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Abstract: Current methods for monitoring deforestation from satellite data at sub-annual scales
require pixel time series to have many historical observations in the reference period to model
normal forest dynamics before detecting deforestation. However, in some areas, pixel time series
often do not have many historical observations. Detecting deforestation at a pixel with scarce
historical observations can be improved by complementing the pixel time series with spatial context
information. In this work, we propose a data-driven space-time change detection method that detects
deforestation events at sub-annual scales in data cubes of satellite image time series. First we spatially
normalised observations in the local space-time data cube to reduce seasonality. Subsequently, we
detected deforestation by assessing whether a newly acquired observation in the monitoring period
is an extreme when compared against spatially normalised values in a local space-time data cube
defined over reference period. We demonstrated our method at two sites, a dry tropical Bolivian
forest and a humid tropical Brazilian forest, by varying the spatial and temporal extent of data cube.
We emulated a “near real-time” monitoring scenario, implying that observations in the monitoring
period were sequentially rather than simultaneously assessed for deforestation. Using Landsat
normalised difference vegetation index (NDVI) time series, we achieved a median temporal detection
delay of less than three observations, a producer’s accuracy above 70%, a user’s accuracy above
65%, and an overall accuracy above 80% at both sites, even when the reference period of the data
cube only contained one year of data. Our results also show that large percentile thresholds (e.g.,
5th percentile) achieve higher producer’s accuracy and shorter temporal detection delay, whereas
smaller percentiles (e.g., 0.1 percentile) achieve higher user’s accuracy, but longer temporal detection
delay. The method is data-driven, not based on statistical assumption on the data distribution, and
can be applied on different forest types. However, it may face challenges in mixed forests where,
for example, deciduous and evergreen forests coexist within short distances. A pixel to be assessed
for deforestation should have a minimum of three temporal observations, the first of which must be
known to represent forest. Such short time series allow rapid deployment of newly launched sensors
(e.g., Sentinel-2) for detecting deforestation events at sub-annual scales.
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1. Introduction

Monitoring deforestation at sub-annual scales (e.g., weekly or monthly) using satellite data
is increasingly becoming an important part of the initiatives that aim to reduce deforestation
across the globe. This is because monitoring deforestation at the sub-annual scale, unlike annual
monitoring, allows for timely detection of deforestation events, thus providing an opportunity for
early interventions to stop illegal deforestation activities [1]. For example, the Brazilian Institute for

Remote Sens. 2016, 8, 651; doi:10.3390/rs8080651 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 651 2 of 16

Space Research (INPE) monitors deforestation events at sub-annual scales in the Amazon using a
system based on Moderate Resolution Imaging Spectroradiometer and bi-temporal change detection
which has played an important role in reducing deforestation in Brazil. However, forest monitoring
systems which detect deforestation events at sub-annual scales based on a bi-temporal change detection
approach may face challenges in areas where forest has strong seasonality. To address this challenge,
methods that detect deforestation at sub-annual scales from satellite image time series while accounting
for seasonal variations have been developed in recent years [2–8]. These methods detect deforestation
events by testing if a newly acquired observation at a particular pixel is abnormally low when compared
to historical temporal dynamics of forest at such pixel [2,3,6,9]. However, for the test to be robust,
a pixel time series is required to have many historical observations. In some areas, however, pixel
time series often do not have enough historical observations, mainly because of persistent cloud cover
coupled with a relatively long revisit time in the past [10], especially for satellite sensors which have
high and medium spatial resolutions. To remedy the problem of cloud cover, new methods that detect
deforestation events at sub-annual scales by combining optical and synthetic aperture radar (SAR)
data have been proposed [9,11]. However, these methods also require a pixel to have many historical
observations. In the past, SAR sensors, which can penetrate the clouds, had limited temporal coverage,
also resulting in sparse time series. Such sparse historical observations make it difficult to properly
model the normal temporal dynamics of the forest, and may lead to many false detections during
deforestation detection. In the near future, however, temporally dense SAR time series from Sentinel
sensors will be available, and such dense time series, when combined with data from optical sensors,
will address some of the current challenges associated with monitoring deforestation at sub-annual
scales in the tropics [12]. In particular, it will be possible to detect deforestation events within a few
days of occurrence. However, with such dense time series, another challenge related to pre-processing
huge amounts of historical data will arise: pre-processing huge amounts of historical data for large
areas is likely to take a relatively long time, thus affecting rapid detection of deforestation events.

