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Abstract: With the upcoming availability of the next generation of high quality orbiting hyperspectral
sensors, a major step toward improved regional soil mapping and monitoring and delivery of
quantitative soil maps is expected. This study focuses on the determination of the prediction
accuracy of spectral models for the mapping of common soil properties based on upcoming
EnMAP (Environmental Mapping and Analysis Program) satellite data using semi-operational
soil models. Iron oxide (Fed), clay, and soil organic carbon (SOC) content are predicted in test
areas in Spain and Luxembourg based on a semi-automatic Partial-Least-Square (PLS) regression
approach using airborne hyperspectral, simulated EnMAP, and soil chemical datasets. A variance
contribution analysis, accounting for errors in the dependent variables, is used alongside classical
error measurements. Results show that EnMAP allows predicting iron oxide, clay, and SOC with
an R2 between 0.53 and 0.67 compared to Hyperspectral Mapper (HyMap)/Airborne Hyperspectral
System (AHS) imagery with an R2 between 0.64 and 0.74. Although a slight decrease in soil prediction
accuracy is observed at the spaceborne scale compared to the airborne scale, the decrease in accuracy
is still reasonable. Furthermore, spatial distribution is coherent between the HyMap/AHS mapping
and simulated EnMAP mapping as shown with a spatial structure analysis with a systematically
lower semivariance at the EnMAP scale.

Keywords: imaging spectroscopy; airborne; satellite; simulated EnMAP; soil properties;
Partial-Least-Square regression; variogram; autoPLSR

1. Introduction

There is a renewed awareness of the finite nature of the world’s soil resources, growing concern
about soil security, and significant uncertainties about the carrying capacity of the planet [1,2]. It has
been answered with a growing number of soil policies and regulations around the world concerned
with, e.g., increasing soil degradation and loss of organic carbon in top soils, and aiming at more
soil management and soil protection. Soil scientists are being challenged to provide assessments of
soil conditions from local to global scales [3,4]. However, only a few countries have the necessary
survey and monitoring programs to meet these new needs and existing global datasets are out-of-date.
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A particular issue is the clear demand for a new regional to global coverage with accurate, up-to-date,
and spatially referenced soil information as expressed by the scientific community, farmers and land
users, and policy and decision makers [5].

Remote sensing observations offer the possibility of continuous soil mapping and monitoring.
They can provide an efficient cost-effective means to determine surface soil composition provided
that the soils are exposed at the surface and the technologies are accurate enough to deliver the
information needed. The interest in the use of non-invasive sensing methods such as reflectance
spectroscopy for the remote determination of mineralogical composition in planetary surfaces has
been demonstrated since the 1970s with the development of databases of mineral spectra in the
laboratory (e.g., [6,7]). Comparatively faster than traditional measuring techniques, spectroscopy can
exploit the information carried by reflectance in the visible and near-infrared (VNIR: 400–1100 nm)
and shortwave infrared (SWIR: 1100–2500 nm) part of the electro-magnetic spectrum to measure soil
properties. Reflectance spectroscopy is an indirect method: soil inference is based on empirical models
calibrated by linking spectral data with soil parameters analyzed by reference methods. The main
chemical components in soils that interact with electromagnetic radiation, termed chromophores, are
in free water OH, clay mineral lattice, organic matter, and non-clay minerals, such as iron oxides,
carbonates, and salts [7,8]. Soils are complex mixtures of components producing poorly defined
spectra due to numerous absorptions that are often weak, overlapping and interacting with each
other causing masking and shifting effects. Hence, spectral unmixing techniques such as those used
for determining mineral abundances [9] cannot simply be used to determine soil composition and
therefore predictions are often obtained through multivariate statistics. Early studies, such as [10,11],
started to produce soil property predictions based on multivariate statistics. Since then, most of the
studies adopted similar multivariate statistics quantitative approaches and spectroscopy has been
exploited in the laboratory to predict soil properties such as organic carbon [12], and texture [13]. As a
consequence, the prediction of soil properties based on spectroscopy showed a tremendous increase
in the last decades [14]. Recent reviews ([15,16]) listed soil properties that could be determined by
means of diffuse reflectance spectroscopy including soil water content, clay, sand, soil organic carbon
(SOC), Cation Exchange Capacity (CEC), exchangeable Ca and Mg, total N, pH, and showed that
soil spectroscopy has the potential to aid and supplement soil survey. Nowadays soil spectroscopy
has become a recognized laboratory method presented as an alternative to wet chemistry for soil
monitoring [17].

