elevated O3 predispose trees to
insect attacks and other stresses.

4.3. Spectral Trajectories

The use of linear regression for Wetness and Brightness fit impose simple trends over time.
This assumption is consistent with results of Hais et al. [40], who reported lower Wetness slope values
in the first years of the bark beetle outbreak in comparison to latter years, which were more stable.
This suggests that the initial bark beetle attack occurred in the most vulnerable stands that show
long-term Wetness/Brightness change before the disturbance. Nevertheless, the resulting spectral
trajectory may be influenced by other factors, which can act antagonistically. While long-term stress
factors decrease Wetness values (or increase Brightness) over time, canopy growth may support an
opposite trend, in particular for fast-growing tree species. For example, partial forest defoliation may
result in small spectral change, which is quickly followed by spectral recovery after disturbance [37,38].
Similarly, forest thinning is reflected in Wetness change [16] when the values first decrease due to
lower canopy closure (and higher role of ground cover in the spectral signal), but after several years,
the values increase due to faster tree growth [16]. Users should therefore be careful when using these
indices in managed forests. Additionally, recent forest history often includes high magnitude changes
that are not always linear in their spectral-temporal response. Because of this complexity, the non-linear
fit of spectral trajectory is often needed to describe forest history for a given pixel [35]. Nevertheless,
much easier interpretable linear fits are valuable for description of many long-term processes with
unaltered trend like gradual systematic change in natural vegetation communities [80]. Similarly we
used the linear fit to describe pre-disturbance forest condition assuming it mostly follows simple trend.
However, to avoid complexity in the course of spectral-temporal response we use just forest pixels
without any type of disturbance during assessed pre-disturbance time.

4.4. Risk of Bark Beetle Infestation and Model Predictions

Among all predictors used in our study, Wetness slope provided the greatest improvement of
bark beetle infestation risk modelling, while Brightness slope was a significant predictor only for a
few years. Moreover, Wetness slope and Brightness slope are not correlated with the environmental
predictors, and thus are able to explain additional observed variability. The Landsat spatial resolution
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(30 m) provides a good dataset to describe the spatial variability on a stand level. Relatively low
weights of importance for some environmental variables may be caused by the small dataset, especially
when the spatial resolution of the data is relatively coarse and/or the predictor is categorical. This may
be the case for very low weights of broad edaphic categories in models for years 1995 and 2000
(lowest number of cases), which are high in other years. This limitation has lower importance for
continuous variables like pre-disturbance indices. This supports the potential of the Landsat data for
local to global-level modelling in general. In agreement with Lausch et al. [21], we conclude that the
importance of individual predictors changes during the bark beetle infestation. The predictors with the
highest model weights (edaphic category, Geol-wet, HLI) in the first years of the bark beetle outbreak
document the selective infestation of the most susceptible forest stands. The selective infestation is
critical until bark beetle population size reaches the threshold where tree defense is overwhelmed [78].
After successful selective infestation, bark beetle propagation produces population sizes so great that
selective behavior is an unnecessary strategy to seize trees, which shifts increased importance to other
predictors. This was demonstrated in 1997, when the largest forest area was affected, and tree-related
predictors had the highest weights (age, density, DG-natur). The trees were probably more susceptible
individually, reflecting stand structure and not the environment predictors as in the beginning of the
bark beetle outbreak. The decrease in almost all predictor weights further into the future, shows that
the high bark beetle density led to random-like infestation, where the beetles were able to overcome
any tree’s defense. The predictor D-clear-cut has high importance in the first and last years of bark
beetle outbreak, which might be connected with low bark beetle numbers in both periods and need for
selective behavior.

Predictive power of our fitted models (including all predictors) calculated using ROC curves
and corresponding AUC values was quite similar. The high AUC values when data were used for
fitting and also for prediction (0.76–0.91) documented reasonably good fit to the data, when assessed
using AUCs. The decrease of predictive power in fitted models over the years documents not only
the general decrease of fits to the distant years, but it also supports the explanation of predictor
importance changes during a bark beetle outbreak [21]. Moreover, the slower decrease of predictive
power (higher predictive power for distant years) for models fitted at the beginning of the bark beetle
outbreak nicely corresponds with the hypothesis that at the beginning of the bark beetle outbreak
beetles are more selective, while later, when beetle densities rise and/or the most susceptible stands
are already destroyed, beetles need to be more opportunistic.

5. Conclusions

Using pre-disturbance slopes of Tasseled Cap components Wetness and Brightness, spectral
trajectories improved our understanding and prediction of bark beetle infestation. Linear regression
slopes of these two variables calculated for the time period before the disturbance significantly increase
the predictive power of bark beetle infestation models from year to year and even for longer predictions.
Moreover, these predictors were not correlated with environmental predictors and therefore are able
to explain additional observed variability. This also suggests that long-term gradual decrease of
forest vitality significantly increases forest vulnerability to bark beetle infestation. When comparing
the importance weights of both pre-disturbance predictors, the Wetness slope weights are high and
relatively stable over the years (with the exception of 2000), while the weights of Brightness slopes show
an increase only in the middle of the bark beetle outbreak (1996) and steadily decline to low values.
We distinguished two components of relationship between these two indices and tree susceptibility
to bark beetle infestation. First, they reflect long-term stress factors (acid deposition, drought, snow,
windstorms). The second component is their change near forest clear-cuts edges. This probably relates
to higher solar radiation at open edges or other disturbances caused during the clear-cut.
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We have also identified two groups of environmental factors important for prediction of bark
beetle infestation risk. The first group has high importance weights in the initial years of the outbreak
(edaphic category, distance to aquatic conditions, heat load index), which might be connected with
high pest selectivity for the most susceptible stands. The second group of tree-related predictors has
the highest weights in the middle of the outbreak, when the largest forest area was affected, and the
pest numbers were highest (age of dominant tree layer, tree density of dominant tree layer, Distance to
the natural non-forested area). The first can be used to identify potentially vulnerable areas, and the
second for predicting bark beetle spread after the initial phase of infestation.