The challenge associated with monitoring deforestation at sub-annual scales in areas with scarce
historical observations can also be addressed by exploiting both temporal and spatial information in
satellite image time series. An individual pixel may not have enough observations, but the spatial
context derived from neighbouring pixels can provide sufficient information to determine whether
a pixel with scarce historical observations is deforested or not. Such an approach may reduce the
amount of historical satellite data that needs to be processed when monitoring deforestation at
sub-annual scales.

Recently, Huang and colleagues [13] exploited spatiotemporal Landsat data to identify deforested
areas, but that work focused on detecting deforestation at the annual scale. Similarly, Hamunyela and
co-workers [5] used the spatial context of pixels to reduce seasonal variations in Landsat time series
before detecting deforestation at sub-annual scales using a method [3] which relies on individual pixel
time series. These studies demonstrate that spatiotemporal information of image time series is useful
for deforestation monitoring. However, methods for detecting deforestation at sub-annual scales based
on integrated analysis of spatiotemporal data have not been published, to the best of our knowledge.

The approach proposed in this paper is to identify deforested pixels by exploiting spatiotemporal
information available in the space-time data cube of satellite image time series. In this way, a pixel
with at least three temporal observations in its time series is expected to still allow assessment of
deforestation at sub-annual scales. This is because observations in the space-time data cube are likely to
be sufficient for deciding whether a newly acquired observation is abnormally low. However, shifting
to space-time change analysis requires two major challenges to be overcome. The first challenge
concerns dealing with seasonality in the data cube. Seasonal variations may disguise deforestation in
the data if not removed, especially in dry forests where seasonality is strong. The second challenge is
how to consistently identify anomalies in a space-time data cube. Existing methods for identifying
anomalous observations in space–time data cubes of climatic data [14] and global gross primary
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production [15] nevertheless focus on the temporal perspective, since thresholds are defined without
considering spatial context.

This paper describes a data-driven space-time change detection method for monitoring
deforestation at sub-annual scales. The method detects deforestation at pixel level as an extreme
event in vegetation index values within local space-time cubes of satellite image time series. With this
method, spatial-temporal information in satellite image time series is exploited to detect deforestation
at sub-annual scales. Our method builds upon the spatial context approach developed in a previous
study [5] for reducing seasonal variations in satellite image time series. The method we propose here
demonstrates how data cubes of satellite image time series can be used for sub-annual deforestation
monitoring. We demonstrated our method at two sites, a dry tropical forest and a humid tropical
forest (Section 3), using normalised difference vegetation index (NDVI, [16,17]) time series derived
from Landsat-5/TM and Landsat-7/ETM+ data.

2. Method Description

2.1. Space-Time Approach for Deforestation Detection—The Concept

Methods for detecting deforestation events at sub-annual scales (e.g., monthly) from satellite
image time series first model the normal forest cover dynamics before assessing deforestation.
Modelling normal forest cover dynamics is challenging for pixels which do not have many historical
observations. We can remedy this challenge of insufficient historical observations in individual pixel
time series by adding the spatial context of the focal pixel in a so-called neighbouring pixels space-time
data cube. To do this, we implement the following steps (Figure 1). First, like in other studies
including [4,5,18] we mask non-forest areas in the historical period from the image time series. In this
study, we masked non-forest areas using Landsat tree cover continuous fields [19]. Second, we define
a local space-time data cube (e.g., Figure 2) around each pixel in the image time series. Essentially,
we have a spatially moving window with an additional time dimension that moves from one pixel
to the other. To avoid the smoothing out effect when deseasonalising the data [5], the spatial extent
of the data cube should be larger than the size of deforestation events the user aims to detect. Third,
we deseasonalise the observations in the local data cube (e.g., Figure 3) to increase the sensitivity for
detecting non-seasonal changes (see Section 2.2). Fourth, we split each local data cube into a reference
cube (RC) and monitoring cube (MC). The RC contains historical observations—where non-forest
pixels have been masked, whereas the MC contains newly acquired observations—not yet assessed
for deforestation. Here, we build upon the idea of specifying the history (reference) and monitoring
period as employed in a structural change monitoring framework [3,20–22]. Fifth, based on training
data and observations in the RC, we compute a threshold percentile for defining an observation as
abnormally low (see Section 2.3). Sixth, we assess whether the focal pixel in the MC is below the
threshold percentile. If so, the pixel is flagged as deforestation or potential deforestation.
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Figure 2. An example of a local space-time data cube for normalised difference vegetation index 
(NDVI) derived from a stack of Landsat images for the period of 2004–2014. The data cube moves 
across the image stack (moving window), and it is split into a reference and monitoring cube. The 
NDVI values in the cube are not yet deseasonalised. The horizontal banding in the cube shows the 
effect of seasonal variations, with yellowish tones representing the dry season.  

