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Abstract: The Biosphere Reserve of La Mancha Húmeda is a wetland-rich area located in central Spain.
This reserve comprises a set of temporary lakes, often saline, where water level fluctuates seasonally.
Water inflows come mainly from direct precipitation and runoff of small lake watersheds. Most of
these lakes lack surface outlets and behave as endorheic systems, where water withdrawal is mainly
due to evaporation, causing salt accumulation in the lake beds. Remote sensing was used to estimate
the temporal variation of the flooded area in these lakes and their associated hydrological patterns
related to the seasonality of precipitation and evapotranspiration. Landsat 7 ETM+ satellite images
for the reference period 2013–2015 were jointly used with ground-truth datasets. Several inverse
modeling methods, such as two-band and multispectral indices, single-band threshold, classification
methods, artificial neural network, support vector machine and genetic programming, were applied
to retrieve information on the variation of the flooded areas. Results were compared to ground-truth
data, and the classification errors were evaluated by means of the kappa coefficient. Comparative
analyses demonstrated that the genetic programming approach yielded the best results, with a kappa
value of 0.98 and a total error of omission-commission of 2%. The dependence of the variations in
the water-covered area on precipitation and evaporation was also investigated. The results show the
potential of the tested techniques to monitor the hydrological patterns of temporary lakes in semiarid
areas, which might be useful for management strategy-linked lake conservation and specifically to
accomplish the goals of both the European Water Framework Directive and the Habitats Directive.

Keywords: temporary lakes; remote sensing; Landsat 7; genetic programming; multispectral indices;
hydrological patterns; water cover detection
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1. Introduction

Wetlands contribute a wealth of ecosystem services, including the regulation of the hydrological
cycle for flood and drought control, and provide water supply, wildlife refuges, aesthetic enjoyment
and recreational opportunities, among others. According to the Ramsar Convention, wetlands, in a
broad sense, include all lakes and rivers, underground aquifers, swamps and marshes, wet grasslands,
peatlands, oases, estuaries, deltas and tidal flats, mangroves and other coastal areas, coral reefs and
all constructed sites, such as fish ponds, rice paddies, reservoirs and salt pans. Although these areas
have a critical value to sustainable development, they are detrimentally impacted by urban growth,
agricultural land reclamation and derived pollution [1].

The Biosphere Reserve of La Mancha Húmeda is currently the main wetland area in the Iberian
Peninsula. This Lake District is one of the wetland complexes most threatened by anthropogenic
activity, mainly by groundwater overexploitation due to excessive use for irrigated agriculture.
This area is an important refuge for endangered waterfowl species, following the protection criteria
for birds in Europe, and also holds endangered habitats [2]. Because of its natural and ethnographic
values, it was designated a Biosphere Reserve.

The water balance and hydrological variations are intimately tied to potential changes in a lentic
ecosystem. Understanding the dynamics of water in lakes helps the goal of conservation and recovery
of these valuable ecosystems [3]. This is especially relevant given several environmental initiatives,
such as the European Water Framework Directive (WFD), which came into force in 2000, and the
Habitats Directive, delivered in 1992. These directives require each member state in the European
Union to achieve a good ecological/conservation status for their water bodies and associated habitats
and species, forcing the establishment of conservation actions. Previously, these critical areas in Spain
were identified and studied using maps, field campaigns [4] and photo interpretation techniques.
To enhance these systematic efforts, remote sensing technologies facilitate the content-based mapping
over space and time, leading to multitemporal change detection of the hydrological variations in
wetlands. Mapping surface water bodies allows for the investigation of water balance dynamics by
providing information on the temporal and spatial variations of surface water coverage, this being
especially relevant under the current climate change scenario. In the last few years, some published
studies focused on finding a holistic approach to estimate the occurrence of water pixels with several
satellite remote sensing imageries. These studies can be classified as based on: (1) single-band threshold;
(2) image transformation; (3) two-band spectral indices (vegetation + water indices); (4) two-band
spectral water indices; and (5) thematic classification methods.

The earliest related study, published in 1976 [5], identified ponds and lakes using single-band or
combinations of bands from Landsat 1 and was followed by additional studies. To delineate open water
body features, McFeeters [6] proposed the Normalized Difference Water Index (NDWI), developed
using the green and Near Infrared (NIR) bands of the Thematic Mapper sensor (TM) onboard Landsat
4 and 5. Positive values of this index correspond to water pixels in the image. A modified NDWI with
the aid of NIR and Short Wave Infrared (SWIR) bands was also proposed by Gao [7] to study liquid
water in vegetation; later, Xu [8] proposed an additional modification to the NDWI including green
and SWIR bands to study open water features. Several researchers used these indices in conjunction
with Landsat, Quickbird or SPOT-4 imageries to estimate the water surface of lakes [9,10], deltas
or river basins [11–13], the extents of seasonal and permanent waters in arid areas [14] and coast
lines [15]. Extended studies covered different indices with the aid of several satellite imageries, such
as Landsat 7-ETM+ (Enhanced Thematic Mapper Plus), SPOT (Satellites Pour l’ Observation de la
Terre or Earth-observing Satellites), ASTER (Advanced Spaceborne Thermal Emission and Reflection
Radiometer) and MODIS (Moderate-resolution Imaging Spectroradiometer) [16].