At the remote sensing scale, imaging spectroscopy using airborne sensors has shown the potential
to map and quantify topsoil properties in many studies [18–21], the most successful ones being the
applications for soil properties that are directly related to the chromophores such as iron oxides, clay,
SOC. Alike with laboratory approaches, the Partial-Least-Square (PLS) approach was the most often
used tool in the past decade to predict quantitative surface soil properties from imaging spectroscopy
data (see, e.g., [19,22–25]). Most studies were successful at local scale, when the soils were exposed
at the surface and vegetation cover and moisture content were low. Upcoming spaceborne sensors
are currently being built like EnMAP [26] from Germany and HISUI from Japan both planned to be
launched in 2019. SHALOM, a joint initiative of Italy and Israel, HypXIM from France and HypsIRI
from the USA are in the design phase. The upcoming availability of these high signal-to-noise ratio
spaceborne imaging spectroscopy data is expected to provide a major step toward the operational
quantitative monitoring of soil surfaces at large scales. Indeed, these instruments could therefore
provide global spectroscopic data for mapping quantitative soil properties at low costs, and could
allow accurate assessment and monitoring of soil erosion such as e.g., carbon loss or increase when
degradation processes or recultivation effects in soils are present. In comparison to existing satellite
sensors, for which current initiatives for global soil mapping already exists (such as MODIS Africa [27],
and ASTER Australia [28]), imaging spectroscopy would allow to derive more identification of
mineralogy and more quantitative soil products. Nonetheless, advances are still necessary to fully
develop imaging spectroscopy soil products that can support, in a credible manner, global digital
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mapping and monitoring of soils. The expected potential of future hyperspectral satellites has to be
demonstrated in case studies, and limitations in the current methodologies for global quantitative
determination of soil properties have to be overcome. These limitations include: PLS models that need
manual fine-tuning, use of non transferable local/regional soil models, the need of local ground truth
databases, and also the effects of noise (vegetation, moisture, roughness, etc.). For this, recent studies
looked at the potential of the future EnMAP sensor for local land cover and vegetation mapping based
on simulated EnMAP data [29,30], and one study looked at the potential of future sensors for soil
properties mapping based on noise- and spatially-degraded spectral images enhancing the effects of
spatial scale resolution [31]. In addition, few studies looked at the issue of the operationability of the
predictions linked with harmonized methodologies for applications at regional to global scale [32–35],
or at the issue of whether many local/regional soil prediction models or a global model could be set
up [36]. The issue of the capability of future hyperspectral sensors for soil properties mapping using a
full satellite simulator and semi-operational methodologies has never been tackled and the accuracy of
the soil products that can be achieved in such a case has never been evaluated.

In this context, the main objective of this paper is to test and validate the capability of upcoming
spaceborne imaging spectroscopy in comparison to airborne imaging spectroscopy in case studies
for the quantitative prediction of common soil properties using state-of-the-art semi-operational
methodologies. The central aspects of this paper are: (a) iron oxide, clay and SOC determination
were selected as studied soil properties because they are important as they relate to soil fertility
and soil structure, and the expected feasibility of their prediction based on optical remote sensing
has also already been demonstrated at the airborne scale; (b) the EnMAP sensor is taken as a
representative of future high quality spaceborne sensor, for which a simulator has already been
developed, taking into account sensor spectral, radiometric, and spatial characteristics, flight and
illumination conditions; (c) an automated PLS approach is used that does not include fine-tuning and
is representative of more operational processing procedures for upcoming global applications; and
(d) the evaluation of the prediction accuracy is in focus with using conventional error measures but
also uncertainty measures, and a spatial structure analysis is included to assess the spatial distribution
of the soil maps at spaceborne (30 m) compared to airborne scale (2.6 and 4.5 m). The test sites,
ground truth data and associated imaging spectroscopy datasets including EnMAP simulations are
presented in Section 2.1. The description of the processing methodology of the paper is presented in
Section 2.2 including the processing workflow, autoPLSR procedure, model performance statistics,
and spatial structure analysis using semivariograms to evaluate the coherence of the spatial mapping.
The resulting soil maps, spectroscopic models, and semivariogram analysis are presented in Section 3
and subsequently discussed.

2. Materials and Methods

2.1. Test Sites and Datasets

Test sites were carefully selected based on: (1) the availability of high quality hyperspectral
reflectance cubes in areas where bare soils are exposed; (2) the availability of extensive ground truth
ground truth measurements including the soil properties iron oxide, clay, SOC, associated with surface
sampling that have been acquired for validation of optical remote sensing imagery (top-surface
samples, spatial sampling to cover homogeneous areas); (3) the presence of a high variability in the soil
properties in question; and (4) the a priori feasibility of the spectral determination of a soil property
from previous works in related areas. Two test sites were chosen, in Spain and in Luxembourg,
in representative agricultural areas from two contrasting environments in semi-arid and temperate
climatic zones. It is worth noting that the sampling strategy in both cases was conceptualized originally
to accommodate the airborne scale of approximately 5 m � 5 m.
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2.1.1. Cabo de Gata-Nijar Test Site for Iron Oxide and Clay Prediction

