
Supplementary Materials: Alpine Forest Drought Monitoring in South Tyrol: PCA Based Synergy between scPDSI Data and MODIS Derived NDVI and NDII7 Time Series

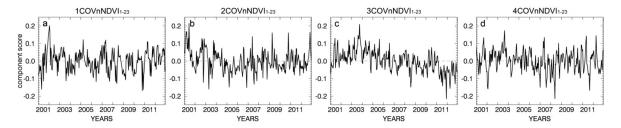
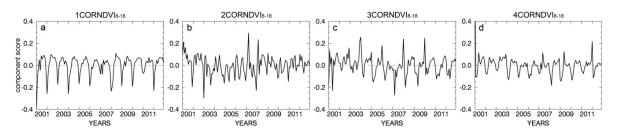
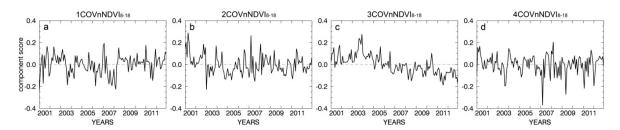

Katarzyna Ewa Lewińska, Eva Ivits, Mathias Schardt and Marc Zebisch

Table S1. Complete list of meteorological stations used in the study with station number (corresponds with Figure 1), name of the location (in Italian), elevation and length of records used in the survey.


Station Number	Name (Italian)	Elevation (m asl)	Records Since (January)
250	Monte Maria	1310	1967
970	Silandro	698	1988
1120	Diga di Gioveretto	1851	1973
1580	Vernago-Finale	1950	1967
1930	Naturno	541	1973
2090	Plata	1147	1936
2320	Merano-Quarazze	330	1983
2580	Diga di Zoccolo	1144	1979
3260	Vipiteno	948	1935
3360	Diga di Vizze	1365	1973
3450	Ridanna	1350	1969
3910	Bressanone	560	1971
4080	Dobbiaco	1220	1967
4450	S.Maddalena in Casies	1398	1967
4760	Anterselva di Mezzo	1236	1941
5050	Predoi	1449	1980
5980	Brunico	821	1986
6150	La Villa in Badia	1390	1987
6560	Terento	1349	1981
6650	Fundres	1159	1977
7490	Ponte Gardena	490	1984
7560	Fie allo Sciliar	840	1956
8220	Sarentino	966	1977
8320	Bolzano	254	1949
8680	Ora	250	1983
9150	Sesto	1310	1956


Figure S1. First four PCs resulted from the S-mode correlation-matrix based PCA of the NDVI₁₋₂₃ (full year NDVI) time series, herein: (a) 1CORNDVI₁₋₂₃; (b) 2CORNDVI₁₋₂₃; (c) 3CORNDVI₁₋₂₃ and (d) 4CORNDVI₁₋₂₃. Temporal patterns explained 63.23%, 3.29%, 2.68% and 1.69% of the total NDVI₁₋₂₃ time series variance respectively.

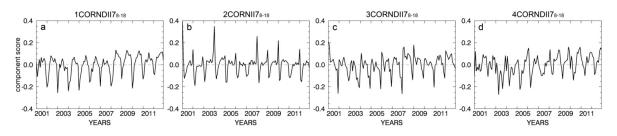
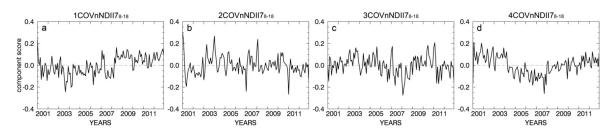

Figure S2. First four PCs resulted from the S-mode covariance-matrix based PCA of the nNDVI₁₋₂₃ (full year z-score normalized NDVI) time series, herein: (**a**) 1COVnNDVI₁₋₂₃; (**b**) 2COVnNDVI₁₋₂₃; (**c**) 3COVnNDVI₁₋₂₃ and (**d**) 4COVnNDVI₁₋₂₃. Temporal patterns explained 18.55%, 5.35%, 2.31% and 1.79% of the total nNDVI₁₋₂₃ time series variance respectively.