 
Figure 3. An example of distributions of observations in the reference cube before (a) and after (b) 
reducing the seasonality in a space-time data cube using spatial context. sNDVI denotes spatially 
normalised NDVI—after applying the spatial context method. Note that some values for spatially 
normalised NDVI are above 1 because we used 95 percentile to normalise the pixel values. Such 
values represent NDVI values which were above 95 percentile. 

2.2. Deseasonalising Observations in the Space-Time Data Cube 

Building on the method of [5], NDVI time series are deseasonalised by dividing the NDVI value 
for each pixel with the 95th percentile (P95) computed from the NDVI values of the pixels within a 
defined spatial neighbourhood of such pixel. The use of the P95 is based on the assumption that, for 
each spatial neighbourhood, forested pixels would occupy the upper tail of the distribution, which is 
deemed to be properly represented by P95 [5]. Note that this assumption may not hold if the forest 
canopy cover is low, or if there are pixels with high vegetation index (VI) values owing to land cover 
types other than forests (e.g., agriculture). A good forest mask is needed to make sure seasonality for 
forest pixels can be captured by P95. In contrast to [5], where P95 was computed for each pixel, here 
we compute P95 at each time step in the local data cube, and use it to deseasonalise all pixels per time 
slice in the data cube. The subscript t in P95t denotes a particular time instance t. Within the data cube, 

Figure 2. An example of a local space-time data cube for normalised difference vegetation index (NDVI)
derived from a stack of Landsat images for the period of 2004–2014. The data cube moves across the
image stack (moving window), and it is split into a reference and monitoring cube. The NDVI values
in the cube are not yet deseasonalised. The horizontal banding in the cube shows the effect of seasonal
variations, with yellowish tones representing the dry season.
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Figure 3. An example of distributions of observations in the reference cube before (a) and after
(b) reducing the seasonality in a space-time data cube using spatial context. sNDVI denotes spatially
normalised NDVI—after applying the spatial context method. Note that some values for spatially
normalised NDVI are above 1 because we used 95 percentile to normalise the pixel values. Such values
represent NDVI values which were above 95 percentile.

2.2. Deseasonalising Observations in the Space-Time Data Cube

Building on the method of [5], NDVI time series are deseasonalised by dividing the NDVI value
for each pixel with the 95th percentile (P95) computed from the NDVI values of the pixels within a
defined spatial neighbourhood of such pixel. The use of the P95 is based on the assumption that, for
each spatial neighbourhood, forested pixels would occupy the upper tail of the distribution, which is
deemed to be properly represented by P95 [5]. Note that this assumption may not hold if the forest
canopy cover is low, or if there are pixels with high vegetation index (VI) values owing to land cover
types other than forests (e.g., agriculture). A good forest mask is needed to make sure seasonality for
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forest pixels can be captured by P95. In contrast to [5], where P95 was computed for each pixel, here we
compute P95 at each time step in the local data cube, and use it to deseasonalise all pixels per time
slice in the data cube. The subscript t in P95t denotes a particular time instance t. Within the data cube,
we calculate P95t for each time instance, and deseasonalise all pixel values at such time instances by
dividing them by P95t. An example of how observations in the reference cube are distributed (a) before
and (b) after reducing the seasonality in a space-time data cube using spatial context is shown in
Figure 3. After deseasonalising, the next step (Section 2.3) is to determine whether a newly acquired
observation at the focal pixel in the monitoring period is abnormally low.

2.3. Detecting Deforestation as Extreme Event in Space-Time Data Cube

We rely on the existing extreme value approach [15] to compute the threshold from RC for
determining if an observation in the monitoring period is abnormally low. With the extreme value
approach, observations below a specified percentile (e.g., 5th percentile) are regarded as abnormally
low [15]. Here, a suitable percentile is established by using a training dataset (see Section 3.2).