The first study area is located in the Natural Park Cabo de Gata-Níjar in the Almerian province
of southeastern Spain, which is a semi-arid area with mean annual precipitation of 178 mm and
mean annual temperature of 18.1 �C [37,38]. Our study focuses on a 6 km2 area at Cortijo del
Fraile, which is an agricultural area in the middle of the park with mostly bare fields at the time
of the overflight. The Park is characterized by two main geological units, one volcanic in the
Southern part with high amounts of Fe-bearing minerals (e.g., hornblende, and biotite) [39], and the
other sedimentary in the northern part consisting of marine limestones. An extensive ground
truth validation dataset consisting of 51 field samples was characterized for iron oxide and clay
content (Figure 1) [40,41]. Associated imaging spectroscopy data [42] were acquired over the area
in June 2005 with the HyMap sensor from Integrated Spectronics Pty Ltd. (Baulkham Hills, NSW,
Australia); http://www.hyvista.com), Australia. The HyMap sensor [43] provided spectral images
after processing to geocoded reflectance with 126 contiguous spectral bands covering the spectral
range of 400 to 2450 nm with a spectral resolution of 12 to 17 nm. The resulting ground sampling
distance was 4.5 m for this dataset. Laboratory analysis of the field samples [41] showed a very
high variability of soil chemical and textural properties. The iron oxide content measured as the
citrate-dithionite extractable free iron oxide content (Fed) is normally distributed between 3.5 and
33.7 g�kg�1. The particle-size distribution ranged from sandy loam to clay and clay loam in the U.S.
soil system, with a clay content varying between 8.4% and 63.4%.
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Figure 1. Cabo de Gata-Nijar Natural Park test site (modified from [40]): (a) map of Spain with location
of HyMap imagery (bold rectangle) and study area Cortijo del Fraile; (b) wiew of the volcanic-carbonatic
bedrock transition; and (c) RGB true-color HyMap imagery with sample points (green dots) and selected
study area Cortijo del Fraile.

2.1.2. Luxembourg Test Site for SOC Prediction

For the validation of the SOC determination algorithm, a test site in the Grand-Duchy of
Luxembourg was selected, where an extensive ground truth validation dataset of soil samples
was collected in different bare fields [19]. Simultaneous, hyperspectral images were recorded over
the test site area with the 80-band airborne hyperspectral Scanner AHS from INTA (www.inta.es),
Madrid, Spain. The AHS-160 provided spectral images with 63 spectral bands from 450 to 2500 nm [44].
Due to a particular very low signal-to-noise ratio in the SWIR channels during data acquisition, this
study focused on the VNIR part of the spectrum distributed on 20 contiguous spectral bands from
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442 to 1019 nm with a spectral resolution between 27 and 30 nm. The resulting ground sampling
distance was 2.6 m � 2.6 m. A total of 81 ground truth ground truth samples collected and measured
for SOC out of the entirety of the samples from [19] associated with one AHS flight line covering
~7 km2 and representative of the variability in the region were found suitable for model calibration and
validation (Figure 2). A high variability in SOC content ranging from 9 to 40 g�C� kg�1 was observed.
Sand, sandy-loam and clay-loam soils exhibited a relatively low SOC variation and contained less
than 25 g�C�kg�1 while clay, colluvial-alluvial and loam soils may contain up to 40 g�C�kg�1 and
presented a large range of SOC contents in the calibration and validation dataset acquired.
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Figure 2. Luxembourg test site (modified from [19]). (a) Top: Map of Europe with location of
Luxembourg; Bottom: Map of the Grand-Duchy of Luxembourg with sampling points (dots), selected
flight line (blue rectangle); (b) RGB true-color AHS imagery and location of samples points (red dots).

2.1.3. Simulation of EnMAP Spaceborne Hyperspectral Images

For each dataset, calculation of simulated EnMAP data and associated radiance and reflectance
products (Level 1B/1C/2A) at 30 m resolution was performed using the EnMAP end-to-end simulation
software EeteS [45]. The EeteS software follows the forward and backward processing schemes
simulating the EnMAP image generation process, sensor calibration and data pre-processing. The core
payload of EnMAP consists of a dual-spectrometer instrument measuring in 242 spectral bands between
420 and 2450 nm with a spectral sampling distance varying between 5 and 12 nm. It has a measured
signal-to-noise ratio of 400:1 in the visible and near-infrared and 180:1 in the shortwave-infrared
parts of the spectrum [45] that is considered in the EeteS sensor model. Sensor-like raw image data
were produced using the airborne imagery and a digital elevation model (DEM) as input. Next, the
data were transformed to Level 1C applying a detector co-registration and image orthorectification,
then subsequently processed to reflectance orthorectified data (Level-2A) applying an atmospheric
correction. Additional pre-processing of the reflectance simulated EnMAP imagery of the test sites
included: (1) removal of the overlapping spectral channels between 900 to 1000 nm due to the
two sensors overlap at this spectral region; and (2) removal of low signal-to-noise ratio spectral
bands due to atmospheric attenuation around 1130, 1350 to 1500 and 1800 to 1950 nm, resulting
in one spaceborne hyperspectral image cube for each test site with 212 spectral bands. Due to the
lower spectral resolution of the HyMap and AHS sensor with regard to the EnMAP sensor, the EeteS
simulation kept the original data spectral coverage (covering VNIR-SWIR for the Cabo de Gata data,
and covering VNIR for the Luxembourg data), and introduced an interpolation of the data in the
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spectral dimension. Figure 3 presents a comparison of soil surface reflectance between airborne
HyMAP/AHS imagery and spaceborne simulated EnMAP imagery in selected locations from field
knowledge with high content of the soil properties studied. It can be observed that the spectral
features observed in the soil airborne reflectance are maintained in the simulated EnMAP spectral
signal. However, slight differences are observed mainly at noisy spectral regions in the EnMAP sensors
associated with detectors edges (900 to 1000 nm) and at locations of atmospheric bands.Remote Sens. 2016, 8, 613 6 of 4 
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Figure 3. Soil spectral reflectance from airborne HyMAP and AHS (left) and spaceborne simulated
EnMAP (right) imagery at: (a) Cabo de Gata iron-rich and clay-rich bare field area; (b) Cabo de Gata
dry vegetation area; and (c) Luxembourg bare field area.

