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Abstract: Leaf area index (LAI) is a key parameter used to describe vegetation structures and is
widely used in ecosystem biophysical process and vegetation productivity models. Many algorithms
have been developed for the estimation of LAI based on remote sensing images. Our goal was
to produce accurate and timely predictions of grassland LAI for the meadow steppes of northern
China. Here, we compare the predictive power of regression approaches and hybrid geostatistical
methods using Chinese Huanjing (HJ) satellite charge coupled device (CCD) data. The regression
methods evaluated include partial least squares regression (PLSR), artificial neural networks (ANNs)
and random forests (RFs). The two hybrid geostatistical methods were regression kriging (RK) and
random forests residuals kriging (RFRK). The predictions were validated for different grassland
types and different growing stages, and their performances were also examined by adding several
groups of vegetation indices (VIs). The two hybrid geostatistical models (RK and RFRK) yielded
the most accurate predictions (root mean squared error (RMSE) = 0.21 m2/m2 and 0.23 m2/m2

for RK and RFRK, respectively), followed by the RF model (RMSE = 0.27 m2/m2), which was the
most accurate among the regression models. These three models also exhibited the best temporal
performance across the duration of the growing season. The PLSR and ANN models were less
accurate (RMSE = 0.33 m2/m2 and 0.35 m2/m2 for ANN and PLSR, respectively), and the PLSR
model performed the worst (exhibiting varied temporal performance and unreliable prediction
accuracy that was susceptible to ground conditions). By adding VIs to the predictor variables,
the predictions of the PLSR and ANN models were obviously improved (RMSE improved from
0.35 m2/m2 to 0.28 m2/m2 for PLSR and from 0.33 m2/m2 to 0.28 m2/m2 for ANN); the RF and
RFRK models did not generate more accurate predictions and the performance of the RK model
declined (RMSE decreased from 0.21 m2/m2 to 0.32 m2/m2).
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1. Introduction

Leaf area index (LAI) is defined as the one-sided green leaf area per unit ground area [1] and is
a crucial parameter driving the biological processes of plants. The index is closely associated with
vegetative biological and physical processes, such as photosynthesis and transpiration. Therefore, LAI
is used as an essential input in a variety of climate and ecosystem models [2–5]. As an important
indicator describing the energy and carbon exchange between vegetation and the atmosphere,
the quantitative retrieval of this biophysical parameter is necessary for understanding the changes in
energy and carbon cycling in response to climate change [5–7].

To this end, remote sensing data, which are endowed with high temporal resolution and the
capacity for large-scale observation, are widely used for LAI prediction. A number of LAI prediction
methods have been developed from remotely sensed data. The most popular and commonly used
approaches are empirical statistical methods, including simple linear regression [8], multiple linear
regression [9], and partial least squares regression (PLSR) [10]. These methods primarily compute
the relationship between LAI and a spectral observation or a combination of spectral observations
(vegetation indices, VIs) by relying on statistical or physical knowledge. However, due to their
empirical nature, these regression models are site and sensor specific, and their performance can
be hampered by factors, such as differences in surface properties and sun position, as well as
viewing geometry [11–13]. Machine learning methods, such as decision tree learning, artificial
neural networks (ANNs) [14], support vector machines [15], and random forests (RFs) [16,17] are
also increasingly employed to optimize the use of spectral information with the goal of minimizing
prediction uncertainty. The non-linear relationship between remote sensing data and biogeophysical
variables endows these flexible models with the ability to combine different data structure features in
a non-linear manner and to conform to the requirements of different tasks [18,19].

In addition, geostatistical prediction methods, including ordinary kriging (OK) [20], kriging
with external trend [21,22], and regression kriging (RK) [23,24], which model the data structure of
spatial autocorrelation and incorporate this information in the response variables for unsampled
locations, have also been used to map environmental variables [25–27]. Remote sensing images are
widely used as auxiliary data. The motivation for utilizing geostatistical analysis is that geostatistical
methods can exploit the presence of spatial autocorrelation and joint dependence in space and time,
which occur in most natural resource variables, and can improve ecological interpretation and help
to assess error spatially [21,28]. Moreover, several new hybrid prediction methods that combine
regression methods with geostatistical interpolation, such as the random forests residuals kriging
(RFRK) method [29], have also been proposed to account for the spatial structure of observed data and
the environmental correlation.