For each local cube, an observation is abnormally low if it is below the specified percentile, and
such an observation is initially flagged as potential deforestation. Definite labelling is postponed since
satellite image time series are often noisy, mainly because of remnants of clouds and cloud shadows.
Furthermore, some pixels may have naturally low values if they cover forest areas that have lower
photosynthetic activity. Values for such pixels might be identified as extreme observations within a
local space-time data cube, although no deforestation has occurred. If not accounted for, these pixels
could lead to the detection of false deforestation events.

Deforestation is confirmed if the next observation is also below the specified percentile regardless
of the size of the time step between the observations. Given this monitoring approach, deforestation
events are detected with a delay of one observation. This delay is referred to as temporal detection
delay, which is the number of observations between when the deforestation event occurred and when
the deforestation is detected [5]. We only assess a pixel for deforestation if such a pixel contains a
minimum of three observations, one of which must be in the RC.

3. Monitoring Deforestation in Landsat NDVI Data Cubes—A Case Study

We assessed our space-time change detection method at two study sites, shown in Figure 4.
One study site is a dry tropical forest located southeast of Santa Cruz de la Sierra in Bolivia, (centred
at 18.388˝S, 62.361˝W), and the other study site is a humid tropical forest located west of Ariquemes,
Rondonia State, Brazil (centred at 10.2952˝S, 64.0478˝W). The forest at the Bolivian site is characterised
by strong seasonality in its photosynthetic activity, whereas the seasonality is less pronounced at
the Brazilian site. Each of the study sites covers an area of about 10,000 km2. Deforestation at
the Bolivian site is dominated mainly by industrial agricultural expansion that resulted in large
blocks of deforestation events, whereas deforestation events at the Brazilian site are heterogeneous
in size, corresponding mostly to a process of colonisation. With varying degrees of seasonality and
different deforestation processes, these study sites are particularly suitable for testing a new method
for sub-annual deforestation monitoring.

We used the NDVI image time series derived from atmospherically [23] and geometrically
corrected Landsat-5/TM and Landsat-7/ETM+ images. Landsat images were obtained from the United
State of America’s Geological Survey (USGS) Landsat Surface Reflectance (SR) Climate Records (CDR).
We used all available (2000–2014) terrain corrected images (L1T). We assumed that co-registration
of Landsat-5/TM and Landsat-7/ETM+ images was satisfactory. Clouds and cloud shadows were
masked using the Fmask procedure [24]. Note that Fmask outputs are distributed with Landsat SR
CDR Products. Landsat tree cover continuous fields for 2005 [19] were used to mask non-forest areas
and areas with less than 10% tree cover prior to the year 2005.
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Figure 4. An overview of the location of the study sites south east of Santa Cruz de la Sierra, Bolivia,
and west of Ariquemes, Rondonia State, Brazil. The base images are band 1-2-3 composites of Landsat
ETM+ images from 15 April 2013 (Bolivia) and 21 July 2014 (Brazil).

To understand how the spatial extent of the local data cube influences spatial and temporal
accuracies, we tested six varying spatial extents of the local data cube (Table 1). We also varied the
temporal extent of the RC, herein referred to as temporal extent of the data cube, to understand how
it affects spatial and temporal accuracy for deforestation detection. The temporal extent was varied
from one to five years of data, at an interval of one year. The RC contained images from 2004 for the
one-year data scenario, images from 2003–2004 for the two-year scenario, and images from 2002–2004
for the three-year data scenario. For the four- and five-year data scenarios, the RC contained images
from 2001–2004 and 2000–2004, respectively. Figure 5 shows the number of images available in the RC
for each temporal extent at each study site.

For each spatial and temporal extent, we trained our method to determine the optimal percentile
for detecting deforestation at a sub-annual scale (Section 3.2). Next, we used the optimal percentiles to
validate our method (Section 3.3).

Table 1. Data cube names and their spatial extents and dimensions for the Bolivian and Brazilian sites.

Name of the Data Cube Spatial Dimensions the Data Cube
(Row ˆ Column)

Spatial Extent of the Data Cube
(ha)

C5 5 ˆ 5 2.25
C9 9 ˆ 9 7.29

C13 13 ˆ 13 15.21
C17 17 ˆ 17 26.01
C21 21 ˆ 21 39.69
C25 25 ˆ 25 56.25
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reference cube at Bolivian and Brazilian study sites.