2.2. Methods

2.2.1. Quantitative Soil Prediction Models

For the multivariate modeling, the PLS approach was used to build prediction models based
on available ground truth measurements. PLS models are widely used in hyperspectral remote
sensing data analysis of soil properties (e.g., [19,22]) and are good in handling of situations with more
predictors than observations [46]. The PLS regression projects predictors (X variables) and response
(Y variable) into a low-dimensional space, i.e., a set of orthogonal variables called latent variables,
maximizing the covariance between X- and Y-scores.

A detailed description of the PLS algorithm can be found in [46]. A Principal Component Analysis
was run prior to the PLS, and for each spectrum the standardized Mahalanobis distance was calculated
(H) to detect outliers with regard to the average spectrum [47]. Spectra with H greater than the square



Remote Sens. 2016, 8, 613 7 of 20

root of the 0.95 quantile of the chi-square distribution with two degrees of freedom were identified as
outliers and excluded.

In this paper, we used the autoPLSR regression algorithms implemented in the EnMAP Box [48],
deriving from the R package “autoPLSR” [49,50]. In order to avoid the problem of overfitting, a critical
step of the PLS procedure is the determination of the appropriate number of latent variables. The great
advantage of the autoPLSR approach lies in the non-expert, automatic, feature and latent variable
selection that removes the need for manual fine-tuning. Better regression results could be expected
by expert selection of latent variables and construction of a data specific feature space, as the PLS
approach relies completely on the linear relationship between the feature space of latent variables and
target variables as well as predictor variables. However, we used the autoPLSR as the operational
ability is of interest here.

The autoPLSR software [49] is based on an iterative PLS approach, which uses an initial run, followed
by automated predictor variable selection inside a tenfold cross-validation. Disregarding noisy,
redundant and irrelevant variables, each iteration with the mentioned Mahalanobis distance criterion
is followed up by re-runs, while creating each time predictor subsets, until no more reduction of model
errors or latent vectors can be achieved or else the best model was selected. Predictor variables were
scaled (centered to mean and normalized) beforehand. The same processing workflow was applied
for both airborne and simulated EnMAP images and is presented in Figure 4. It can be separated into
three major steps.
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Step 1 included masking of non-bare soil pixels, transformation of reflectance (R) to absorbance
log (1/R), and extraction of spectra for pre-autoPLSR regression runs.

Step 2 included a filter optimization utilizing a “fast” autoPLSR run only with a subset of data at
selected ground truth locations. This is an iterative process that aimed at finding the best performing
filter for the data by testing all reasonable pre-selected possibilities on a smaller subset of the data, and
is part of the autoPLSR procedure.

Step 3 was associated with the main data processing where the selected best model for the
PLS regression analysis was used and a final PLS equation was applied on the entire image.
Subsequently, the PLS model performance was evaluated. A Random Stratified Selection (RSS) was
applied for selection of calibration and validation dataset based on the ground truth data. A detailed
description of each processing step is presented below. Software packages used also include the
HYSOMA software [51] for soil masking and extraction of soil spectra from the image.

2.2.2. Pre-Processing

Pre-processing steps included a radiometric normalization to values between 0 and 1, and the
calculation of absorbance log (1/R). Then, a mask was applied to the airborne and simulated EnMAP
data cubes to keep pixels of bare soil surface only. The soil mask was created following the HYSOMA
approach [51]: Open water surfaces were selected using the NDRBI (normalized difference red blue
index), then the soil pixels were separated from green and dry matter vegetation components using
the NDVI (normalized difference vegetation index) and the NCAI (normalized cellulose absorption
index) based on pre-set threshold values. In addition, a mean filter was applied to the airborne data,
so that the spectral signal of one pixel will be the average of 3 by 3 pixels. Then, image spectra were
extracted that are associated with location of ground truth data. In the case of EnMAP simulated
imagery, a single image spectrum was used and for airborne imagery the 3 by 3 window averaged
image spectrum was used. Due to the coarser resolution of the EnMAP images, a visual examination
of potential sample overlay was performed and potential duplicate samples (less than five samples in
every case) were removed and only the ones closest to the center of the averaging window were used.

2.2.3. Model Building and Evaluation

The second step of our processing workflow involved finding the best performing filter in a fast
performance test on a subset and subsequently applying the found filter and setting in the model
building process on the entire image. The idea is to find the best pre-treatment to calibrate to the soil
property to be predicted. This procedure was also done to account for the operational characteristics
of this study.

In the fast performance test we applied the autoPLSR on smaller randomly selected square
subsets (100 by 100 pixels) of the data, close to the center of the area of interest and including five data
samples, of which three were used to construct the model and two to validate. We then evaluated
the performance of this models built from the reduced dataset. This was run using different filters
and degrees of filtering. As filter we considered the Savitzky–Golay smoothing and derivatives [52]
or Gauss smoothing with fixed filter size. A fixed window width of five bands was used, making
the absolute filter window width dependent on sensor spectral sampling and allowing different
polynomial degrees (first to fifth degree) for the filter. The filter and its degree that performed best on
the subset in this fast performance test were then applied to the entire image.