Several comparisons among indices designed to estimate water pixels from remote sensing images
have been recently published, including those comparing the NDWIs [14], other using density slicing
of single bands and the Tasseled Cap Wetness (TCW) [17,18], as well as comparisons using a variants
of the Principal Component Analysis (PCA) to estimate open water extent with TERRA/ASTER and
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Landsat imagery [19]. A Linear Discriminant Analysis Water Index (LDAWI) composed of the green,
red, NIR and SWIR bands of SPOT-5 images to map lake surface [20] has also been used to compare
in water indices. Furthermore, classic thematic classification methods have been used, such as the
maximum likelihood method used to map surface water in a wetland [21,22], the NIR single-band
method, a pixel-based method, the object-based segmentation band [23] and the Automated Water
Extraction Index (AWEI) [24]. Furthermore, several researchers applied single-band thresholds, such as
the NIR band based on the Advanced Very High Resolution Radiometer (AVHRR) and MODIS sensors,
to map seasonal inland waters in Central Asia [25] and to estimate the water surface of Sub-Saharan
West-African wetlands [26], respectively.

Some methods applied to wetland monitoring combined the NIR band to estimate the water pixels
and the NDVI to study wetland vegetation [26], as well as the spectral analytical process and Band 5 of
Thematic Mapper [27]. The objectives of our study were to: (1) investigate the applicability of some of
the previously-tested methods to estimate the water pixels in our study area and to compare them
with the genetic algorithm approach; (2) develop a systematic methodology to monitor the changes in
the water cover in several temporary lakes located in the Biosphere Reserve of La Mancha Húmeda
(Spain) using Landsat 7-ETM+ imagery; and (3) investigate the interplay between precipitation,
evaporation and the subsequent changes of water-covered area in these lakes to unveil the seasonal
effect. Our findings elucidate the hydrological patterns of these lakes and provide tools to improve the
management policies for lake protection, conservation and ecosystem recovery under the European
Water Framework Directive and the Habitats Directive in semiarid areas heavily experiencing the
effects of climate change.

2. Materials and Methods

2.1. Study Area

This study is focused on a host of lakes located in the Biosphere Reserve of La Mancha Húmeda, a
wetland-rich region, the largest in the Iberian Peninsula, comprising up to 30,000 ha holding wetlands
and lakes [28] distributed within the provinces of Albacete, Ciudad Real, Cuenca, and Toledo, in
the Castilla-La Mancha region (Central Spain) (Figure 1). In 1981, UNESCO designated the area as
the Biosphere Reserve of La Mancha Húmeda within the Man and Biosphere Programme (MAB), a
scientific program to promote improved relationships between people and their environments. In 2014,
this Biosphere Reserve was recognized as one of the largest wetland areas in Europe, and many of its
wetlands are included in the Natura 2000 Network (European Habitats and Birds Directives) and the
Convention on Wetlands of International Importance, called the RAMSAR Convention. Located in
a very flat area (La Mancha), the Biosphere Reserve includes floodplain lagoons and, particularly a
variety of saline lakes, mostly endorheic, and represents one of the main saline lake districts in Europe.

A set of 13 shallow saline lakes were selected for this study (Table 1), all located between 638 and
690 m above sea level. Most are temporary lakes located within the Záncara and Cigüela River Basins
in agricultural landscapes. They have small watersheds, mostly covered by vineyards and cereal
crops. Most of the lakes have a marginal belt of homophilous plants, and some also have helophytic
vegetation in areas where the water is influenced by the discharges of treated wastewater, and thus,
salinity is lower in these lakes. The main water inflows to these lakes come from direct precipitation,
runoff of small basins, groundwater recharge in some cases and even include some cases of treated
wastewater spills from nearby towns. Most of the lakes lack surface outlets and behave as endorheic
systems with evaporation as the main water withdrawal process, causing salt accumulation in the lake
beds; thus, these lakes range from mesosaline to hypersaline. Their hydroperiods fluctuate, though
these lakes are mostly temporary as a result of the mixed Mediterranean-Continental semiarid climate
patterns [28], which can be illustrated by the flooding pattern of Lake Alcahozo over a specific time
horizon (Figure 2). Climate in this area shows a pronounced dry season with average annual rainfall
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of 400–500 mm [29]. Sediments of the studied area are of continental nature; the terrain is flat; and the
dominant lithology is limestone [2].Remote Sens. 2016, 8, 618 4 of 18 

 

 

Figure 1. Landsat 5 true color image (RGB: 3, 2 and 1) of the study area. The studied lakes are: (1) El 
Longar; (2) Larga de Villacañas; (3) Tírez; (4) Peñahueca; (5) Grande de Quero; (6) Mermejuela;  
(7) Salicor; (8) Grande de Villafranca; (9) Las Yeguas; (10) Camino de Villafranca; (11) La Veguilla;  
(12) Manjavacas; and (13) Alcahozo. 

Table 1. Main features of the study lakes. 

Lake *1 
Coordinates 
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(masl) 

Max Area *2  
(km2) 

Seasonality 

Alcahozo (13) 39.38 2.85 660 0.19 High 
Camino de Villafranca (10) 39.41 3.26 638 1.4 Moderate 
Grande de Quero (5)  39.50 3.24 664 0.9 High 
Grande de Villafranca (8) 39.46 3.33 645 0.9 Low 
La Veguilla (11) 39.39 3.24 638 0.19 Low+ 
Larga de Villacañas (2) 39.62 3.34 660 1.4 Low+ 
Las Yeguas (9) 39.41 3.28 638 0.6 High 
El Longar (1)  39.70 3.32 690 0.3 High 
Manjavacas (12) 39.41 2.86 670 1.4 Moderate+ 
Mermejuela (6) 39.54 3.13 660 0.09 High 
Peñahueca (4) 39.51 3.34 650 1.6 High 
Salicor (7) 39.47 3.17 668 0.6 High 
Tírez (3) 39.54 3.36 650 1.3 High 

*1 In brackets, the lake identification number (from Figure 1); *2 source: Guadiana River Basin 
Administration (http://www.chguadiana.es/); +, these lakes receive treated wastewater inputs that 
artificially increase the water supply. 