3.1. Reference Data

We used 966 sample pixels to validate the final change map for the Bolivian site, and 400 sample
pixels were used for validating the Brazilian change map (Table 2). Training was based on 170 and
70 sample pixels for the sites in Bolivia and Brazil, respectively. Similar to [4,18,25], reference data
were acquired by visual interpretation of Landsat data along with high spatial resolution imagery
available in Google Earth and Bing Maps. High spatial resolution imagery available in Google Earth
and Bing Maps were used to determine whether an area is indeed deforested or not. At each study site,
we sampled deforested and forested areas by stratified probability sampling [26,27] after manually
digitising corresponding areas on Landsat images. The number of sample pixels was proportional
to the area of the stratum. The deforested stratum contained areas that had been deforested during
the period of 2005–2014, whereas the forested stratum covered areas which were still forested at the
end of 2014. For each sample pixel in the deforested area, we estimated the date of deforestation by
visually determining the Landsat image in which the deforestation event is first visible. The date of
deforestation was used to assess the temporal accuracy.

Table 2. Number of sample pixels used for training purposes and final validation of deforestation
maps produced at the Bolivian and Brazilian sites.

Bolivian Site Brazilian Site

Forest Stratum Deforested Stratum Forest Stratum Deforested Stratum

Training data 155 15 49 21
Test data 878 88 280 120

3.2. Training the Space-Time Change Detection Method

To train our method, we generated a series of percentiles (n = 50), ranging from 0.1 to the 5th
percentile, at an interval of 0.1 percent. Next, for each spatial and temporal extent, we used each of
these percentiles as a threshold for identifying deforestation at a sub-annual scale. A training data set
(Table 2) was then used to calculate the overall accuracy, bias (calculated by subtracting the omission
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error from the commission error [11]), and the median temporal detection delay. Since our monitoring
goal was to detect deforestation events as early as possible but with high overall accuracy, for each
spatial and temporal extent we selected the percentile, i.e., the optimal percentile, that achieved the
shortest median temporal detection delay with the highest overall accuracy.

3.3. Validating the Space-Time Change Detection Method

At each study site, we applied our space-time change detection method using the optimal
percentiles, determined from the training data, as thresholds for deforestation. We emulated a
“near real-time” monitoring scenario, implying that observations in the monitoring period were
sequentially rather than simultaneously assessed for deforestation. Although some areas may have
experienced multiple deforestation and regrowth regimes between 2005 and 2014, we only considered
the first deforestation event per pixel, and once labelled as deforested, we stopped monitoring such a
pixel at subsequent time steps. The spatial and temporal accuracy for change detected between 2005
and 2014 were calculated using the test data set (Table 2). More specifically, we calculated the overall
accuracy, producer’s accuracy, user’s accuracy, and the median temporal detection delay. Like [5],
the temporal detection delay was calculated at each sample point by counting the number of valid
observations available between the image in which deforestation was visually identified, and the image
in which deforestation was detected by our method. Confidence intervals for the overall accuracy, as
well as producer’s and user’s accuracies, were calculated using binomial probability of success based
on Wilson's method [28].

4. Results

In this section, first we show the results from the training phase of our method (Section 4.1).
In particular, we show how the percentile threshold affects the spatial and temporal accuracy
(Section 4.1.1), and how spatial and temporal extents of the data cube influence the optimal percentile
for detecting deforestation at a sub-annual scale. Next, we show the validation results (Section 4.2).

4.1. Training

4.1.1. Effect of Percentile Threshold on Spatial and Temporal Accuracy

Figure 6 shows an example of how overall accuracy, bias, and median temporal detection delay
were changing in relation to the percentile threshold. Here, we only show examples for the smallest
(C5) and largest (C25) cubes for each study site. Generally, larger percentiles produced lower overall
accuracy (Figure 6a,d) and shorter median temporal detection delay (Figure 6c,f), except for the C25
at Brazilian site. Deforestation events were increasingly being omitted (negative bias) when using
smaller percentiles (Figure 6b,e).
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Figure 6. Change in the overall accuracy, bias, and the median temporal detection delay (tD) as a 
function of the percentile for defining deforestation as extreme event in Landsat space-time data cubes 
(C5 and C25) at the Bolivian (a–c) and Brazilian (d–f) study sites. The blue lines denote zero bias. Bias 
was calculated by subtracting the omission error from the commission error ([11]).  
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function of the percentile for defining deforestation as extreme event in Landsat space-time data cubes
(C5 and C25) at the Bolivian (a–c) and Brazilian (d–f) study sites. The blue lines denote zero bias. Bias
was calculated by subtracting the omission error from the commission error ([11]).