These operations aimed at decreasing the noise and enhancing possible spectral features linked
to the property studied. The performance was evaluated using the RPIQ (ratio of performance to
interquartile distance).

The next step was to build the final model with autoPLSR with the entire image dataset and
the entire available ground truth samples up to this point. However, for the main run of autoPLSR,
a calibration and validation dataset needed to be built from all the remaining available data samples.
Finally, the autoPLSR was run with the calibration dataset and the smoothed image data.
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2.2.4. Dataset Separation for Calibration and Validation

The third step was associated with the final run of the PLS model, derivation of the soil maps and
calculation of the model performances. The ground truth dataset was separated to 60/40 by random
stratified sampling (RSS) for which 60% of the data were used in the calibration dataset, and 40% for
the validation. An exception was allowed here, however, permitting small deviations of �10% from
the 60/40 rule for each strata, if the centered mean of the calibration and validation datasets were of
greater/smaller deviations than 20% of the standard mean deviation of the entire dataset, to ensure
that a representative stack of data was selected for calibration and validation. This procedure led to
small derivations from the 60%/40% calibration/validation distribution, but increased confidence in
stability and representativeness of each subset.

2.2.5. Model Performance Assessment

Prediction performances of the regression models were assessed on the validation set and
expressed by computing conventional performance indicators R2, Root Mean Square Error (RMSE),
and RPD (ratio of performance deviation), all being dependent on the spread of the dataset and the
shape of distribution. In addition, the RPIQ was computed as error measure. We made use of the
RPD because it is an already established and well known error measure to which this study can be
related to similar studies in the literature, but also made use of the RPIQ as RPIQ is a more robust and
preferable way of standardizing the prediction error with respect to the spread of the population for
soil analysis than RPD, as acknowledged by [53,54]. To produce the soil maps, the final PLS model
was used to predict all non-masked pixels of the images, transformed with the automatically selected,
best performing filters as given by the autoPLSR procedure.

Another measure of uncertainty was applied based on the variance model and calculations
proposed by [55], which allows decomposing the total variance of estimated parameters into several
contributors. It considers all sources of uncertainty, which affect the predictors, the dependent variables
and the model coefficients. This variance modeling assumes that measurement errors have zero mean
and that the error characteristics of the prediction objects are the same as the ones of the training
objects. Four terms were used to describe and differentiate the variance contributors:

T1 the hyperspectral data uncertainty;
T2 the model coefficients uncertainty;
T3 the laboratory reference measurement uncertainty and sampling errors; and
T4 the dependency between the spectral and model uncertainties.

2.2.6. Spatial Structure Analysis and Influence of Sensor Resolution

Semivariogram analysis is a geostatistical method to quantify and model spatial dependence
of attributes of interest. Semivariograms have been used in the context of soil science and in soil
spectroscopy in several studies [25,33] as they provide information about spatial autocorrelation
depending on sampling locations. In this study, semivariograms were applied to evaluate the
resolvability of patterns of spatial structures in predicted soil properties between spaceborne (30 m)
and airborne (4.5 and 2.6 m) images. As such, they complement the point-wise assessment of prediction
accuracy. The parameters describing a semivariogram include nugget, sill and range [56]. It is assumed
that nearby sample locations are spatially correlated, whereas locations further apart than the range
are not correlated. A detailed introduction in semivariogram theory and semivariance formulas can be
found in [56].

The generation of semivariograms was based on autoPLSR predicted soil map values in each pixel.
A stepwise approach was applied, where first the semivariances were calculated and subsequently
a simple linear regression was employed to find a good estimate of the semivariogram nugget.
The nugget information is handed down, as well as the semivariances, to the next step, where Matérn
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model [57] based empirical semivariograms γ(h) of spherical geometry are built using a weighted least
square fit, similar to [33].

The empirical semivariograms were computed based on bare soil pixels. For computational
reasons, not all but a total of 6.25% of all bare soil pixels was selected in a random sampling, resulting
in Cabo de Gata images in 29,490 and 9830 pixels for HyMAP and simulated EnMAP data, respectively,
and for Luxembourg in 57,121 and 19,040 pixels for AHS and simulated EnMAP, respectively.

3. Results and Discussion

3.1. Quantitative Soil Prediction Models

After image pre-processing the number of ground truth samples available for model input at
the spaceborne spatial scale was reduced by 4 for clay as compared to the airborne case, whereas it
remained the same for the two other soil parameters (Table 1). The mean, lowest and maximum values
of the soil parameters are given in Table 2.

Table 1. Available ground truth soil database: Total number of samples available, and resulting number
of soil samples selected for calibration/validation, as derived from selection of bare pixels and random
stratified sampling.

Soil Database Available Selected HyMap/AHS Selected EnMAP

Iron Oxide 51 23/20 23/20
Clay 51 25/18 22/17
SOC 81 46/31 46/31

Table 2. Mean, minimum and maximum values of iron oxide (g� kg�1), clay (%) and SOC (g� kg�1)
from the derived soil products.

