Supplementary Materials: Estimation of Continuous Urban Sky View Factor from Landsat Data Using Shadow Detection. *Remote Sens.* 2016, *8*, 568

Matus Hodul, Anders Knudby and Hung Chak Ho

This supplementary data presents Shadow Proportion-Sky View Factor (SP-SVF) regression relationships at common solar positions for use in application of our method to Landsat imagery.

Table S1. Equation coefficients for SP-SVF empirical regression equation of the form $SVF = a + b \times ln(SP - c)$ at various common solar positions. Solar azimuths between 135 and 160 are common in North American Landsat images, and solar elevations near 40° have been determined to be optimal for SP-SVF regression application. This data set was created by modelling the SP-SVF relationship in Lidar data from four North American cities (Listed in Table 1 of the original manuscript), and can be applied directly to a smoothed shadow proportion image.

		Solar Elevation										
		35	36	37	38	39	40	41	42	43	44	45
135	а	0.4019	0.3758	0.3642	0.3556	0.3482	0.3409	0.3348	0.3298	0.3265	0.3214	0.3299
	b	0.4251	0.3364	0.3288	0.3099	0.304	0.305	0.2646	0.2611	0.2471	0.2454	0.2123
	с	0.3219	0.2327	0.2166	0.1912	0.1803	0.1768	0.1414	0.1349	0.1181	0.1138	0.0905
	R ²	0.869	0.866	0.867	0.869	0.87	0.869	0.856	0.857	0.858	0.859	0.844
140	а	0.3968	0.3852	0.3733	0.3627	0.3542	0.3471	0.341	0.3366	0.3318	0.3272	0.3294
	b	0.374	0.3415	0.3281	0.3099	0.3018	0.2911	0.2691	0.2582	0.2478	0.239	0.2196
	с	0.2751	0.2442	0.2218	0.1974	0.1837	0.2696	0.1488	0.1358	0.1221	0.1117	0.0959
	\mathbb{R}^2	0.873	0.868	0.87	0.868	0.858	0.867	0.86	0.857	0.858	0.855	0.849
145	а	0.4144	0.3988	0.344	0.3717	0.3618	0.3552	0.3463	0.3427	0.3356	0.3339	0.3353
	b	0.3905	0.3629	0.3465	0.3243	0.309	0.289	0.2786	0.262	0.2528	0.2383	0.2182
	с	0.3094	0.2755	0.248	0.2205	0.1988	0.1762	0.1605	0.1437	0.1302	0.1166	0.0982
	R ²	0.87	0.868	0.87	0.866	0.865	0.862	0.86	0.856	0.856	0.851	0.885
150	а	0.4397	0.4151	0.398	0.3822	0.3697	0.3587	0.3481	0.3451	0.3387	0.3324	0.3348
	b	0.4396	0.3948	0.3767	0.359	0.3279	0.3096	0.2997	0.27	0.2592	0.2512	0.2276
	с	0.3718	0.3201	0.2891	0.2592	0.2252	0.2009	0.1834	0.1546	0.1389	0.1283	0.1077
	R ²	0.869	0.866	0.867	0.865	0.862	0.86	0.86	0.854	0.854	0.851	0.845
155	а	0.4669	0.4255	0.4056	0.3463	0.3711	0.3577	0.3471	0.3424	0.336	0.328	0.3274
	b	0.496	0.4305	0.4102	0.3853	0.344	0.3353	0.3196	0.284	0.2732	0.2646	0.2431
	с	0.4394	0.3582	0.3245	0.2882	0.257	0.2248	0.2018	0.167	0.1513	0.139	0.1184
	R ²	0.868	0.866	0.867	0.866	0.862	0.86	0.851	0.854	0.856	0.853	0.849
160	а	0.4732	0.4352	0.4103	0.3864	0.3706	0.3571	0.3442	0.3365	0.3296	0.3218	0.319
	b	0.5111	0.4625	0.433	0.3952	0.369	0.3507	0.3296	0.3041	0.2917	0.2758	0.2602
	с	0.4552	0.3887	0.3458	0.2969	0.2628	0.238	0.2082	0.1814	0.1655	0.1454	0.1304
	R ²	0.866	0.866	0.865	0.865	0.863	0.861	0.861	0.857	0.856	0.854	0.85

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).