4.1.2. Effect of Spatial and Temporal Extent of the Data Cube on Optimal Percentile

Figure 7 shows how the optimal percentile changes for different combinations of spatial and
temporal extents. For longer temporal extents (TE = 4 or 5 years), the optimal percentile is higher for
larger spatial extents (Figure 7). Generally, the optimal percentiles at the Brazilian site were larger than
those for the Bolivian site. At the Bolivian site, the optimal percentile was smaller than 3% for each
spatial and temporal extent combination.

Remote Sens. 2016, 8, 651; doi:10.3390/rs8080651 9 of 15 

 

 
Figure 6. Change in the overall accuracy, bias, and the median temporal detection delay (tD) as a 
function of the percentile for defining deforestation as extreme event in Landsat space-time data cubes 
(C5 and C25) at the Bolivian (a–c) and Brazilian (d–f) study sites. The blue lines denote zero bias. Bias 
was calculated by subtracting the omission error from the commission error ([11]).  

4.1.2. Effect of Spatial and Temporal Extent of the Data Cube on Optimal Percentile  

Figure 7 shows how the optimal percentile changes for different combinations of spatial and 
temporal extents. For longer temporal extents (TE = 4 or 5 years), the optimal percentile is higher for 
larger spatial extents (Figure 7). Generally, the optimal percentiles at the Brazilian site were larger 
than those for the Bolivian site. At the Bolivian site, the optimal percentile was smaller than 3% for 
each spatial and temporal extent combination.  

 
Figure 7. Change in the optimal percentile for detecting deforestation events at sub-annual scales 
when varying the spatial extent and temporal extent (TE) of the data cube at the Bolivian and Brazilian 
site. The optimal percentile was determined by choosing the percentile that achieves the shortest 
median temporal detection delay and highest overall accuracy based on the training data set. 

  

Figure 7. Change in the optimal percentile for detecting deforestation events at sub-annual scales when
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The optimal percentile was determined by choosing the percentile that achieves the shortest median
temporal detection delay and highest overall accuracy based on the training data set.
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4.2. Validation

Figure 8 shows how the spatial and temporal accuracies varied in relation to spatial and temporal
extents. Note that the effect of the spatial extent on spatial and temporal accuracy (Figure 8a,c,e,g),
is shown for the results obtained from the longest temporal extent (TE = 5 years). The effect of
the temporal extent is shown for the results obtained from the largest spatial extent (56.25 ha,
Figure 8b,d,f,h). Varying the spatial extent or temporal extent had a marginal influence on the
overall accuracy at both the Bolivian and the Brazilian site (Figure 8a,b). However, the change in
either the spatial extent or temporal extent of the data cube had a pronounced effect on the producer’s
(Figure 8c,d) and user’s accuracies (Figure 8e,f). Increasing the spatial or temporal extent of the data
cube resulted in higher producer’s accuracy and lower user’s accuracy at both sites. Data cubes with a
smaller spatial extent (e.g., smaller than 20 ha) produced maps with a higher user’s accuracy at both
study sites than larger data cubes. The reference cube with the shortest temporal extent (one year
of data) produced maps with 74.4% user’s accuracy at the Bolivian site, and 65.8% at the Brazilian
site. Deforestation events detected at Bolivian and Brazilian sites when the reference cube contained
one year of data are shown by month (Figure 9) and year (Figure 10) of detection. The variation
in producer’s accuracy was generally larger when varying the spatial extent of the cube than when
varying the temporal extent (Figure 8c,d).

Increasing the spatial or temporal extent of the data cube resulted in a shorter median temporal
detection delay at both study sites (Figure 8g,h). However, the change in temporal extent did not have
an influence on the median temporal detection delay at the Brazilian site. At this site, reference cubes
with a temporal extent of four or five years achieved the shortest median temporal detection delay
(one observation). Similar to the producer’s accuracy, the variation in median temporal detection delay
was generally greater when varying the spatial extent of the cube than when varying the temporal
extent (Figure 8g,h).
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extreme event in Landsat data cube with a reference period containing one year of data. 