Lakes in La Mancha Húmeda have rapidly deteriorated because of the alteration of their 
hydrological patterns and pollution, the former mainly linked to the continuous overexploitation of 
the aquifers within the last 50 years due to increased agricultural demand [30]. This water extraction 
caused an unsustainable draft of the aquifers. Many of the lakes within the Biosphere Reserve were 
drained-out during the 20th century. Others, because of the salinity and the impossibility for 
agricultural use, were used for landfills or wastewater disposal by the nearby towns. 

Figure 1. Landsat 5 true color image (RGB: 3, 2 and 1) of the study area. The studied lakes are:
(1) El Longar; (2) Larga de Villacañas; (3) Tírez; (4) Peñahueca; (5) Grande de Quero; (6) Mermejuela;
(7) Salicor; (8) Grande de Villafranca; (9) Las Yeguas; (10) Camino de Villafranca; (11) La Veguilla;
(12) Manjavacas; and (13) Alcahozo.

Table 1. Main features of the study lakes.

Lake *1 Coordinates ˝N Coordinates ˝W Altitude (masl) Max Area *2 (km2) Seasonality

Alcahozo (13) 39.38 2.85 660 0.19 High
Camino de Villafranca (10) 39.41 3.26 638 1.4 Moderate
Grande de Quero (5) 39.50 3.24 664 0.9 High
Grande de Villafranca (8) 39.46 3.33 645 0.9 Low
La Veguilla (11) 39.39 3.24 638 0.19 Low+
Larga de Villacañas (2) 39.62 3.34 660 1.4 Low+
Las Yeguas (9) 39.41 3.28 638 0.6 High
El Longar (1) 39.70 3.32 690 0.3 High
Manjavacas (12) 39.41 2.86 670 1.4 Moderate+
Mermejuela (6) 39.54 3.13 660 0.09 High
Peñahueca (4) 39.51 3.34 650 1.6 High
Salicor (7) 39.47 3.17 668 0.6 High
Tírez (3) 39.54 3.36 650 1.3 High

*1 In brackets, the lake identification number (from Figure 1); *2 source: Guadiana River Basin Administration
(http://www.chguadiana.es/); +, these lakes receive treated wastewater inputs that artificially increase the
water supply.

Lakes in La Mancha Húmeda have rapidly deteriorated because of the alteration of their
hydrological patterns and pollution, the former mainly linked to the continuous overexploitation of
the aquifers within the last 50 years due to increased agricultural demand [30]. This water extraction
caused an unsustainable draft of the aquifers. Many of the lakes within the Biosphere Reserve
were drained-out during the 20th century. Others, because of the salinity and the impossibility for
agricultural use, were used for landfills or wastewater disposal by the nearby towns.
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Figure 2. Time course of Landsat 7-ETM+ true color images (RGB: Bands 3, 2, 1) of Lake Alcahozo for 
the period June 2013–June 2014.  

2.2. Reference Datasets 

In addition to the Landsat imagery, three different datasets were used in this study (Table 2):  
(1) ground-measurements of the water depth in the 13 study lakes, used to test several methods to 
estimate water pixels coverage and to select the method showing the best performance; (2) the 
perimeter of two of these lakes (Alcahozo and Manjavacas) measured in situ by GPS; and (3) high 
spatial resolution Google Earth™ images. The second and third datasets were used to validate the 
area estimated by the selected method. Boundaries of the lakes obtained from high spatial resolution 
Google Earth™ images were digitized manually. The water column measurements were collected in 
the field during 2013–2014 as an integral part of the ECOLAKE project (ecological patterns in plateau 
lakes: the key for their conservation). Concurrent, or close in time, Landsat overpasses are listed in 
Table 2. Water depth was monthly measured by limnimeters installed in each lake during the 
sampling years. A major field campaign was conducted in July 2014 covering lakes Alcahozo, Camino 
de Villafranca, El Longar, La Veguilla, Las Yeguas and Manjavacas. Satellite images affected by 
clouds or with an excessive time delay between the acquisition date and field measurements date 
were discarded.  

Table 2. Data sources for this study for each lake: A = ground-measurements of the water depth,  
B = GPS data and C = Earth Explorer™ ©Digital globe, respectively (lake abbreviations as follows: 
Alcahozo, AL; Camino de Villafranca, CA; Grande de Quero, QUE; Grande de Villafranca, GRAN; La 
Veguilla, VE; Larga de Villacañas, LAR; Las Yeguas, YE; Longar, LO; Manjavacas, MAN; Mermejuela, 
MER Peñahueca, PE; Salicor, SAL; Tírez, TI). 