Although these methods have reportedly met with varying success [19,21,30,31], systematic
comparisons among them have rarely been conducted, especially for geostatistical methods, which
are often not the first choice for analyses and are not widely used to map vegetation photosynthetic
parameters [32]. The goal of this study was to comparatively assess the predictive power of PLSR,
ANNs, RFs, and hybrid geostatistical methods (RK and RFRK) in assessing grassland LAI in a meadow
steppe in Hulunber, northern China. First, the four reflectance bands (three visible bands (blue, green
and red) and one near-infrared (NIR) band) were used as predictor variables while training the models
with an experimental dataset, and their performance was assessed using an independent validation
dataset. Next, VIs were added to the inputs to determine whether additional predictor variables would
improve model performance. Finally, model performance was evaluated for different grassland types
(grazing grassland, mowed grassland, and fenced grassland) and during different growing stages
(early, middle, and late stage) to future explore their spatial and temporal stability and discover their
sensitivity to environmental factors. This study provides useful knowledge regarding the performance
of different methods for the quantitative prediction of grassland LAI to guide their applications in
ecosystem modeling.
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2. Study Area and Data

2.1. Study Site

Hulunber is the most complete and best-preserved natural meadow steppe on the Eurasian
continent and has an amazing abundance of species endowed with high economic and ecological value.
The Hulunber grassland ecosystem observation and research station (Hulunber station) is located
in the middle of the Hulunber meadow steppe (49˝2012411 N, 119˝5914411 E), which is approximately
30 km northeast of the Hailaer District in Hulunber City, Inner Mongolia, China (Figure 1). The study
area is located around the Hulunber station and covers an area of approximately 17 km ˆ 7 km; the
land cover is mainly meadow steppe, with 18.21 km2 of cropland in the center (Figure 1). The region
is characterized by a semi-arid inland climate with an annual mean precipitation of 350–400 mm
and annual mean temperatures ranging from ´3 to 1 ˝C. The average elevation is 626 m, and the
terrain features a rolling surface that varies by as much as 200 m in elevation. Field observations
were conducted on the grassland of the study area, primarily at the experimental site in an area
of 3 km ˆ 3 km that was centered at an eddy covariance flux tower. The site is homogeneous, and
Leymus chinensis and Stipa baicalensis are the dominant grass species. The length of the growing season
is approximately 140 days and lasts from May to September [33]. There are three grassland types at the
site [34]: grazing grassland, which feeds cattle; mowed grassland that is used for silage; and fenced
grassland, which is enclosed by a fence and has grown naturally for the past seven years without any
external influence.
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Figure 1. Site location and sampling plots (background: Landsat-8 OLI false-color composite image
(5, 4, and 3) from 13 June 2013).

2.2. Sampling Design and Field Measurements

Field campaigns were performed during the growing seasons of 2014 and 2015. The experimental
dates were 6 June, 1 July and 28 July in 2014 and 19 June, 10 August and 26 August in 2015.
For regular experiments performed at the site, a two-scale sampling strategy designed by the VALERI
project [35,36] was adopted to collect ground LAI data. The two scales used for the VALERI method
were the site scale (at least a 3 km ˆ 3 km square representative of the entire experimental site) and the
elementary sampling unit scale (ESU, 30 m ˆ 30 m, in this study corresponding to the pixel size of the
remote sensing imagery). For the site scale, the 3 kmˆ 3 km region was divided into nine 1 km ˆ 1 km
grids, and three to five ESUs were randomly selected in each grid. In total, 29 ESUs were chosen across
the entire site. For each field campaign, the sampling plots were selected randomly from the 29 ESUs.



Remote Sens. 2016, 8, 632 4 of 18

A more detailed sampling protocol of this site has been described previously [37]. In addition, each
ESU was located with a Global Positioning System (GPS) that was accurate to 2 m, ensuring that the
measurements for each campaign were collected in the same location.

The effective LAI was measured using an LAI-2200C plant canopy analyzer (Li-Cor, Lincoln, NE,
USA) with a 270˝ view cap. The LAI-2200C is an indirect, non-contact instrument that measures the
gap fraction by observing diffuse radiation transmission through the canopy based on the assumption
of a random leaf distribution within the canopy [38–40]. At each ESU, the effective LAI was measured
at five points organized in a “cross” pattern in which each sample point was 15 m from the next point.
One above-canopy and six below-canopy LAI-2200 measurements were obtained at each point to
obtain one local LAI value, and five local LAI values were averaged to calculate a mean value for
each ESU. The measurements were collected near sunrise or sunset to ensure nearly uniform sky
illumination. From six field campaigns at the experimental site, a total of 690 LAI measurements were
collected from 138 ESU plots.

