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Abstract: This study improved simulation of forest carbon fluxes in the Changbai Mountains with a
process-based model (Biome-BGC) using incorporation and data assimilation. Firstly, the original
remote sensing-based MODIS MOD_17 GPP (MOD_17) model was optimized using refined input data
and biome-specific parameters. The key ecophysiological parameters of the Biome-BGC model were
determined through the Extended Fourier Amplitude Sensitivity Test (EFAST) sensitivity analysis.
Then the optimized MOD_17 model was used to calibrate the Biome-BGC model by adjusting the
sensitive ecophysiological parameters. Once the best match was found for the 10 selected forest
plots for the 8-day GPP estimates from the optimized MOD_17 and from the Biome-BGC, the
values of sensitive ecophysiological parameters were determined. The calibrated Biome-BGC model
agreed better with the eddy covariance (EC) measurements (R2 = 0.87, RMSE = 1.583 gC¨m´2¨d´1)
than the original model did (R2 = 0.72, RMSE = 2.419 gC¨m´2¨d´1). To provide a best estimate
of the true state of the model, the Ensemble Kalman Filter (EnKF) was used to assimilate five
years (of eight-day periods between 2003 and 2007) of Global LAnd Surface Satellite (GLASS) LAI
products into the calibrated Biome-BGC model. The results indicated that LAI simulated through
the assimilated Biome-BGC agreed well with GLASS LAI. GPP performances obtained from the
assimilated Biome-BGC were further improved and verified by EC measurements at the Changbai
Mountains forest flux site (R2 = 0.92, RMSE = 1.261 gC¨m´2¨d´1).

Keywords: carbon fluxes; model incorporation; data assimilation

1. Introduction

Terrestrial ecosystems have acted as a substantial carbon dioxide (CO2) sink and sequestered
about 30% of CO2 emissions over the past decade [1]. Of the terrestrial ecosystems, forest land is the
main contributor to CO2 emissions and removals [2]. Mitigation through forest may be achieved by
either reducing net carbon stock losses or increasing the long-term average carbon stocks [3]. Carbon
fluxes represent the exchange of CO2 among forests and the atmosphere, and thus ascertain whether or
not forests function as a significant carbon sink for atmospheric CO2. Quantifying forest carbon fluxes
and understanding forest carbon flux dynamics are both important to better understand interactions
between atmosphere, forest, and soil, as well as their impact on climate variation.

Observation and simulation have been the main techniques for quantifying carbon fluxes. The
Eddy Covariance (EC) technique is considered the standard tool: measuring carbon, water and energy
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fluxes between ecosystem and atmosphere directly [4]. This method has been widely used for the
observation of CO2 exchange within the FLUXNET [5,6]. The EC measurements are temporally
continuous (e.g., half-hourly), and the technique is only considered reliable for a limited area of a few
square kilometers [7].

An alternative approach was developed for large-scale simulating and forecasting carbon fluxes
through models. Simulation of carbon dynamics still experiences major uncertainty, because of the
large variation between different models [8] and their often uncertain parameterization [9]. A remote
sensing-based model (i.e., MODIS MOD_17 GPP (MOD_17)) is exploited to acquire spatially distributed
simulation, but relies on the applicability and explicability of remote sensing data, and cannot
depict the intrinsic characterizations of forest processes (e.g., evapotranspiration, photosynthesis,
respiration, allocation). The process-based model Biome-BGC can explain the detailed forest processes
or the response of these processes to climate variation temporally on a continuous basis. However,
the simulations of the model rely on abundant ground information, input data, ecophysiological
parameters, and the accurate calibration of the parameters. Some of the parameters may be hard
to acquire in the field and the number of samples provided may be limited [10]. Therefore, the
incorporation of MOD_17 with the Biome-BGC model was chosen in this study in order to calibrate the
Biome-BGC model and satisfy the requirement of spatial and temporal continuity of the carbon fluxes.

Errors and uncertainties, which form an inherent problem in models, are mainly caused by input
variables, model structure, and model parameters [11,12]. Data assimilation provides an effective way
to integrate information from observations and a model system, taking into account errors both in
the observations and the models to realize a best estimate of the true state of the model system [9,13].
Sequential data assimilation is designed to update the model system in a sequential manner by
separately weighting the observational and modeling errors. The Ensemble Kalman filter (EnKF),
an extended Kalman filter, has been a popular data fusion algorithm and its formulation is mainly
been contributed to by Evensen [14,15]. This method is Monte Carlo-based and uses recursive data
processing. It tracks the model error statistics using an ensemble of model state variables.