Landsat Image Date 
(Day/Month/Year) 

Reference Data Date 
(Day/Month/Year) 

Source Lakes 

3 February 2011 9 February 2011 C LO/YE/CA/VE/LAR/PE/QUE/SAL 
29 June 2012 29 June 2012 C VE/LAR/PE 
7 July 2012 15 July 2012 C CA/SAL 

24 February 2013 28 February 2013 A AL/CA/MAN 
31 May 2013 29 May 2013 A AL/CA/LO/VE/MAN/GRAN/LAR/MER/PE/QUE/TI 
25 July 2013 23 July 2013 A CA/VE/YE/QUE/TI 

29 October 2013 28 October 2013 A PE/TI 
23 November 2013 25 November 2013 A AL/CA/LO/LAR/SAL 
16 December 2013 16 December 2013 A CA/LO/GRAN/LAR/PE/TI 

26 January 2014 27 January 2014 A CA/VE/MAN/YE/PE/TI 
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26 June 2014 24 June 2014 A LO/VE/YE/GRAN/LAR/MER/QUE/SAL 
21 July 2014 23 July 2014 * A AL/CA/LO/VE/MAN/YE/MER/PE/TI 

2 March 2015 22 February 2015 B AL/MAN 
21 May 2015 21 May 2015 B AL/MAN 

* Field inspection work in AL/CA/LO/VE/MAN/YE. 

Figure 2. Time course of Landsat 7-ETM+ true color images (RGB: Bands 3, 2, 1) of Lake Alcahozo for
the period June 2013–June 2014.

2.2. Reference Datasets

In addition to the Landsat imagery, three different datasets were used in this study (Table 2):
(1) ground-measurements of the water depth in the 13 study lakes, used to test several methods
to estimate water pixels coverage and to select the method showing the best performance; (2) the
perimeter of two of these lakes (Alcahozo and Manjavacas) measured in situ by GPS; and (3) high
spatial resolution Google Earth™ images. The second and third datasets were used to validate the area
estimated by the selected method. Boundaries of the lakes obtained from high spatial resolution Google
Earth™ images were digitized manually. The water column measurements were collected in the field
during 2013–2014 as an integral part of the ECOLAKE project (ecological patterns in plateau lakes:
the key for their conservation). Concurrent, or close in time, Landsat overpasses are listed in Table 2.
Water depth was monthly measured by limnimeters installed in each lake during the sampling years.
A major field campaign was conducted in July 2014 covering lakes Alcahozo, Camino de Villafranca,
El Longar, La Veguilla, Las Yeguas and Manjavacas. Satellite images affected by clouds or with an
excessive time delay between the acquisition date and field measurements date were discarded.

Table 2. Data sources for this study for each lake: A = ground-measurements of the water depth,
B = GPS data and C = Earth Explorer™ ©Digital globe, respectively (lake abbreviations as follows:
Alcahozo, AL; Camino de Villafranca, CA; Grande de Quero, QUE; Grande de Villafranca, GRAN;
La Veguilla, VE; Larga de Villacañas, LAR; Las Yeguas, YE; Longar, LO; Manjavacas, MAN; Mermejuela,
MER Peñahueca, PE; Salicor, SAL; Tírez, TI).

Landsat Image Date
(Day/Month/Year)

Reference Data Date
(Day/Month/Year) Source Lakes

3 February 2011 9 February 2011 C LO/YE/CA/VE/LAR/PE/QUE/SAL
29 June 2012 29 June 2012 C VE/LAR/PE
7 July 2012 15 July 2012 C CA/SAL

24 February 2013 28 February 2013 A AL/CA/MAN
31 May 2013 29 May 2013 A AL/CA/LO/VE/MAN/GRAN/LAR/MER/PE/QUE/TI
25 July 2013 23 July 2013 A CA/VE/YE/QUE/TI

29 October 2013 28 October 2013 A PE/TI
23 November 2013 25 November 2013 A AL/CA/LO/LAR/SAL
16 December 2013 16 December 2013 A CA/LO/GRAN/LAR/PE/TI

26 January 2014 27 January 2014 A CA/VE/MAN/YE/PE/TI
5 February 2014 29 April 2014 A CA/MER

26 June 2014 24 June 2014 A LO/VE/YE/GRAN/LAR/MER/QUE/SAL
21 July 2014 23 July 2014 * A AL/CA/LO/VE/MAN/YE/MER/PE/TI

2 March 2015 22 February 2015 B AL/MAN
21 May 2015 21 May 2015 B AL/MAN

* Field inspection work in AL/CA/LO/VE/MAN/YE.
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2.3. Remote Sensing Data Collection and Pre-Processing

The ETM+ onboard Landsat 7 platform was used to conduct this study. All of the images are
available free of charge at the United States Geological Survey website. The Landsat cloud-free images
downloaded from the EarthExplorer visor (http://earthexplorer.usgs.gov/) correspond to the surface
reflectance product corrected from the atmospheric contribution with the 6S radiative transfer code
(CDR_sr). The downloaded scenes were synchronous or close in time to the reference data (Table 2).
The path and row corresponding to our study area belong to 200/33 and 201/32–33, respectively.