2.3. Satellite Data

Chinese HJ-1A/1B (Huanjing (HJ)) charge coupled device (CCD) images were used as the remote
sensing data source in this study. The HJ-1A/1B satellites are small civilian Earth-observing satellites
that were launched on 6 September 2008 by China [41]. Among the payloads aboard the two satellites,
multispectral CCD cameras are widely used in eco-environmental monitoring. Each satellite carries
two CCD cameras, named CCD1 and CCD2, with a 700 km swath width, 48 h return period and 30 m
pixel size. The HJ-1A/1B CCDs have three visible bands (blue (430–520 nm), green (520–600 nm) and
red (630–690 nm)) and one near-infrared (NIR) band (760–900 nm) [42].

Six HJ-1A/1B CCD images corresponding to the dates of the field experiments were used in this
study (Table 1). All images were radiometrically and geometrically corrected and were projected as
UTM coordinates (WGS84 datum, Zone 50N). All images were high quality, and minimal (<10%) or no
cloud contamination occurred at the site. To obtain the reflectance of the top of the canopy, the images
were atmospherically corrected using the FLAASH program embedded in ENVI 4.8 software [43].
Two important parameters were used in the FLAASH program for atmospheric correction: aerosol
optical depth and the water vapor column. These parameters were obtained using a Microtops II
Sunphotometer (Solar Light Company, Inc., Glenside, PA, USA) during each field experiment. Finally,
geometric correction was performed on all HJ-1A/1B CCD images using ground points collected in
the field around the site; the correction accuracy was limited to within 1 pixel.

Table 1. Collection of remotely sensed images.

Experiment Date 6 June 2014 1 July 2014 28 July 2014 19 June 2015 10 August 2015 26 August 2015

Sensor for HJ Images HJ1B CCD1 HJ1B CCD2 HJ1A CCD1 HJ1B CCD1 HJ1B CCD1 HJ1B CCD2
HJ Image Acquisition Date 6 June 2014 29 June 2014 29 July 2014 15 June 2015 10 August 2015 26 August 2015

This study incorporated reflectance in four individual bands (blue, green, red, and NIR) and
four VIs calculated from individual bands as independent variables. The vegetation indices included
the simple ratio (SR), normalized difference vegetation index (NDVI), Atmospherically Resistant
Vegetation Index (ARVI), and Wide Dynamic Range Vegetation Index (WDRVI), which exhibited
strong and significant relationships with canopy LAI in the previous study [8,17,44]. These indices
were computed using the following equations [45–48]:

NDVI “
NIR´ red
NIR` red

(1)

SR “
NIR
red

(2)
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ARVI “
NIR´ pred´ γpblue´ redqq
NIR` pred´ γpblue´ redqq

(3)

WDRVI “
αˆ NIR´ red
αˆ NIR` red

(4)

where blue, red, and NIR refer to the band reflectance, γ is the atmospheric self-correcting factor
(a value of 1 was recommended by Kaufman and Tanre [47] and is used in this study), and α is the
weighting coefficient (an α value of 0.1 is used in this study [48]).

3. Methods

3.1. Partial Least Squares Regression (PLSR)

PLSR is a technique that reduces a large number of measured collinear spectral variables to a few
non-correlated latent variables or factors, which must both summarize the variance of the explanatory
variables well and correlate highly with the response variables [49,50]. The aim of PLSR is to build
a linear model as follows:

Y “ Xβ` ε (5)

where Y is the mean-centered vector of the response variable, X is the mean-centered matrix of the
predictive variables, β is the matrix of coefficients, and ε is the matrix of residuals. PLSR is closely
related to principal component regression (PCR). In addition to PCR, PLSR uses both the predictor
variables and response variable during the decomposition process and performs the decomposition
on both the predictor variables and the response variable simultaneously, whereas PCR performs the
decomposition on the predictor variables alone. The optimal number of factors for a PLS analysis
is usually determined by minimizing the prediction residual error sum of squares (PRESS) statistic.
The PRESS statistic was calculated through a cross-validation (CV) prediction for each model. The root
mean squared error of cross validation (RMSCV) is also used to assess the predictive abilities of the
PLS models [51]. The analysis was accomplished using the “pls” package [52] within the statistical
software package R 3.2.0.