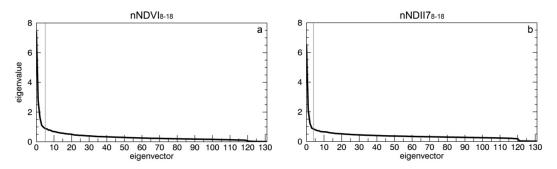
Figure S3. First four PCs resulted from the S-mode correlation-matrix based PCA of the NDVI₈₋₁₈ (vegetation season NDVI) time series, herein: (a) 1CORNDVI₈₋₁₈; (b) 2CORNDVI₈₋₁₈; (c) 3CORNDVI₈₋₁₈ and (d) 4CORNDVI₈₋₁₈. Temporal patterns explained 41.94%, 4.77%, 3.04% and 2.68% of the total NDVI₈₋₁₈ time series variance respectively.

Figure S4. First four PCs resulted from the S-mode covariance-matrix based PCA of the nNDVI₈₋₁₈ (z-score normalized vegetation season NDVI) time series, herein: (**a**) 1COVnNDVI₈₋₁₈; (**b**) 2COVnNDVI₈₋₁₈; (**c**) 3COVnNDVI₈₋₁₈ and (**d**) 4COVnNDVI₈₋₁₈. Temporal patterns explained 15.25%, 5.65%, 3.37% and 2.28% of the total nNDVI₈₋₁₈ time series variance respectively.

Figure S5. First four PCs resulted from the S-mode correlation-matrix based PCA of the NDII7₈₋₁₈ (vegetation season NDII7) time series, herein: (**a**) 1CORNDII7₈₋₁₈; (**b**) 2CORNDII7₈₋₁₈; (**c**) 3CORNDII7₈₋₁₈ and (**d**) 4CORNDII7₈₋₁₈. Temporal patterns explained 22.55%, 8.66%, 4.40% and 2.68% of the total NDII7₈₋₁₈ time series variance respectively.


Table S2. Correlation between the scPDSI scores and first four PCs obtained through the S-mode (a) correlation-matrix based PCA of the NDVI₁₋₂₃ (full year NDVI) time series; (b) covariance-matrix based PCA of the nNDVI₁₋₂₃ (full year normalized NDVI) time series; (c) correlation-matrix based PCA of the NDVI₈₋₁₈ (vegetation season NDVI) time series; (d) covariance-matrix based PCA of the nNDVI₈₋₁₈ (vegetation season normalized NDVI) time series; (e) correlation-matrix based PCA of the NDII7₈₋₁₈ (vegetation season NDVI) time series; (e) correlation-matrix based PCA of the NDII7₈₋₁₈ (vegetation season NDII7) time series; (f) covariance-matrix based PCA of the nNDII7₈₋₁₈ (vegetation season normalized NDVI) time series. Due to inconsistent length of scPDSI, as well as NDVI and NDII7 based datasets all time evolution patterns were converted into yearly average time series.