Satellite image pre-processing was required prior the application of the different methods.
All scenes were cut to fit our area of interest, and a normalization of the images was then
conducted [31,32] using the image of July 2014 as a reference. The iteratively-reweighted multivariate
alteration method (IRMAD) was applied [33] to minimize the spectral variability caused by
seasonal sun-surface-sensor effects [31]. The IRMAD technique developed for automatic radiometric
normalization of multi-spectral and hyper-spectral images allowed us to find linear combinations
between the reference and target image bands used to generate a pair of new multispectral images by
using canonical correlation analysis. The components of the new images were called canonical variates.
This IRMAD technique considers that the reflectance values of some areas in the same scene acquired
at different times would be changed, but not everywhere. With this assumption, pixels with the
fewest differences between the canonical variates were labeled as the pseudo-invariant pixels, which
were then used to normalize each image band-by-band to the reference image. The linear regression
equations used to spectrally align each of the six bands of an image were obtained with regression
coefficients (r2) > 0.90 and root mean square errors (RMSE) <10%. After this pre-processing, all images
were visually compared to ensure that they were co-registered correctly. If so, no further corrections or
adjustments were necessary. A correction of the scan line corrector failure was performed following
the methodology proposed by Scaramuzza et al. [34]. To isolate our study area (lakes), a water mask
was manually digitalized from a Landsat 5-TM image (May 2010), corresponding to a wet year, to
mark out the maximum flooding area of the lakes.

2.4. Water Mapping Methods

Several methods were tested to estimate the absence or presence of water in the lakebeds of the
studied lakes (Figure 3). For a rigorous comparison, we focused on the data from the intensive field
campaign in July 2014 and on five tested lakes (Alcahozo, Camino de Villafranca, El Longar, La Veguilla,
Las Yeguas and Manjavacas) (Figure 4). The comparison was established between two-band vegetation
indices, two-band water indices, single band threshold, classification methods, Artificial Neural
Network (ANN), Support Vector Machine (SVM) and Genetic Programming (GP) algorithms. Note that
the Landsat image used in this section (21 July 2014) will be later considered as the reference for the
normalization procedure applied to the full image dataset. Regarding two-band spectral indices for
vegetation, both the NDVI [35] and the SAVI [36] were tested. Within the two-band spectral indices
for water, several variants of the NDWI were studied, including the Modification of the Normalized
Difference Water Index (MNDWI) and the index proposed by Ángel-Martínez [37] (I_CEDEX) where
CEDEX is the Centre for studies and experimentation on public works in Madrid, Spain. The approach
proposed by Bustamante et al. [38] based on the MIR band and the single-band threshold with the NIR
used by [39] were tested. Both supervised and unsupervised classification methods using different
spectral bands were also tested. Unsupervised classification methods include k-means and the Iterative
Self-Organizing Data Analysis Technique (ISODATA), whereas supervised classification included the
parallelepiped method, minimum and Mahalanobis distance and the maximum likelihood method
(Figure 3).



Remote Sens. 2016, 8, 618 7 of 18
Remote Sens. 2016, 8, 618 7 of 18 
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Figure 3. Collection of methods to estimate water pixels tested in this work. ISODATA, Iterative
Self-Organizing Data Analysis Technique.

Machine learning algorithms were also considered, including SVM, GP and ANN, a
machine-learning method inspired by the human brain function. These machine learning techniques
are all nonparametric classification techniques that require no assumptions about the distribution
of the data and thus need no a priori knowledge about the characteristics of feature data. An ANN
model is based on three different layers: input layer (i.e., input data include reflectance bands and/or
water-vegetation indices), one or more hidden layers and the output layer (i.e., dichotomous output
includes either water or non-water class) [40]. The SVM is a supervised machine learning technique
based on statistical learning theory [41] used to find boundary locations of different classes. In our study,
different kinds of SVM were tested to carry out the classification, including linear, quadratic, cubic
and Gaussian kernels. MATLAB® software was used to implement ANN and SVM. Finally, genetic
programming (GP) is a subclass of evolutionary computation techniques designed to search for
the best fit to perform a user-defined task. GP can decode system behaviors based on empirical
data for symbolic regression, uncover relationships and make inferences using association path
analysis, classification, clustering and forecasting [42]. A principal advantage of GP is that the
solution methodology can learn the relationship between the inputs and outputs without any a priori
knowledge or preconceptions, thus placing the burden of the discovery process primarily on the GP,
reducing data contribution and preprocessing by the user [43]. In this study, the user-defined task
was to develop a GP model that uses the inputs of surface reflectance data associated with common
bands and different two-band indices to predict the outputs, including water and non-water categories.
We used Discipulus® [44] software to run the GP algorithms.

The ground-truth dataset was divided in two subsets for ANN, SVM and GP model training (2/3
of the total data; 56 data points) and validation (1/3 of total data; 28 data points). Finally, the ANN,
SVM and GP algorithms yielding the best results were compared to the methods above. A flowchart
of the different steps generated in the methodology (Figure 4) shows that all of the pixel values used
for the training/validation/testing of all methods were extracted before the correction of the Scan
Line Corrector (SLC) failure of Landsat 7; thus, this correction did not cause any bias. A confusion
matrix was obtained for each of the methods applied to rank all of the possible cases associated with
these models in different categories, estimating whether or not the predicted value is consistent with
the real value. To evaluate the consistency of our results, we used the confusion matrix to calculate
the kappa coefficient (κ), an index ranging from ´1 to +1; values higher than 0.4 are considered
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acceptable [45]. The confusion matrix can also be used to generate the commission error and user
accuracy. The commission error is the percentage of pixels wrongly assigned to a certain class by
the classifier, whereas user accuracy is the probability that a pixel assigned to a class by the classifier
correctly corresponds to that class. The omission error is the percentage of pixels that belong to the
ground truth class, but were improperly classified, and the producer accuracy is the probability that
the classifier has been correctly assigned to a class given by the ground truth data.
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The method showing the best performance in terms of discrimination of water/non-water pixels
in our test area was selected and applied to the full set of images listed in Table 2 and to a variety of
lakes different from those used in the algorithm training. Finally, the relationship between precipitation-
evaporation and the lake water cover was analyzed for Lake Alcahozo, used as a model lake to explore
the effect of meteorological variability characteristic of the Mediterranean climate during 2013–2015.
Meteorological data were downloaded from the Servicio Integral de Asesoramiento al Regante de
Castilla-La Mancha (SIAR) (http://crea.uclm.es/siar/datmeteo/), which provides daily information
of mean, absolute maximum and minimum values of temperature, humidity, wind speed, cumulative
global solar radiation, daylight hours, precipitation and reference evapotranspiration estimated with
the Penman–Monteith equation [46]. In the present study, we focused on precipitation and reference
evapotranspiration data to explore the hydrological cycle dynamics.