Iron Oxide Clay SOC

HyMap/AHS 14.3 (3.7, 41.5) 20.1 (7.7, 65.3) 14.6 (8.9, 42.6)
EnMAP 14.3 (3.7, 41.2) 21.9 (7.9, 65.1) 14.9 (8.2, 41.1)

For both, airborne and simulated EnMAP imagery, best pre-treatments were identified based on
highest RPIQ values. The Savitzky–Golay smoothing transformation at the fifth order was always
selected. This is consistent with [34], which found that the Savitzky–Golay algorithm consistently
improved the ability of their models to predict SOC. Model performance statistics and regression plots
were calculated (Table 3 and Figure 5).

Table 3. Model performance statistics for the validation dataset was calculated and regression plots are
depicted in (a) (HyMap/AHS) and (b) (simulated EnMAP). Top: Iron oxide content Cabo de Gata test
site; Middle: clay content Cabo de Gata test site, Bottom: SOC content Luxembourg test site. * relates to
different units of RMSE depending on the soil properties considered: RMSE is given in g� kg�1 for iron
oxide and SOC, RMSE is given in % for clay.

(a) Airborne HyMap/AHS

R2 RMSE * RPD RPIQ
Iron Oxide 0.66 4.7 1.7 2.3

Clay 0.64 2.4 1.7 2.2
SOC 0.74 2.2 1.9 2.9

(b) Spaceborne EnMAP

R2 RMSE * RPD RPIQ
Iron Oxide 0.6 5 1.6 2.2

Clay 0.53 2.6 1.5 1.4
SOC 0.67 2.8 1.7 2.2
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RPIQ varies from ~1.4 (clay %, EnMAP) to ~2.9 (SOC g�kg�1, AHS). With the exception of
the model for clay prediction from simulated EnMAP imagery, the RPIQ in all models is above 2.2;
in addition, the RPIQ shows in all cases a conveying behavior between RMSE and R2, for example for
the comparison of airborne iron oxide and clay. The iron oxide airborne performances have a R2 of
0.66 and a RMSE of 4.7. The results of the clay prediction model display a slightly lower R2 of 0.64 and
RMSE of 2.4. The RPIQ of both cases is, however, comparable (2.3 and 2.2, respectively), showing an
adaptive behavior to variance and performance evaluation of the RPIQ. In general, a slight decrease
of model performances for EnMAP simulated imagery compared to airborne imagery is observed,
linked to an irregular decrease in accuracy depending on test site and soil property studied. On the
other hand, all RPD values are very similar and the performances of the models fall in an intermediate
category (1.4 < RPD < 2), according to [58]. This was confirmed by R2 values in the validation set
reaching 0.53–0.74. The decrease in model accuracy from airborne to spaceborne scale is relatively
small (similar value or difference of 0.2% clay for RMSE) except for the SOC prediction (difference of
0.6 g�C�kg�1) where the airborne modeling at a smaller scale does perform much better than at the
30 m scale.

For the Cabo de Gata dataset, a previous study on iron oxide content mapping [59] applied an
empirical modeling based on the physical analysis of the iron oxide absorption feature linked to the
same airborne and ground truth dataset, which performed with an RPD of 2.19. A multivariate study
of the area, based on Support Vector Machines [35], resulted in an RPD of 1.7. For Luxembourg, a
previous soil airborne SOC study [19] found a comparable performance with the same dataset as well



Remote Sens. 2016, 8, 613 12 of 20

with RPD values in the same intermediate assessment category (between ~1.5 and ~2), depending
on multivariate technique and spectral range. For a multivariate approach based on Support Vector
Machines, a comparable, but slightly lower RPD of 1.6 was achieved in another study [35].

The uncertainty terms for the iron oxide parameters coincide with the uncertainties from [40,41].
For iron oxide from airborne data, the largest contribution to variance derives from the spectra (83%),
followed by a mixture of all three components (9%), the model (5%) and finally the lab and presumably
geostatistical errors (4%). The EnMAP variance contributors behave slightly different, i.e. the mixture
term is higher at 12%, and the T3 also rises. The spectra term (T1) is lower with 75%. Clay, however,
shows in comparison higher T3 error for airborne and EnMAP of 9% and 11%, respectively. SOC shows
a similar pattern as iron oxide.

In general, the T1 term was identified as the main contributor to the variance in all cases (Table 4),
with at least over 70% contribution. The term T3 is for EnMAP image based models always higher than
for airborne based models in all three cases. In addition, the mixture term T4 is larger in all three cases,
which is expected, if there is an inherent data base dependent performance change for example due to
the resolution difference between scales. The modeling error T2, however, is comparable for all cases
and parameters with no or only slight differences between airborne and EnMAP, showing a robustness
of the model itself.

Table 4. Values of uncertainty expressions for (a) airborne HyMap/AHS imagery; and (b) simulated
EnMAP images. The values are relative (in %) to the total variance. The terms are: T1 the hyperspectral
data uncertainty, T2 the model coefficients uncertainty, T3 the laboratory reference measurement
uncertainty, and T4 the dependency between the spectral and model uncertainties (mixture term).