But forest ecosystems also face long-term, gradual changes due to hidden stress factors that
contribute to their vulnerability and susceptibility to bark beetle infestation. And this is where
non-correlated pre-disturbance spectral trajectories, based on Landsat data with its vast and accessible
archive, can really help.
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Appendix A

A1. Predictor Importance Weights

Table A1. Predictor importance weights based on multimodel inference when only the Wetness slope is used with the environmental predictors. The darkest/lightest
green show the highest/lowest predictor importance weights.

Year Wet-sl Dir-Source D-Clear-Cut D-Natur-Edg Dg-Natur AGE Density Edaphic Geol-Wet HLI TWI Legend

1994 0.99 1.00 1.00 0.96 0.52 0.65 0.36 1.00 0.98 1.00 0.62 ≤0.2
1995 0.68 0.09 0.33 0.52 0.56 0.36 0.48 0.01 0.39 0.84 0.65 0.21–0.40
1996 1.00 0.07 0.37 1.00 1.00 0.67 0.30 1.00 1.00 0.70 1.00 0.41–0.60
1997 1.00 0.95 0.48 0.29 1.00 1.00 1.00 1.00 0.54 0.74 1.00 0.61–0.80
1998 1.00 1.00 0.26 1.00 0.30 0.29 0.37 0.99 0.29 0.55 0.61 0.81–1.00
1999 0.99 0.45 0.68 0.34 0.86 0.31 0.94 0.47 0.48 0.29 0.30
2000 0.26 0.01 0.95 0.32 0.38 0.26 0.32 0.01 0.37 0.67 0.44

Table A2. Predictor importance weights based on multimodel inference when only the Brightness slope is used with the environmental predictors. The darkest/lightest
green show the highest/lowers predictor importance weights.

Year Bright-sl Dir-Source D-Clear-Cut D-Natur-Edg Dg-Natur AGE Density Edaphic Geol-Wet HLI TWI Legend

1994 0.90 1.00 1.00 0.96 0.52 0.71 0.35 1.00 0.98 1.00 0.62 ≤0.2
1995 0.27 0.07 0.29 0.55 0.59 0.36 0.49 0.01 0.38 0.86 0.65 0.21–0.40
1996 1.00 0.14 0.39 1.00 1.00 0.67 0.32 1.00 1.00 0.82 1.00 0.41–0.60
1997 0.33 0.99 0.36 0.29 1.00 1.00 1.00 1.00 0.69 0.94 1.00 0.61–0.80
1998 0.36 1.00 0.26 1.00 0.27 0.28 0.33 0.99 0.35 0.71 0.59 0.81–1.00
1999 0.29 0.22 0.74 0.34 0.84 0.31 0.93 0.67 0.46 0.32 0.28
2000 0.28 0.01 0.95 0.32 0.38 0.27 0.32 0.01 0.37 0.67 0.44
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Table A3. Predictor importance weights based on multimodel inference when no pre-disturbance index is used as a predictor. The darkest/lightest green show the
highest/lowest predictor importance weights.

Year Dir-Source D-Clear-Cut D-Natur-Edg Dg-Natur AGE Density Edaphic Geol-Wet HLI TWI Legend

1994 1.00 1.00 0.98 0.56 0.77 0.33 1.00 0.97 1.00 0.61 ≤0.2
1995 0.07 0.29 0.55 0.59 0.36 0.49 0.01 0.38 0.86 0.65 0.21–0.40
1996 0.16 0.68 1.00 1.00 0.60 0.33 1.00 1.00 0.88 1.00 0.41–0.60
1997 0.99 0.35 0.29 1.00 1.00 1.00 1.00 0.69 0.94 1.00 0.61–0.80
1998 1.00 0.26 1.00 0.27 0.28 0.32 0.99 0.35 0.72 0.59 0.81–1.00
1999 0.22 0.74 0.34 0.84 0.31 0.92 0.68 0.46 0.33 0.28
2000 0.01 0.95 0.32 0.38 0.27 0.32 0.01 0.37 0.67 0.44

A2. Predictive Power of the Remote Sensing Variables

Table A4. Results of comparison tests of two ROC curves, one corresponding to the full model set (with both Wetness and Brightness slopes) and the other to the plain
model set (with no remote sensing variable). p-values are shown. The ROC curve differs significantly for most comparisons.

1994 1995 1996 1997 1998 1999 2000

1994 - 0.09 0.00 0.00 0.00 0.00 0.00
1995 0.00 - 0.00 0.00 0.00 0.81 0.93
1996 0.00 0.31 - 0.01 0.00 0.86 0.03
1997 0.00 0.01 0.00 - 0.00 0.00 0.04
1998 0.00 0.01 0.00 0.00 - 0.04 0.46
1999 0.00 0.09 0.00 0.00 0.01 - 0.41
2000 0.00 0.59 0.02 0.42 0.49 0.36 -
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