Finally, we include a brief discussion of climate elasticity as an application example.
Climate elasticity of streamflow (e), an index commonly used to quantify the sensitivity of streamflow
to meteorological pattern and climate change. It is defined as the proportional change in the streamflow
(lake flooded area in our case) relative to the proportional change in a climatic variable, such as
precipitation (p). The index was applied to our lake data, and the nonparametric estimator was used
to calculate the climate elasticity [47]. In particular, we focused on the variation between the area of a
lake and the precipitation Equation (1).

ep “ median
ˆ

At ´ A
Pt ´ P

ˆ
P
A

˙

(1)

where ep is the climate elasticity relative to precipitation, A and P represent area and precipitation, A
and P are the corresponding yearly mean values and t is time.

3. Results and Discussion

3.1. Water Pixel Estimation

Results of the accuracy assessment of the different methods are summarized in Tables 3–5.
Among the water indices, the NDWI based on the green and NIR bands [6] (Table 3) showed the best
performance. This index showed the best results with the threshold proposed by the original author
for to assign water pixels (values > 0). An overall accuracy of 90% and a kappa coefficient of 0.80 were
obtained. In the case of the MNDWI and the NDWI [7], the best results were obtained with a threshold
of 0.5 and ´2 for the I_CEDEX (Table 3).

Kappa values of 0.4 were obtained for the methods based on vegetation indices (NDVI and SAVI)
(Table 3). Visualization analysis based on field conditions showed that both water and vegetation
indices overestimated the water pixels when the lakes were completely dry in July 2014.

Table 3. Summary of accuracy assessment of the different water and vegetation indices and the single
bands tested.

Method
Overall
Accuracy
(%)

Kappa Commission
Error (%)

Omission
Error (%)

Producer
Accuracy
(%)

User
Accuracy
(%)

Total
Error (%)

MNDWI Xu [8] 90 0.80 30 3 95 70 30

NDWI Gao [7] 90 0.60 40 15 85 60 60

NDWI McFeeters [6] 90 0.80 25 3 95 75 30

I_CEDEX Ángel-Martínez [37] 90 0.70 40 10 90 60 50

NDVI Rouse et al. [35] 70 0.40 60 30 70 40 90

SAVI Huete [36] 70 0.40 60 30 70 40 90

ETM+4 99 0.97 2 2 98 98 4

ETM+5 90 0.70 40 0 100 60 40
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Acceptable results were obtained for the single-band threshold, with kappa values of 0.97 and
0.70 for Bands 4 and 5 (Figure 5), although Band 5 overestimated the water pixels, possibly due to
the presence of puddles or mud puddle areas on the lakes surfaces. The water index using near
and middle infrared ETM+ bands (NDWI [7]) presented worse results than the other water indexes
applied to our study area, possibly because these wavelengths are more sensitive to the presence
water [38], thus causing mistakes in the water-cover pixel identification. These results agree with
the conclusions of Campos et al. [14] reporting that indices using the middle infrared band can have
contrasting performances in detecting seasonal and permanent water. The NDWI using near and
middle infrared bands was more sensible for detecting the seasonality of the water cover despite
significant overestimations. Although the kappa values were acceptable, the commission and omission
errors were high, and the total error (percentage of omission and commission) was greater than 30% in
all cases, except for ETM+4, where the total error was 4% (Table 3).
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Figure 5. Kappa coefficient vs. overall accuracy for the methods showing acceptable kappa values:
water-vegetation indices and single bands, classification and data mining methods.

The best results for the supervised classification based on the Mahalanobis distance and maximum
likelihood methods (Table 4) were obtained for the combination of red and NIR bands, resulting in
kappa values of 0.97 and 0.80, respectively. Overall, the classification methods showed acceptable
kappa values (Figure 5), but with an underestimation of water pixels in the classification since one of the
lakes with water in the ground-data test date (July 2014) was classified as a dry lake. Acceptable results
were obtained from the ISODATA unsupervised classification method, with an overall accuracy of 95%
and a kappa value of 0.90. A total error of 15% was obtained from the ISODATA method.

Table 4. Summary of the accuracy assessment for the different classification methods and band
combinations tested in this study.