(a) HyMap/AHS

T1 T2 T3 T4
Iron Oxide 0.83 0.05 0.04 0.09

Clay 0.76 0.06 0.09 0.10
SOC 0.80 0.05 0.04 0.11

(b) EnMAP

T1 T2 T3 T4
Iron Oxide 0.75 0.05 0.08 0.12

Clay 0.70 0.06 0.13 0.11
SOC 0.72 0.60 0.09 0.13

The resulting spatial distribution of the different soil properties is shown in Figure 6. In general,
a coherent spatial distribution is observed between airborne and spaceborne imagery, although the
lower spatial resolution of the EnMAP sensor at 30 m pixel scale is clearly visible.

The EnMAP soil maps display in each case a slightly higher mean value, as can be seen for
example in the iron oxide prediction, while also showing lower maximum values in contrast to the
HyMap/AHS soil mapping (see Table 2). The averaging effect of a larger pixel size might be responsible
for this trend. On the other hand, for example, in the SOC prediction, EnMAP predicts generally
lower SOC content in the southern fields in the image. The lowest predicted values of soil chemistry
content in the EnMAP case in comparison to the airborne however show no clear trend. The red field
in SOC EnMAP mapping is an artifact associated with an urban structure, which was not masked in
the masking procedure.

Additionally, to be able to compare the spatial distribution, the airborne prediction results have
been spatially resampled to fit the 30 m resolution scale of the simulated satellite data. Then, the Pearson
coefficient of correlation was calculated for all pixels of the prediction results and all soil parameters
studied. The results show between HyMAP/AHS and EnMAP predictions a good correlation for clay
and SOC (0.86 and 0.84) and a very good correlation for iron oxide predictions (0.91).
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The correlation in all cases is sufficient to support the validity of comparability for the EnMAP
models to the airborne models.
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The distribution of iron oxide and clay compared to a previous study [59] in the Cabo de Gata area
show a very similar pattern, only the south of the area of interest shows lower values, where sampling
was less dense than in other areas. The difference between the two might be due to differences in
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masking and soil modeling algorithms. The SOC distribution pattern is also comparable to a previous
study in the Luxembourg area [19].

3.2. Spatial Structure Analysis and Influence of Sensor Resolution

In addition to the visual examination of the soil maps, the spatial structures of the predicted
soil properties at airborne and spaceborne scale were compared using semivariograms. The fitted
variograms based on the Matérn model along with the model parameters are shown in Figure 7.
The maximum considered lag distance approximately corresponds to the east–west extent of the
image data.
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The empirical variograms (Figure 7) reveal variations in the range of approximately several
hundred meters along distances likewise in the EnMAP and airborne based semivariances. The missing
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range and sill in Figure 7B is also discussed later. These may be attributed to the distribution of spatial
units such as fields (in the case of Luxembourg) or geomorphic units (in the case of Cabo de Gata) with
typical soil characteristics, while variance has not been calculated for large areas where pixels were
masked out, so that the semivariograms are a direct representation of the geomorphological structures
of the units of interest. Similar spatial variations were presented in other soil studies based on imaging
spectroscopy [25,33,60]. In general, variograms calculated from image data are considered to represent
the spatial structure of soil properties much better than regional variograms based on ground truth
soil sampling [32]. Semivariance, nugget, range, sill and RMSE were found to always be lower for
simulated EnMAP as compared to airborne images. This can be attributed to an averaging effect in
predicted soil properties due to the lower spatial resolution, resulting in less extreme predicted values
and a smoother increase of semivariance along distances based on EnMAP soil predictions. It is also
underlined by the fact that the difference in semivariance between airborne and EnMAP is smaller for
the Cabo de Gata dataset having 4.5 m pixel size than for the Luxembourg dataset having 2.6 m pixel
size, or 13.5 m and 7.8, m respectively, taking the smoothing and averaging from preprocessing into
account. Similarly, the predicted soil maps at airborne scale show a much finer spatial detail and short
range variation in predicted soil properties.

The predicted iron content was found to have a nugget–sill ratio of 33.9% based on the airborne
data and 32.6% based on the simulated EnMAP data. The ranges for predicted iron content expressing
the lag distance where points are no longer spatially correlated were found to be 727 m (airborne)
and 673 m (EnMAP). Predicted SOC showed nugget–sill ratios of 30.3% and 28.6%, respectively, and
ranges of 1618 m and 1477 m, respectively. Nugget–sill ratios reported in the literature vary greatly
depending on the local soil conditions and the sampling and analysis methods [32,61].

Generally, high nugget–sill values may be an indicator of discontinuity of the soil parameters
or of an insufficient sampling not suitable to reproduce the distribution of the soil properties. In the
studied case, the relatively high nugget–sill ratios suggest the presence of noise in the image data
as stated by [60] that is propagated when simulating EnMAP data from airborne images. The ratio
is also strongly affected by the performance of the soil prediction models and thus also by the soil
sampling. In case of Cabo de Gata, most of the samples were collected in the topographically lower
areas intersected by small ridges, while in the case of Luxembourg sampling points were located in a
small area in the north east that may not be completely representative for the bare soil areas in the
entire image.