3.2. Artificial Neural Networks (ANNs)

ANNs are non-linear statistical learning approaches that have great potential for predictive
modeling [53,54]. ANNs are composed of a large number of highly interconnected artificial
neurons with weighted links that connect the input and output data through a learning process [14].
Various types of neural networks have been developed, and a layered feed-forward ANN with
three layers is the most common ANN structure. In an ANN, information flows in a unidirectional
forward mode from an input layer to an output layer via hidden layer(s). Neural networks attempt
to identify the best solution based on network complexity through adaptive learning processes and
the incorporation of various ancillary information (e.g., topography, sun angle, and ground data) [14].
A feed-forward neural network with a single hidden layer was used in this study. The analysis was
accomplished using the “nnet” package within the statistical software package R 3.2.0 [55].

3.3. Random Forests (RFs)

An RF is an ensemble learning method that can be used for either classification or
regression [56,57]. The algorithm is conceptually similar to the bagging decision tree but has extensions.
An RF is a combination of tree predictors (ntree) such that each tree depends on a collection of random
variables sampled independently and then aggregates to produce accurate predictions. This method
also shows better resistance to the over-fitting problem and to noise in the data compared with other
regression methods [56]. Unlike bagging trees, an RF grows its trees from a randomly chosen subset of
the total number of predictors at each splitting node (mtry), and the tree is allowed to grow fully without
pruning. Each tree in the RF is independently grown to its maximum size based on a bootstrap sample
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from the training dataset (approximately two-thirds), and the remaining one-third of the samples
are randomly left out. The left out samples are called the out-of-bag (OOB) samples, which are used
to calculate an unbiased OOB error rate and the variable’s importance (measured by calculating the
percent increase in the mean square error when the OOB data for each variable are permuted) [56,58].
At each binary split, the predictor that produces the best split is chosen from a random subset (mtry)
of the entire predictor set (p); mtry is recognized as the main tuning parameter of an RF and must
therefore be optimized [59,60]. The analysis was accomplished using the “randomForest” package [57]
within the statistical software package R 3.2.0.

3.4. Regression Kriging (RK)

RK is a hybrid geostatistics method that combines a regression between the target variable and
environmental variables with the ordinary kriging (OK) of the regression residuals. In RK, a liner
regression is first used to fit the explanatory variation, and then kriging is used to fit the unexplained
variation and to model the spatial variability of the data [61,62]. Finally, predictions at unvisited
locations ẑRKps0q are performed by summing the predicted trend and residuals. The trend is commonly
fitted using generalized least-squares regression, and the residuals are interpolated using OK [32,61].

zRKps0q “

p
ÿ

k“0

β̂k ˆ qkps0q `

n
ÿ

i“1

λi ˆ epsiq (6)

where β̂k corresponds to the estimated trend model coefficients, qkps0q represents the predictive
variables at the location s0, epsiq is the regression residual, λi is the kriging weight determined by
the spatial autocorrelation structure of the residual, and p is the number of auxiliary predictors.
The analysis was accomplished using the “gstat” package [63] within the statistical software package
R 3.2.0.

3.5. Random Forests Residuals Kriging (RFRK)

Although RF is a robust method that can improve prediction accuracy, this method ignores spatial
autocorrelation information. To overcome this disadvantage, a hybrid method that combines RF and
OK was developed and has been verified to generate much lower prediction errors and to yield a more
realistic spatial distribution than the RF model [29]. RFRK is an extension of RF and is very similar to
RK. RFRK also consists of trends and residuals. Here, the trend is modeled using RF; the residuals
from RF are interpolated to prediction grids using OK, and the interpolated residuals are added to the
RF prediction results to obtain the RFRK prediction results. The RFRK formula is as follows:

LAIRFRKpsiq “ LAIRFpsiq ` LAIOKpsiq (7)

where LAIRFRKpsiq is the predicted LAI at location si, LAIRFpsiq is the trend modeled by RF, and
LAIOKpsiq is the residual interpolated by OK. This analysis was accomplished using the “randomForest”
and “gstat” packages within the statistical software package R 3.2.0.

3.6. Model Implementation and Validation

In this study, we assumed that the ground measurements for each field campaign were conducted
independently, and the temporal mixed effects of clustered data that originated from repeated
measurements were not considered. To compare performance among models, the models were
first implemented using predictive variables for the four spectral bands, and their performance for
different grassland types and growing seasons was analyzed. The VIs were then gradually added to
the input variables and were divided into five groups: four bands plus the best-performing VI, four
bands plus one VI, four bands plus two VIs, four bands plus three VIs, and four bands plus four VIs.
For each group, the LAI at the study site was first predicted using four bands plus the group number
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of VIs that were randomly combined. Then, after predicting LAI using all the combinations, each
LAI prediction was assessed separately using ground measurements, and the accuracy indicator (root
mean squared error (RMSE) in this study) was averaged to assess the performance of the group.