Method
Overall
Accuracy
(%)

Kappa Commission
Error (%)

Omission
Error (%)

Producer
Accuracy
(%)

User
Accuracy
(%)

Total
Error
(%)

Parallelepiped All combinations <40 <0.20 >50 >50 <50 <50 >60

Minimum distance ETM+ 4,5 90 0.67 40 0 100 60 60

Mahalanobis ETM+ 3,4 99 0.97 5 0 100 95 5

Maximum Likelihood ETM+ 3,4 95 0.80 0 30 70 100 30

Maximum Likelihood ETM+ 4,5 95 0.70 0 40 60 100 40

K-means ETM+ 4,5 80 0.60 10 30 90 75 40

K-means ETM+ 4 80 0.60 10 30 90 75 40

ISODATA ETM+ 3,4 95 0.90 10 5 100 80 15
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Data mining methods applied in our study showed overall accuracy values greater than 90% and
kappa values higher than 0.70 (Figure 5). Results from the combinations of Bands 3–5 as inputs in both
ANN and SVM methods were acceptable (Table 5), as they were in some cases using all bands as inputs.
An ANN model with four hidden layers presented the best results, with an overall accuracy of 95%
and a kappa value of 0.9. Similar results were obtained when applying the SVM with all reflectance
bands as inputs. The best results were obtained from the SVM method when using the linear and cubic
kernel. In particular, the cubic kernel-based SVM showed the best results with an overall accuracy of
99% and a kappa value close to one.

In contrast to the ANN and SVM methods, the GP algorithm produces a complex relationship
between the inputs and outputs via a nonlinear function. The best results were obtained by a
relationship between the water pixels and the reflectance of the NIR band from the Landsat ETM+
imagery. The resulting nonlinear equation was:

GPRw “ cos ((0.003 ˆ ETM ` 4)1/4) (2)

where GPRw is the GP outputs for water classification.
This GP algorithm presented a kappa value of 0.98 and an error of 2% in the classification of the

water pixels (Table 5). With such a relationship between the reflectance values and the class given
by Equation (2), a threshold could be established to determine whether there is water-cover or not in
each pixel. In this study, values of GPRw higher than 0.1 imply that the classification as water pixels
is favored.

Table 5. Summary of the accuracy assessment of the different data mining methods tested.

Method
Overall
Accuracy
(%)

Kappa Commission
Error (%)

Omission
Error (%)

Producer
Accuracy
(%)

User
Accuracy
(%)

Total
Error
(%)

ANN ETM+ 1–5,7 95 0.90 4 15 85 95 19

SVM linear ETM+ 1–5,7 95 0.80 0 15 100 85 15

SVM linear ETM+ 3–5 95 0.87 0 18 100 80 18

SVM Quadratic ETM+ 3–5 90 0.70 0 40 100 65 40

SVM Cubic ETM+ 1–5,7 99 0.97 0 6 100 94 6

SVM F Gauss1 ETM+ 3–5 90 0.70 0 40 100 59 40

SVM M Gauss2 ETM+ 3–5 95 0.90 0 20 100 80 20

SVM Course ETM+ 1–5,7 95 0.80 0 30 100 75 30

SVM Course ETM+ 3–5 95 0.85 0 20 100 79 20

GP ETM+ 4 99 0.98 2 0 100 97 2

Based on its accuracy assessment compared to other methods, the GP algorithm was selected as
the most appropriate method (Table 5). As explained in the Methods section (Figure 4), this, as the best
method, was selected to be applied to a set of images from different dates. First, it was applied for the
same lakes for which the algorithm was performed and then applied to the rest of the lakes. When the
results of the GP algorithm were applied to the full image dataset (Table 2), an overall accuracy of
95% with a kappa value of 0.8 was achieved. When applied to lakes different from those used in the
algorithm training, an overall accuracy of 90% and a kappa value of 0.8 were obtained. We could
further discern between two different thresholds to separate water and non-water pixels, one for each
type of lake. The lakes in our study area are lakes with wide playas (Figure 6), lakes with smaller playa
areas and lakes without playas. Playa lakes showed a different threshold than those for lakes without
playas or with small playa areas (Figure 7). For the small playa area lakes, however, we observed
that some have a threshold of ´0.05, similar to playa lakes, although most of the playa lakes show a
0.1 threshold value. The result of the GP algorithm after applying the test data can be seen in Figure 7.
Lakes without playas presented GPRw values higher than 0.1 for pixels with the presence of water
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(Class 1) and lower than 0.1 for the dry pixels (Figure 7). Instead, for playa lakes the threshold is ´0.05,
so lower values presented pixels without water.
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3.2. Sub-Pixel Extraction

The selected GP algorithm was applied to the synchronous images (or at least close to the date
of the field campaigns) and to the high resolution Google Earth™ images (Table 2). The best results
in the classification of water pixels were obtained for lakes Grande de Quero, Larga de Villacañas,
Las Yeguas, Manjavacas and Peñahueca with kappa values higher than 0.60 and overall accuracies
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above 80% (Table 6). We were unable to find close reference data to carry out this part of the study for
lakes Grande de Villafranca and Mermejuela.

Table 6. Accuracy in the estimation of water area for the different lakes with reference data.

Lake *1 Threshold Overall Accuracy (%) Kappa

Alcahozo (13) ´0.05 70 0.45
Camino de Villafranca (10) ´0.05 94 0.62

Grande de Quero (5) ´0.05 99 0.85
* La Veguilla (11) 0.10 86 0.68

Larga de Villacañas (2) 0.10 90 0.61
* Larga de Villacañas (2) 0.10 80 0.80

Las Yeguas (9) ´0.05 97 0.76
El Longar (1) ´0.05 96 0.53

Manjavacas (12) 0.10 96 0.92
Manjavacas (12) 0.10 86 0.73
* Peñahueca (4) ´0.05 95 0.82

Salicor (7) ´0.05 94 0.15

* Synchronous reference and satellite data (same day); *1 lake identification number listed in each bracket as in
Figure 1.