		(a)					
	CORNDVI ₁₋₂₃						
	1CORNDVI1-23	2CORNDVI ₁₋₂₃	3CORNDVI1-23	4CORNDVI1-23			
1scPDSI	0.179	0.215	0.664 *	-0.205			
2scPDSI	-0.268	0.476	-0.112	-0.461			
3scPDSI	-0.008	0.584 *	-0.460	-0.290			
4scPDSI	-0.397	0.215	-0.124	-0.491			
	(b)						
		COVn	NDVI1-23				
	1COVnNDVI ₁₋₂₃	1COVnNDVI1-23 2COVnNDVI1-23 3COVnNDVI		4COVnNDVI1-23			
1scPDSI	0.031	0.712 *	-0.456	-0.070			
2scPDSI	-0.263	0.517	0.265	0.181			
3scPDSI	0.033	0.195	0.731 *	0.024			
4scPDSI	-0.535	-0.278	0.086	0.414			
		(c)					
		CORN	NDVI8-18				
	1CORNDVI8-18	2CORNDVI8-18	3CORNDVI8-18	4CORNDVI8-18			
1scPDSI	0.062	0.825 *	0.213	-0.384			
2scPDSI	0.082	0.450	0.420	-0.392			
3scPDSI	-0.474	0.120	0.457	-0.195			
4scPDSI	0.309	0.054	0.364	-0.423			
		(d)					
		COVn	NDVI8-18				
	1COVnNDVI8-18	2COVnNDVI8-18	3COVnNDVI8-18	4COVnNDVI8-18			
1scPDSI	0.573	0.713 *	-0.310	0.374			
2scPDSI	0.321	0.608 *	0.360	0.349			
3scPDSI	-0.155	0.337	0.632 *	0.160			
4scPDSI	0.489	-0.013	0.257	0.261			
		(e)					
	CORNDII78-18						
	1CORNDII78-18	2CORNDII78-18	3CORNDII78-18	4CORNDII78-18			
1scPDSI	0.736 *	0.153	0.660 *	0.702 *			
2scPDSI	-0.172	-0.093	-0.193	-0.011			
3scPDSI	-0.576 *	0.335	-0.238	-0.386			
4scPDSI	0.030	-0.092	-0.050	-0.063			
		(f)					
		COVnNDII78-18					
	1COVnNDII78-18	2COVnNDII78-18	3COVnNDII78-18	4COVnNDII78-18			
1scPDSI	0.717 *	-0.374	0.189	0.608 *			
2scPDSI	-0.199	-0.278	-0.260	0.502			
3scPDSI	-0.559	0.257	0.131	-0.023			
4scPDSI	-0.010	-0.243	-0.288	0.583 *			


*—significant at the level p < 0.05.

(a)		
PCs	Correlation	р
1COVnNDVI8-18ROT5V vs. 1COVnNDVI8-18ROT5P	0.904	0.000
2COVnNDVI8-18ROT5V vs. 2COVnNDVI8-18ROT5P	0.890	0.000
3COVnNDVI8-18ROT5V vs. 3COVnNDVI8-18ROT5P	0.902	0.000
4COVnNDVI8-18ROT5V vs. 4COVnNDVI8-18ROT5P	0.867	0.000
(b)		
PCs	Correlation	р
1COVnNDII78-18ROT4V vs. 1COVnNDII78-18ROT4P	0.910	0.000
2COVnNDII78-18ROT4V vs. 2COVnNDII78-18ROT4P	0.897	0.000
3COVnNDII78-18ROT4V vs. 3COVnNDII78-18ROT4P	0.919	0.000
4COVnNDII78-18ROT4V vs. 4COVnNDII78-18ROT4P	0.924	0.000

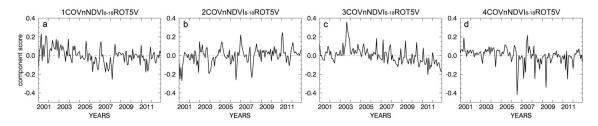
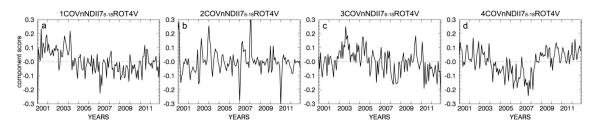

*—significant at the level p < 0.05.

Figure S6. First four PCs resulted from the S-mode covariance-matrix based PCA of the nNDII7₈₋₁₈ (z-score normalized vegetation season NDII7) time series, herein: (**a**) 1COVnNDII7₈₋₁₈; (**b**) 2COVnNDII7₈₋₁₈; (**c**) 3COVnNDII7₈₋₁₈ and (**d**) 4COVnNDII7₈₋₁₈. Temporal patterns explained 11.98%, 3.39%, 2.23% and 1.66% of the total nNDII7₈₋₁₈ time series variance respectively.