Figure 8. Overall accuracy (a,b); producer’s accuracy (c,d); user’s accuracy (e,f); and median temporal
detection delay (tD) (g,h) of deforestation events at the Bolivian and Brazilian study sites as a
function of the spatial (left) and temporal extent (right) of the local data cube. Vertical bars (a–f)
indicate 95% confidence intervals. The effect of the spatial extent on spatial and temporal accuracy
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Figure 8b,d,f,h).
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5. Discussion

In this paper, we proposed a data-driven space-time change detection method that exploits
spatiotemporal information in satellite image time series to detect deforestation at sub-annual scales
as extreme events in local data cubes. We demonstrated the space-time change detection method
on Landsat NDVI image time series at a dry (Bolivian site) and humid (Brazilian site) tropical forest
sites. Our results show that the method is suitable for accurate detection of deforestation events at
sub-annual scales in both dry and humid forests even when image time series contains only one year
of historical observations. We were able to achieve a median temporal detection delay of less than
three observations, and producer’s accuracy above 70%, user’s accuracy above 65%, and an overall
accuracy above 80% at both dry and humid tropical forest areas when using a data cube with one year
of historical observations and a window size of 56.25 ha (Figure 8). A previous study at the same study
sites [5], which used a method that only analysed individual pixel time series [3] and used all available
Landsat images (1984–2014), also achieved at overall accuracy above 80% and a median temporal
detection delay of less than four observations. Other studies [2,4,6], which used different methods
to detect deforestation at sub-annual scales at different study sites, also achieved overall accuracies
above 80%. These studies expressed the temporal delay in time, whereas here we express the temporal
detection delay as number of observations, thus making it difficult to directly compare their temporal
delay to ours.

Deforestation events were mapped more accurately at the Bolivian site when using data cubes
with a large spatial extent. This is mainly because deforestation events at the Bolivian site were
generally large. In areas with large deforestation events, cubes with a larger spatial extent lead to
accurate deforestation mapping because the cube is less likely to be entirely within the footprint of a
deforestation event. If the spatial extent of a data cube is smaller than the footprint of the deforestation
event, the impact of deforestation is likely to be smoothed out when spatially normalising data
to reduce seasonal variations. The spatial normalisation approach assumes that there are at least
5% forest pixels within the spatial window, since pixels’ values are spatially normalised against
the upper 5% tail [5]. Using data cubes with small spatial extent can lead to accurate mapping of
deforestation events in areas with relatively small deforestation events. With small deforestation
events, spatial normalisation is less likely to smooth out the impact of deforestation in the data. This is
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why deforestation events were mapped accurately at the Brazilian site even when using data cubes
with small spatial extent.

The incidents of false detection (low user accuracy) were particularly high for data cubes with
large spatial extents because the thresholds calculated from data cubes with large spatial extents or
longer temporal extents were relatively large. Such large thresholds can lead to many false detections
because they might be too sensitive. Such sensitivity could also explain why deforestation events
were typically detected with shorter delay when using data cubes with either large spatial extent or
longer temporal extent (Figure 8). Sensitive thresholds can also explain why increasing the temporal
extent of the data cube at the Bolivian site led to accurate mapping of deforestation events. Increasing
the temporal extent of the data cube did not affect the temporal detection delay at the Brazilian site
(Figure 8h). This is mainly because, for each temporal extent, the optimal percentile at the Brazilian
site was large (Figure 7).

Increasing the spatial extent had more of a major influence on the optimal percentile at the
Brazilian site than at the Bolivian site (Figure 7). This inter-site difference can be explained by the
number of observations in the reference cube. Temporally, there were fewer images at the Brazilian site
than at the Bolivian site (Figure 5). So, optimal percentiles at the Brazilian site were less likely to reach
stability at smaller spatial extents because observations in the reference cube were few. In contrast, at
the Bolivian site, the optimal percentile was most likely to reach stability at a smaller spatial extents
because the images were many, and additional information from spatial context was less likely to have
a major influence on the optimal percent.