Both field measurements and remote sensing observations have been successfully assimilated
into a process-based model, for either updating the relevant variables in the model, or adjusting
the initialization and parameterization of the model [16,17]. Wang et al. [18] employed a strategy of
assimilating observed soil moisture into the LPJ-DGVM model with an EnKF, and thus improved the
performance of carbon and water flux predictions. Mo et al. [19] optimized the parameters of the BEPS
model through assimilating the flux data into the model using the EnKF, and the results indicated that
this strategy could faithfully retrieve the seasonal the inter-annual variations in parameters. When
remote sensing data are used to update the state of simulated variables, the data error is assumed to
be acceptable for being propagated within the simulated system. Migliavacca et al. [20] developed a
ProsailH-BGC model and assimilated flux data and MODIS NDVI into the model, resulting in good
accuracy of daily and annual carbon flux predictions. Demarty et al. [21] assimilated MODIS LAI into
a process-based model, improving the performance of carbon flux predictions.

Nevertheless, a series of issues occurred in existing reports. Firstly, current model calibration
or parameter optimization neglected the requirement of spatial and temporal variation in the
ecophysiological parameters of the process-based model. Secondly, quantifying the uncertainties
in process-based models and remote sensing data remained difficult. The uncertainty caused by
models included systematic errors and parameter errors [17]. The uncertainty in the remote sensing
data stemmed from sensor error, cloud and aerosol contaminants, and inversion algorithms [17].

The technique used in this study offers a strategy of simulating forest carbon fluxes with temporal
and spatial continuity and making full use of time series remote sensing data, the optimized MOD_17
model, and the Biome-BGC model. The results were checked using EC measurements at the forest
flux tower, and global calibration of the model may be used on a local or regional scale for long-term
simulation in future studies. Specifically, the original MOD_17 model was optimized first, using
refined input data, specific parameters, and Global LAnd Surface Satellite (GLASS) f PAR at a Changbai
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Mountains forest site dominated by broadleaf Korean pine forest, during 2003 to 2007. Considering
the complicated ecophysiological parameters of Biome-BGC, a sensitivity analysis was conducted
using the Extend Fourier Amplitude Sensitivity Test (EFAST). The Biome-BGC model was then
calibrated by adjusting the most sensitive ecophysiological parameters to fit the simulated eight-day
GPP of the selected 10 broadleaf Korean pine forest plots representing different meteorological
conditions (i.e., temperature, precipitation) to those obtained from the optimized MOD_17 model.
The best agreement confirmed the high accuracy obtained by regenerating the values of sensitive
ecophysiological parameters. During the simulation, errors emanating from the model, the input data
and the observations were corrected by assimilating GLASS LAI into the calibrated Biome-BGC using
the EnKF. Finally, the simulated carbon fluxes were validated against EC measurements.

2. Study Area and Dataset

2.1. Changbai Mountains Forest Flux Site

The studied forest flux site (42˝24’N, 128˝28’E) is located in the Changbai Mountains of Jilin
province, and is one of the northernmost forest flux sites in China. The climate in the Changbai
Mountains is temperate and continental and is influenced by the monsoon. The annual average
precipitation is approximately 713 mm, and precipitation occurs mainly during the summer. The annual
average temperature is 3.6 ˝C, and the difference in temperature between summer and winter is large.
The elevation at the flux site is 738 m and the main forest type covering the site is temperate broadleaf
Korean pine forest, mainly including Pinus koraiensis, Tilia amurensis, and Fraxinus mandshurica [22].

2.2. Meteorological Data and EC Measurements

A measurement tower 62 m high was set up with seven levels of routine meteorological profile
measurement systems and an open path eddy covariance measurement system. Meteorological
data were continuously measured at the forest flux tower from 2003 to 2007. These data included
air temperature and relative humidity (Model HMP45C, Campbell Scientific Inc., Logan, UT,
USA), precipitation (Model 52203, Rm Young, Traverse City, MI, USA), wind speed and direction.
Photosynthesis active radiation (PAR) was measured with a quantum sensor (Model LI190SB, LICOR
Inc., Lincoln, NE, USA). Other meteorological data, including vapor pressure deficit (VPD), incoming
shortwave radiation (Srad) and day-length from sunrise to sunset were calculated with the MTCLIM
43 model based on the measured daily maximum and minimum temperature and precipitation [23,24].
For large scale simulations, DAYMET was used to lengthen the period of recording, and to interpolate
and extrapolate from daily meteorological data to grid estimates over large regions [25]. DAYMET
data contained daily maximum and minimum temperature, precipitation, VPD, Srad, and day-length
and were calculated on a 1-km grid over the Changbai Mountains.

The open path eddy covariance system is composed of a three-dimensional sonic anemometer
(CAST3, Campbell, KY, USA) and a fast responding open path infrared gas analyzer (LI-7500, LI-COR
Inc., Lincoln, NE, USA). The collection frequency for raw flux data was 10 Hz, and for climate data
0.5 Hz. The 30-min averaged values of every variable were calculated. Also a series of preprocessing
was conducted including outlier removal, coordinate rotation, time lag analysis, frequency response
calibration, and WPL correction. As the half-hour net CO2 exchange was calculated using EdiRe
software, the net ecosystem exchange (NEE) could be obtained. To estimate the night-time net CO2

exchange, the net CO2 exchange was regressed with the air or soil temperature using an exponential
function. The built model was then used to calculate the ecosystem respiration (ER). Next, NEE and
ER were summed to estimate the ecosystem gross primary productivity (GPP).