Lakes Alcahozo, Salicor and Longar presented the lowest kappa values of 0.45, 0.15 and 0.53,
respectively. The discrepancies in Lake Alcahozo were probably due to the one-week difference
between the image acquisition date and the collection date of the reference data in the field. This lake
experiences fast changes in water depth because of its low depth and the absence of regular water
inflows, presenting challenges to the classification of these edge pixels. The classification output of the
GP algorithm is, however, in agreement with the ground-truth data when the lake was completely dry
for the 15 May 2011 campaign (Figure 8).
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It is noteworthy that the misclassified area of Lake Salicor is flagged by a kappa value of 0.15
(Figure 8), in part because SLC failure created strips in the original ETM+ images, which affected
the observation of the lake. Most of the misclassified data belong to Lakes Salicor and El Longar
(Figure 8). On the other hand, the proposed GP algorithm could not be validated for lakes Grande de
Villafranca, Mermejuela and Tírez because no ground data were available, and the auxiliary Google
Earth™ images were distant in time. However, the application of the GP algorithm to a Landsat image
of the Lake Manjavacas obtained on 21 May 2015, against the GPS ground measurements of the water
perimeter on the same date, confirmed that the threshold value of 0.1 is applicable (Figure 9). In this
case, an overall accuracy of 95% and a kappa value of 0.90 were obtained.
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3.3. Water Area Variation

The selected GP algorithm was applied to the available images to estimate the flooded area of
all studied lakes from spring 2013 to spring 2015. Focusing on Lake Alcahozo, we further present a
linkage between climate (precipitation and reference evapotranspiration (ET0)) and the flooded area of
the lake to elucidate the link between meteorology and lake hydrology at the local scale. The reference
evapotranspiration (ET0) was used as an indicator of the behavior and intensity of the evaporation in
our study area. The results of the flooded area estimation for Lake Alcahozo, which is completely dry
in summer periods following the seasonal trend typical for this type of lake, are shown in Figure 10.
Figure 11 shows that the flooded area was mainly driven by the precipitation pattern, and larger
flooded areas were obtained for wetter years. In May 2013, the flooded area presented a maximum
value, because lake water remaining from winter was further increased by the March rainfall peak.
In addition, this lake presents a dry season in summer, corresponding to the highest ET0 values
(Figure 10).

The proportional change in the flooded area with the precipitation was calculated for our study
time frame for lakes that presented the best estimations of flooded area. After calculating the climate
elasticity, two different values were obtained, around 0.2 and 1.3, in association with a low or high
temporality, respectively. All lakes with a strong seasonal trend, such as Lakes Alcahozo, Camino de
Villafranca, Grande de Quero and Las Yeguas, presented values of 1.3, indicating that in these two
years, a 1% change in mean annual rainfall resulted in a 1.3% change in the mean annual flooded area
of these lakes, whereas in the other cases (Lakes Larga de Villacañas, La Veguilla and Manjavacas), a
similar change in annual rainfall only resulted in a variation of 0.2% of the mean annual flooded area.
This finding is a consequence of the hydrological alteration driven by the wastewater disposal in the
second set of lakes, which expanded the flooding period and buffered rainfall-dependent fluctuations
in water level.
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Although the algorithm was tested for different lakes from our study area and the seasonal
effects were minimized with the radiometric normalization, the chemical and biophysical changes in
the water bodies could affect the results of the GP algorithm. We tried to minimize these factors by
applying the GP algorithm to different seasons and different water levels of each lake. Although the
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GP algorithm showed acceptable results, the robustness of the described methodology will need to be
further assessed using additional datasets. In addition, the SLC failure of Landsat 7 imageries caused
errors in the estimation of the total water area of some lakes. Water bodies presenting irregular shapes
could be more vulnerable to this issue, such as the case of Salicor Lake in the present study.

The proposed GP algorithm can also be applied to images obtained from other sensors, such
as Landsat 5, which will allow us to conduct long-term studies. Future works will deal with
the applications to other sensors, such as SPOT-5 or the recent Sentinel 2. The future NASA
satellite “Surface Water and Ocean Topographic (SWOT)”, which is expected to be launched in
2020 for a demonstration mission with an expected length of three years, is a good example of the
importance of these types of studies. In addition, future prospects of our current work will be
the long-term monitoring of the lakes to study their hydrological patterns in greater detail to help
to develop adequate management plans for lake protection, conservation and recovery under the
European Water Framework and the Habitats Directives, especially for semiarid regions, such as the
Mediterranean basin.

4. Conclusions

Several supervised and unsupervised classification methods to estimate water pixels across
a set of 13 shallow saline lakes in Spain were tested and validated in this study, using Landsat
7-ETM+ imageries. These methods tested include the two-band spectral indices, multispectral indices,
classification methods, single threshold and the data mining or machine learning techniques. The GP
algorithm showed the best performance with a kappa value of 0.98 and a low error of 2%, both in
training and validation. The robustness of this GP method was reinforced with additional ground-truth
data. This GP algorithm could serve as a tool to improve our understanding of the temporal trends
in seasonal lakes and their dependence on meteorological patterns, especially on rainfall. Such an
approach provides a cost-effective way to monitor the flooded area variations related to changes of
precipitation and evaporation, as well as to resource exploitation, in order to establish sustainable water
resources management plans that preserve the ecological health of wetlands and lakes in semiarid
basins with a high water stress, such as the area of La Mancha Húmeda Biosphere Reserve.
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