Our method offers new opportunities to tackle challenges associated with existing methods for
monitoring deforestation at sub-annual scales [3–6,29]. In particular, our method exploits both spatial
and temporal information in satellite image time series to detect deforestation at a sub-annual scale,
thus allowing us to analyse pixels which do not have many historical observations. Results from the
two case studies indicate that our method is robust in detecting deforestation events at a sub-annual
scale, even when the image time series only contains one year of historical observations (Figure 8).
One year of historical observations is often too short to properly differentiate deforestation from
normal forest dynamics, especially in forests that exhibit strong seasonality. By combining spatial and
temporal information, we can use image time series of high spatial resolution satellite sensors (e.g.,
RapidEye), whose time series are short, to track small-scale forest disturbances (e.g., selective logging).
Similarly, by exploiting spatiotemporal information in image time series, there is no need to wait for
image time series from newly launched sensors (e.g., Sentinel-2) to lengthen before exploiting such
data to detect deforestation events at sub-annual scales. Since our method remains robust in detecting
deforestation at sub-annual scales even when the reference period only contains one year of data,
users may not need to pre-process huge amounts of historical data when monitoring deforestation at
sub-annual scales.

The method presented in this paper can be applied in different forest areas because it is a
data-driven approach using thresholds computed from the data. However, it may face challenges in
mixed forests, where deciduous and evergreen forests coexist at short distances. This is mainly because
of the way we reduce seasonal variations in the data cube. Normalisation against P95t (Section 2.2)
is not likely to reduce seasonal variations because P95t would represent evergreen trees in mixed
stands. This limitation may be addressed by calculating P95t for each forest type separately and
by deseasonalising pixels from each forest type using the corresponding P95t. Another limitation is
related to how we treat the pixels whose historical observations also qualify as extremes although no
deforestation has occurred.

We determined optimal percentiles for identifying deforestation at sub-annual scale, but these
percentiles might not be optimal for other areas with different forest types and processes causing
deforestation. In areas with gradual changes [18], for example, smaller percentiles (5th percentile)
might be preferable. Therefore, users should calibrate the method to identify optimal percentiles
for their respective study areas before monitoring for deforestation at sub-annual scales. To do this,
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users should select sample pixels from both deforested and forested areas in their study areas, and
apply space-time change detection method while varying the percentile for deforestation detection
(e.g., in Section 3.2). Depending on the monitoring goal, for example shorter temporal detection
delay, the user can then select the percentile that achieves the shortest median temporal delay as the
optimal percentile.

We tested several window sizes (spatial extents) of the data cube, but identifying a window
size appropriate for different parts of the globe is still challenging. This is because a window size
which is optimal in one area might not be optimal in another area. Prior knowledge on the size of the
deforestation events that typically occur in a particular area can be used to decide on the spatial extent
of the data cube. If such prior knowledge is lacking, the user should choose a spatial extent which is
larger than the size of deforestation events the user aims to detect.

With the advent of open and free access to data from Sentinel sensors, especially Sentinel-1
and -2, detecting deforestation at small spatial scales within few days of occurrence will be
possible. Combining Sentinel and Landsat data will boost monitoring of deforestation at sub-annual
scales, allowing agencies responsible for forest protection to timely intervene in areas where illegal
deforestation events are occurring. However, such multi-source data would need harmonisation to
produce multi-sensor time series which is temporally consistent.

6. Conclusions

In this paper, we demonstrated how spatial and temporal information can be combined and
exploited to detect deforestation from satellite image time series at a sub-annual scale. We proposed
a data-driven space-time change detection method that detects deforestation as an extreme event
within a space-time data cube of satellite image time series. We detected sub-annual deforestation
from Landsat NDVI time series at a dry tropical forest site, where the forest exhibits strong seasonality,
and at humid tropical forest site. The method remained robust in detecting deforestation events at a
sub-annual scale even when the image time series only contained one year of historical observations.
The space-time method we presented in this paper is a novel and robust approach for timely detection
of deforestation events in areas where forests exhibit strong seasonality. It provides an opportunity to
detect deforestation events using image time series with scarce historical observations. The method
can be used in different types of forest, both evergreen and deciduous, but, it may face a challenge in
mixed forests, where deciduous and evergreen forests coexist at short distances. Although we used
NDVI, the method is expected to be applicable for image time series of any satellite-derived metric
that is used for deforestation monitoring. To further improve deforestation monitoring at a sub-annual
scale, future research should investigate how data from different satellite sensors (i.e., Landsat 7 and
8, Sentinel-2, RapidEye, and SPOT) can be combined in a space-time change detection framework to
facilitate near real-time deforestation detection.
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