An independent dataset with 34 ESU plots was randomly selected from the original 138 samples
to validate model performance, while the remaining 104 samples were used to train the models.
The RMSE, mean absolute error (MAE) and coefficient of determination (R2) between measured and
predicted values were calculated to assess the accuracy of each model:

RMSE “

g

f

f

e

1
n

n
ÿ

i“1

pyi ´ ŷiq
2 (8)

MAE “
1
n

n
ÿ

i“1

|yi ´ ŷi| (9)

where ŷi is the predicted LAI value, yi is the measured LAI value and n is the number of measured
values in the validation data. RMSE and MAE values close to zero and an R2 value close to one indicate
a better predictive capability of a model.

4. Results

4.1. Field LAI Measurements

Detailed summary statistics of the LAI measurements are shown in Table 2. Generally, the mean
effective LAI values for the site ranged from 0.5–3.6 m2/m2. During the early stage of the growing
season (6 June 2014 and 19 June 2015), the mean and variability of the grass LAI values were relatively
low (mean LAI value of 0.9–1.6 m2/m2 and a standard deviation of 0.1–0.3 m2/m2). The middle of the
growing stage (July in 2014) exhibited relatively high LAI values as well as increased variability. At the
end of the growing season (August in 2015), the LAI variability in the mowed grassland remained at
a high level due to grass cutting activity, while the grazing grassland showed a low LAI variability,
and the fenced grassland still had a very high LAI value (LAI > 3.0 m2/m2).

Table 2. Descriptive statistics of the measured LAI dataset 1.

Date 6 June 2014 1 July 2014 28 July 2014 19 June 2015 10 August 2015 26 August 2015

No. of training data 16 18 17 18 19 16
No. of validation data 4 8 5 6 6 5

Mowed
grassland

Mean 1.32 2.56 2.35 1.57 1.80 1.43
Min 1.00 2.01 1.45 1.19 0.88 1.05
Max 1.50 3.22 2.75 2.03 2.56 2.12

Stdev 0.19 0.30 0.42 0.24 0.50 0.30

Grazing
grassland

Mean 0.94 1.68 1.21 0.93 0.83 0.83
Min 0.61 0.81 0.69 0.77 0.69 0.77
Max 1.45 2.73 2.64 1.17 1.02 0.89

Stdev 0.30 0.59 0.64 0.13 0.10 0.05

Fenced
grassland

Mean - 2 - - - 3.40 3.50
Min - - - - 3.40 3.44
Max - - - - 3.41 3.56

Stdev - - - - 0.01 0.08
1 LAI in units of m2/m2; 2 ”-”means no data are available for that day.

4.2. LAI Spatial Prediction Based on the Four Reflectance Bands

For the selection of tuning parameters used in the regression models, exploratory trials were
conducted using the training dataset. For the PLSR, the first three principal components (PC) contained
99.01% of the predictor variable information and 74.17% of the response variable information (data not
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shown), which indicates that these three components could reasonably substitute the original inputs
and explain the output information. For the ANN model, after trials, the optimized network with the
best estimation performance was determined using 1 neuron in the hidden layers. For the RF model,
ntree was set to 500 (after exploratory trials using the training data). For mtry, the results from previous
studies [59,64] showed that mtry optimization resulted in minimal improvements in RF predictions.
We therefore used a predictive variable number of 2 in this analysis.

To apply the hybrid geostatistical methods (RK and RFRK), we utilized regression residual
semivariograms and parameters obtained from the training dataset (Figure 2 and Table 3), and the
optimal variogram models were determined by the criteria of the sum of squared errors reported by
the “gstat” package. An exponential or Gaussian model was fit to the sample semivariogram. For the
RK, the models revealed the spatial autocorrelation of grassland LAI during the peak of the growing
season with negligible nugget, a partial sill of 0.2, and a spatial range of 400–600 m. However, the
models indicated a lower spatial dependence at the beginning and end of the growing season (larger
partial sill and spatial range). For RFRK, the models also revealed aspects of spatial autocorrelation
but performed worse than RK.