Figure S7. Plots of eigenvalues of (**a**) the covariance-matrix based PCA decomposition of the nNDVI₈₋₁₈ (vegetation season normalized NDVI) time series; and (**b**) covariance-matrix based PCA decomposition of the nNDII7₈₋₁₈ (vegetation season normalized NDII7) time series. Vertical lines represents cutoff value of the Cattell's scree test: 5 and 4 for (**a**) and (**b**) respectively.



Figure S8. First four PCs (from (a) to (d) in increasing order) resulted from the Varimax rotation of the first five loadings of the lowest order retained from the COVnNDVI₈₋₁₈ PCA results (covariance-matrix based S-mode PCA of the z-score normalized vegetation-season NDVI time series).


Table S4. Correlation among the scPDSI scores and first four PCs obtained from Varimax (V) and Promax (P) rotations (ROT) of (a) the first five loadings of the COVnNDVI₈₋₁₈ dataset (covariance-matrix based S-mode PCA of the normalized vegetation season NDVI time series) and (b) the first four loadings of the COVnNDII7₈₋₁₈ dataset (covariance-matrix based S-mode PCA of the normalized vegetation season NDII time series) and nNDII7₈₋₁₈ dataset (covariance-matrix based S-mode PCA of the normalized vegetation season NDII7 time series. Due to inconsistent length of scPDSI, nNDVI₈₋₁₈ and nNDII7₈₋₁₈ datasets all time evolution patterns were converted into yearly average time series.

				(a)				
	COVnNDVIs-18ROT5V				COVnNDVI8-18ROT5P			
	1PC	2PC	3PC	4PC	1PC	2PC	3PC	4PC
1scPDSI	0.308	-0.203	-0.569	-0.104	0.290	-0.124	-0.590 *	-0.205
2scPDSI	0.638 *	-0.495	0.107	0.353	0.615 *	-0.536	0.186	0.333
3scPDSI	0.476	-0.588 *	0.533	0.380	0.504	-0.576 *	0.607 *	0.324
4scPDSI	0.503	0.057	0.057	0.532	0.433	0.020	0.029	0.612 *
				(b)				
	COVnNDII78-18ROT4V			COVnNDII78-18ROT4P				
	1PC	2PC	3PC	4PC	1PC	2PC	3PC	4PC
1scPDSI	0.072	-0.121	-0.548	0.751 *	0.061	-0.254	-0.550	0.772 *
2scPDSI	0.614 *	-0.294	0.143	0.301	0.689 *	-0.427	0.172	0.241
3scPDSI	0.396	0.410	0.200	-0.331	0.365	0.172	0.260	-0.397
4scPDSI	0.527	-0.267	0.090	0.466	0.515	-0.321	0.066	0.400

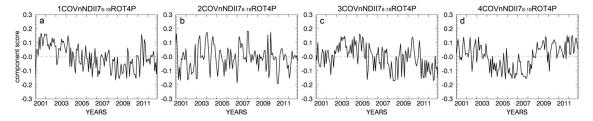

*—significant at the level p < 0.05.

Figure S9. First four PCs (from (**a**) to (**d**) in increasing order) resulted from the Promax rotation of the first five loadings of the lowest order retained from the COVnNDVI₈₋₁₈ PCA results (covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDVI time series).

Figure S10. First four PCs (from (**a**) to (**d**) in increasing order) resulted from the Varimax rotation of the first four loadings of the lowest order retained from the COVnNDII78-18 PCA results (covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDII7 time series).

Figure S11. First four PCs (from (**a**) to (**d**) in increasing order) resulted from the Promax rotation of the first four loadings of the lowest order retained from the COVnNDII7₈₋₁₈ PCA results (covariance-matrix based S-mode PCA of the z-score normalized vegetation season NDII7 time series).

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).