The distribution of iron content in the Cabo de Gata site shows high values in the center of the
area of interest and lower values further away from it resulting in a semivariogram with clearly defined
range and sill. In the case of clay, however, sill and range values could not be obtained within the
considered maximum lag distance. The clay content is distributed uneven in comparison to iron as
it does not follow a natural distribution but is affected by strong anthropogenic influences with the
presences of mining activities. This results in very high clay contents in the southeast corner of the
area of interest in the mining area. Consequently, the spatial structure could not be captured in the
semivariogram. The spatial distribution of SOC in Luxembourg is more homogeneous among fields
than iron. In a single field, however, the higher values tend to be in the corners of the field for the
airborne predictions, while the averaging effect of the higher EnMAP resolution is more visible for
this parameter than for any other, leading to a strong flattening of the semivariograms fitting curve.
The separation of mapped fields does not seem to influence the variogram.

4. Conclusions

Soil spectroscopy based on laboratory, field, and airborne data was shown to be an adequate
method for the mapping of the spatial distribution of soil surface properties such as iron oxide, clay,
and SOC content, moving into the quantitative domain based on multivariate statistics methodologies,
as long as soil chromophores are present, the soils are well exposed and homogeneously distributed,
and local ground data are available. In this paper, the potential of spaceborne spectroscopy data for
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the delivery of soil products is investigated. Nowadays, PLS approaches applied to soil spectroscopy
have been recognized for its potential to deliver fast and low-cost high quality geo-referenced soil
maps for the assessment of soil properties and for soil degradation indicators, and are used here.

With the upcoming launch of the next generation of imaging spectroscopy sensors (e.g., EnMAP,
HISUI, HyspIRI, HypXIM, and SHALOM), a major step is expected towards global soil surface
mapping from space using imaging spectroscopy. Nevertheless, in the frame of the preparation
program for the EnMAP satellite mission to be launched in 2019 with more than 240 spectral bands
covering the VNIR-SWIR at a pixel size of 30 m and a high signal-to-noise ratio, a central question
at the forefront of research is the potential of the upcoming sensor system for surface soil properties
mapping including the expected accuracy.

This paper presents a first study focusing on the test and validation of the EnMAP sensor for the
quantitative spatial mapping of iron oxide, clay, and SOC content in semi-arid Mediterranean Spain
and temperate area in Luxembourg. An emphasis is placed on the use of semi-operational method
(autoPLSR approach in the EnMAP-Box), the evaluation of prediction accuracy, the use of conventional
error measures but also uncertainty measures, and spatial structure analyses comparing airborne with
spaceborne systems.

The overall results show that EnMAP data derived soil models are able to predict iron oxide, clay,
and SOC with an R2 of the validation dataset between 0.53 and 0.67 compared to airborne imagery
with R2 of the validation dataset between 0.64 and 0.74. The correlation between EnMAP and airborne
imagery prediction results is in all cases higher than a Pearson coefficient of correlation of 0.86.

 Although the slight decrease in prediction model performance, the spatial distribution of the soil
properties is in general coherent between the simulated EnMAP and the airborne mapping.

 The variance contributor analysis and semivariograms show a highlighted importance of
resolution adapted sampling strategies for the simulated EnMAP case. Adapting to this can
potentially increase the performance of future multivariate models.

 The analyses of the variograms show that spatial structures predicted based on simulated EnMAP
are well representative of the predicted spatial structures based on the airborne imagery with
systematically lower calculated semivariance (averaging effect). The differences between EnMAP
and airborne mapping are associated with heterogeneous areas where much finer detail and local
variations are present in airborne soil maps and mixed pixels at EnMAP scale cannot represent
variations at very small scale.

 The shape of the semivariograms is coherent with local conditions for SOC and clay (crop fields,
and geomorphic unit).

 The automatic PLS procedure included in the EnMAP-Box is adequate to derive good soil
prediction models which perform in an expected range (with RPIQ > 2.2 for the airborne data)
and might be suitable for model building in an operational environment as long as adequate
ground truth data are available.

 This paper was a first example concerning case studies from two different soil environments using
semi-operational multivariate statistics for the quantitative prediction of soil properties using
simulated EnMAP satellite imagery. In general, this work demonstrates the high potential of
upcoming spaceborne hyperspectral missions for soil science studies but has also shown the need
for future adapted strategies to cope with the lower spatial resolution. Nevertheless, compared
with airborne soil maps at much finer scale, simulated EnMAP images at 30 m scale with good
spectral resolution and estimated signal-to-noise ratio similar to sensor tests were able to deliver
regional soil maps that are coherent with previous analyses in the region.

 Other factors that influence the prediction accuracy (e.g., spectral noise like atmosphere, surface
roughness, sensor noise and illumination) are inherently included in error measures used and
should be considered. We carried out a variance analysis to at least distinguish between modeling
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and data errors. The analysis showed that around 70%–80% of the variance of the results is due to
uncertainties in the spectral data itself.

 Further work should focus on the strategy to cope with degraded satellite signal compared
to airborne hyperspectral imagery including field effects and the larger spatial resolution by
developing adapted ground sampling strategies for independent validation of the soil models.
In particular, more developments are needed on the methodological approaches to check the
suitability of current and future improved soil algorithms for global soil mapping, and look at the
availability of adequate methodologies for soil model building using appropriate databases for
model calibration. One main avenue of research concerns the use of recently available regional
and global soil spectral databases to calibrate the soil spectral models and further develop the
capabilities for operational quantitative soil mapping from space.
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