Table 3. Parameters of the fitted empirical variogram models built from the residuals for RK and
RFRK prediction.

Date
RK RFRK

Model Nugget Sill Range Model Nugget Sill Range

6 June 2014 Gaussian 0.00 0.03 918.86 Gaussian 0.00 0.01 461.98
1 July 2014 Gaussian 0.00 0.02 560.13 Gaussian 0.00 0.02 609.90

28 July 2014 Gaussian 0.03 0.02 480.70 Exponential 0.00 0.03 595.52
19 June 2015 Exponential 0.00 0.03 2230.32 Gaussian 0.00 0.01 839.06

10 August 2015 Gaussian 0.00 0.02 441.76 Gaussian 0.00 0.05 769.84
26 August 2015 Exponential 0.04 0.20 1095.47 Gaussian 0.00 0.03 1105.05

The LAI maps predicted from the five models are displayed in Figure 3. Overall, the prediction
surfaces were similar in terms of the spatial patterns of grassland LAI. Differences between the
mowed grassland, fenced grassland and grazing grassland were apparent from northwest to southeast.
We observed a higher LAI value in the mowed grassland than in the grazing grassland throughout
the growing season. The grazing grassland is used to feed cattle throughout the growing season, and
the LAI value remained low. In the mowed grassland, the grass was fenced prior to August and then
cut for silage. Thus, the LAI value was higher than the grazing grassland before it was cut and then
sharply declined. The fenced grassland accumulated a considerable amount of litter prior to 2015,
which delayed and then prevented the grass from growing, resulting in a lower LAI value in June
2014 but a similar value to the grazing grassland and mowed grassland on 1 July 2014 and 28 July
2014, respectively. At the beginning of 2015, the fenced grassland was burned and little litter remained.
The grass grew quickly and displayed higher LAI values in 2015.

Table 4 presents the general statistics for the predicted LAI maps. Compared to the measured
LAI (Table 2), the predicted mean values approximated the measured values, whereas the minimum,
maximum and standard deviation values were more varied. The RK predictions had higher standard
deviation values (smaller minima and greater maxima) except for 19 June 2015 (Table 4). The LAI
maps predicted by the PLSR model had a lower standard deviation value at the middle and end of the
growing season (July and August), and the RF predictions exhibited greater minima.
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4.3. Model Evaluation

Table 5 presents a model evaluation result derived from an independent validation of the LAI
maps using the validation dataset. RK was the most accurate method and exhibited the lowest RMSE
(0.21 m2/m2) and MAE (0.16 m2/m2) values, as well as the highest R2 (0.92) value. The accuracy of the
RFRK predictions was nearly as good, with RMSE, MAE, and R2 values of 0.23 m2/m2, 0.17 m2/m2, and
0.91, respectively, indicating an obvious improvement compared to the RF predictions. The predictive
ability of the regression models was further improved by a geostatistical analysis of the regression
residuals to compensate for the spatial autocorrelation information. However, the RF model still
performed the best compared with all of the regression models due to its randomness and majority
rule [56]. Although PLSR performed satisfactorily (RMSE of 0.35 m2/m2, MAE of 0.27 m2/m2, and
R2 of 0.77), this model was the worst of the five evaluated models (followed by the ANN model).

Table 5. Validation of the predicted LAI maps using the measured validation dataset.

MAE RMSE R2

PLSR 0.27 0.35 0.77
ANN 0.26 0.33 0.81

RF 0.21 0.27 0.89
RK 0.16 0.21 0.92

RFRK 0.17 0.23 0.91

5. Discussion

5.1. LAI Predictions Based on the Four Reflectance Bands and VIs

The selected four VIs all had a good relationship with LAI; after conducting a correlation analysis
between satellite-derived VIs and measured LAI, the R2 values were higher than 0.65 (0.77, 0.74,
0.69, and 0.66 for SR, WDRVI, ARVI and NDVI, respectively), and the correlation coefficients were
higher than 0.79 (0.88, 0.86, 0.83, and 0.79 for SR, WDRVI, ARVI and NDVI, respectively). To examine
whether adding predictor variables would improve the model performance, the four VIs of SR, NDVI,
ARVI and WDRVI were calculated, added to the original predictors, and divided into five groups
(Table 6): four bands plus the best-performing VI (SR), four bands plus one VI, four bands plus two
VIs, four bands plus three VIs, and four bands plus four VIs, detailed information was introduced
in Section 3.6. The statistical analysis was performed separately for each of the five groups and the
validation results are shown in Table 6. Generally, the performance of all the models, except for RK,
with input variables of the four bands plus SR had the smallest prediction error with a small MAE
and RMSE. For the PLSR and ANN models, adding VIs to the input variables improved the model
performance; more predictors mean more information that can be used, resulting in better accuracy of
the model. For the RF and RFRK models, adding more VIs did not result in more accurate predictions.
By combining an ensemble of decision trees and randomly changing the predictors and training data
for each decision tree, the RF model improved the prediction accuracy and demonstrated a more robust
capacity with respect to the over-fitting problem and resisting noise data [56,57,59]. Furthermore, the
RF model exhibited insensitivity to highly correlated predictors and irrelevant information [65,66].
Thus, VIs that were highly correlated with reflectance bands did not provide a considerable amount of
additional knowledge to the RF model. For the RK model, the regression trend was implemented using
multiple linear regression, and the multi-collinearity between independent variables stemming from
the addition of VIs highly correlated with the reflectance band prevented the available information
from being fully used, which generates ill-posed inversion problems [14,67]. The introduction of VIs
to the RK model therefore resulted in poorer performance.
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Table 6. Validation of LAI predictions based on the four reflectance bands including VIs using the
measured validation dataset.

PLSR ANN RF RK RFRK

MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Four bands 0.274 0.353 0.264 0.328 0.209 0.269 0.164 0.212 0.173 0.231
Four bands + SR 0.216 0.279 0.221 0.277 0.197 0.252 0.180 0.261 0.150 0.217

Four bands + one VI 0.233 0.308 0.225 0.287 0.197 0.257 0.182 0.251 0.174 0.255
Four bands + two VIs 0.220 0.283 0.222 0.281 0.194 0.260 0.188 0.285 0.170 0.227

Four bands + three VIs 0.217 0.280 0.221 0.278 0.199 0.267 0.195 0.300 0.181 0.241
Four bands + four VIs 0.217 0.280 0.221 0.277 0.201 0.274 0.205 0.315 0.180 0.252

5.2. Model Performance in Different Grassland Types and at Different Growing Stages

Model performance was also assessed for different grassland types and different growing stages
using the validation dataset. The RMSE between the predicted and measured LAIs is displayed in
Figure 4. Across the entire site, the five models performed similarly and generated similar RMSEs
(except for the prediction on 28 July 2014 for which PLSR and ANN generated a higher RMSE than
the other three models, mainly due to the higher RMSE value of the grazing grassland). In addition,
higher RMSE values were observed at the end of the growing season (August) for all five models.
In the mowed grassland, the predicted LAI values were greater than 1 m2/m2 on all six experimental
dates. The five models exhibited a similar performance throughout the season but greater uncertainty
was observed in the late-middle and end stages of the growing season (28 July 2014 and 10 August
2015), possibly resulting from an increasing amount of litter in the grassland [68,69]. After this time,
grass cutting activity reduced the proportion of canopy litter, and the prediction uncertainty decreased
on 26 August 2015. For the grazing grassland, the five models displayed more varied performance,
especially the PLSR and ANN models. In contrast, the RF, RK and RFRK models performed steadily
and exhibited low prediction error throughout the growing season. The PLSR and ANN models
performed well with a smaller RMSE value during the beginning and early-middle stages of the
growing season (June and early July). More uncertainty was observed during the late-middle and end
stages of the growing season, possibly resulting from the continuous decline in vegetation cover due
to grazing [70]. In the fenced grassland, the validation data existed for only two dates (10 August and
26 August in 2015). PLSR performed the worst. All five models generated considerable uncertainty for
26 August 2015 due to dead grasses.

Overall, the RF, RK and RFRK models performed well with a comparatively smaller and steady
RMSE value throughout the growing season, while the performance of the PLSR and ANN models
was more varied. Vegetation cover and grass litter were two factors that affected model performance.
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the missing RMSE in the fenced grassland indicates that no validation data were available for that 
day. 
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5.3. Model Comparison and Study Limitations

In our study, the geostatistical methods proved to be the most accurate models in predicting
grassland LAI, as indicated by the higher R2 and lower RMSE values. Through geostatistical
analysis of the residuals of the regression models, the prediction ability was further improved
by supplying spatial autocorrelation information, showing better performance than the regression
methods [21,23,71]. Despite these attractive properties, geostatistical methods are more sophisticated
than simple mechanistic or kriging techniques. The requirements for the regression modeling are
high, and the ground data accuracy will directly affect the fitted variogram parameters [32,61].
Moreover, issues associated with the transferability of results between images can also represent
a serious limitation [23]. However, outside of the regression training area, the geostatistical analysis
lost its power and generated more uncertainty.

The machine learning methods, such as ANNs and RFs, tend to be more powerful in predicting
grassland LAI than the linear regression methods (e.g., PLSR) [17,19]. Through adaptive learning
processes and the incorporation of more ancillary information, the best solution could be found
without the constraints of linearity and multi-collinearity. Moreover, the ANN and RF models can
also be used as variable selection tools to identify informative variables based on the network’s
performance [14] or variable importance score [30,66]. However, the “black box” property of these
approaches affected the model transparency [53], which prevents users from interpreting the results in
physical terms [18]. In comparison, the recently popular RF method demonstrates a higher efficiency
spatially and temporally compared with other machine learning methods due to its randomness and
majority rule [59,72], and the model is recommended to be considered superior when combined
with the hybrid inversion strategy [17,18]. The ANN method is susceptible to variation in the
training data [19,73] and environmental interference information such as atmospheric scattering
and background reflectance [17], which was also shown in this study and which reduced its spatial
and temporal accuracy.

The PLSR also demonstrated certain power for predicting grassland LAI. The method was simple,
computationally inexpensive and devoid of the co-linearity problem. However, the model was also
very sensitive to some disturbing factors, such as surface property differences and satellite sun and
viewing geometry. Therefore, this type of model cannot be applied to different site and sensor
conditions [12,13]. The problem can be alleviated by using certain VIs that are sensitive to the target
variables and relatively insensitive to interference factors [8,17,44].

The major source of uncertainty in this study is associated with the ground measurement data.
For repeated measurements, the machine learning methods accounted for the spatial structure of
errors, but the temporal structure error was neglected by assuming independent ground measurements
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between field campaigns. In contrast, certain methods that can handle mixed effects can be considered
in future analyses [74,75]. Furthermore, HJ-CCD images and derived VIs were used in this study, and
even though satisfactory results were obtained, the comparatively narrow spectral range still limited
the more powerful VIs (e.g., reduced simple ratio (RSR) and cellulose absorption index (CAI)) used.
In future studies, more powerful predictive variables derived from optical remote sensing datasets
with broader spectral range (e.g., Landsat, Sentinel-2), light detection and ranging (LIDAR) [76] and
synthetic aperture radar (SAR) [24] can be used, providing more information to train the dataset, which
may lead to more accurate results. The study models were tested to determine their sensitivity to
additional input variables (VIs); however, the impact of irrelevant information on model prediction
was not tested in this study, and certain irrelevant and interference predictors can be introduced into
the input variables to test their effect in future modeling. Finally, although the area of the study site
is limited (only 3 km ˆ 3 km), the biomes studied represent meadow steppes in northern China,
and they can serve as a reference for future studies. Future research must also be expanded to
larger area and new grassland types (desert grassland and typical grassland) that have not yet been
adequately represented.

6. Conclusions

This study compared regression and hybrid geostatistical methods for predicting grassland LAI
from Chinese HJ-1A/1B CCD images of northern China. The methods used were partial least squares
regression, artificial neural networks, random forests, regression kriging, and random forests residuals
kriging. Ground measurements of LAI were used for model training and validation. The two hybrid
geostatistical models (RK and RFRK) resulted in more accurate predictions than the other models, and
the regression residuals used to supply spatial autocorrelation information improved the prediction
ability. The RF model was the most accurate of the regression models, while the other three models
resulted in improved temporal performance throughout the growing season. The PLSR and ANN
models were less accurate, and the PLSR model performed the worst. The temporal performances of
PLSR, ANN, and PLSR were more varied, and their prediction accuracies were more susceptible to
ground conditions, including vegetation cover and grass litter. By adding VIs to the predictor variables,
the predictions of the PLSR and ANN models were markedly improved. However, the RF and RFRK
models did not generate more accurate predictions, and the RK model generated poorer predictions
due to inversion problems caused by the multi-collinearity between the independent input variables.
These results should be further validated for a larger area, and more powerful predictive variables and
remote sensing datasets (e.g., Landsat and Sentinel-2) should be utilized to develop accurate hybrid
methods. Differential performance was observed for the methods evaluated herein for the meadow
steppe of northern China, indicating that further comparisons for other applications, contexts, data
quality and objectives are necessary.
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