Five-year (from 2003 to 2007) carbon flux data and meteorological data were thus collected at the
forest flux site. Additionally, the latitude, topography, soil texture, and other background information
were collected at the forest site.
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2.3. Remote Sensing Data

Five years of eight-day GLASS LAI and f PAR products, provided by the Center for Global Change
Data Processing and Analysis of Beijing University, were used as input data to the remote sensing-based
model (http://glass-product.bnu.edu.cn/). The LAI products were obtained from time-series remote
sensing data using general regression neural networks (GRNNs). The GLASS f PAR products were
then generated from the GLASS LAI products, which were without missing values and spatially
complete [26]. To compare the GPP of the original and the optimized MOD_17 model, MOD 15A2 and
MOD17A2 products were downloaded from NASA LAADS (http://ladsweb.nascom.nasa.gov). The
MOD15A2 products included eight-day LAI and f PAR maximum value composite (MVC) products,
derived directly from MODIS Reflectance and ancillary data (e.g., land cover type, background). The
MOD17A2 simulated eight-day composites of the GPP and annual NPP.

All the GLASS and MODIS products have a resolution of 1 km. The standard preprocessing
procedure for the production of these original data includes georeferencing of the original images
using the nearest neighbour algorithm.

The elevation of the forest flux site was obtained from ASTER GDEM. Ensuing, slope and aspect
were extracted. The soil map was provided by the Data Center for Resources and Environmental
Sciences of the Chinese Academy of Sciences.

3. Methodology

The methodology contains four steps. Firstly, the original MOD_17 model was optimized using
meteorological data, calibrated maximum light use efficiency (LUEmax) and GLASS f PAR at the forest
flux site. Secondly, a sensitivity analysis of the Biome-BGC model was conducted using EFAST, and
the most sensitive parameters were retained for the next calibration. Thirdly, the sensitive parameters
were calibrated for optimal incorporation into the model. Finally, the eight-day GLASS LAI products
were assimilated into Biome-BGC model using the EnKF. The improved performance of the GPP is
compared with EC measurements. Figure 1 represents the overall methodology in this study, and
details are given in the subsequent sections.
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3.1. The MOD_17 Model

The MOD_17 model is a light-use-efficiency model based on remote sensing [27] and is driven by
LUEmax, a scalar of the eight-day vapor-pressed deficit (VPD), a scalar of the eight-day minimum air
temperature (Tmin), and absorbed photosynthetically active radiation (APAR, MJ day-1). Therefore,
GPP is calculated as follows:

GPP “ LUEmaxˆ fpTminqˆ fpVPDqˆAPAR, (1)

where LUEmax is the potential maximum LUE without environmental stress [28]; and APAR is derived
from PAR multiplied by f PAR.

The MOD_17 model requires forcing data from the following three sources: (1) biome specific
parameters such as LUEmax; (2) meteorological data (i.e., PAR, Tmin, and VPD); and (3) f PAR. In the
past, MODIS GPP products have been generated using data from MODIS surface reflectance with
information regarding vegetation phenology, the canopy absorbance of f PAR, and climate data from
the NASA Data Assimilation Office (DAO) climate model. Specifically, for estimating GPP, biome
specific parameters (LUEmax) are assigned based on an eight-class MODIS land cover classification
product (with a 1 km resolution) and the associated Biome Parameters Look Up Table (BPLUT) [29–32].
Using scalars (0–1) for Tmin and VPD, GPP is then calculated [33].

MODIS GPP products have been evaluated for different ecosystems in various studies [34–39].
Uncertainties in the original products included those from biome-specific parameters, input data, and
vegetation maps [40]. Specifically, coarse-scale meteorological data (e.g., Tmin, VPD) were required for
DAO climate data [41]; and errors in radiometry data could lead to the miscalculation of f PAR.

3.2. The Biome-BGC Model

Biome-BGC is a process-based model that can depict forest processes (photosynthesis, respiration,
carbon, nitrogen, and hydrological cycle). It is developed from the FOREST-BGC model and relies on
the Farquhar photosynthesis routine to calculate GPP for the illuminated and shaded foliage [42,43].
The autotrophic respiration was separated into the maintenance respiration and growth respiration.
Specifically, the former is calculated as a function of the nitrogen content and temperature of the tissues,
and the latter is computed as a function of the amount of carbon allocated to the different pools [44].
The leaf onset and offset day is also described in the phenological module of Biome-BGC.

Biome-BGC firstly operates through a spin-up run to find a quasi-equilibrium condition with the
local environment. It requires three types of driving data: (1) daily meteorological data (maximum and
minimum temperature, precipitation, VPD, solar radiation); (2) site information (latitude, topography,
and soil texture); (3) ecophysiological parameters, including the ratio of carbon to nitrogen of leaf, fine
root and coarse root, fraction of leaf N in Rubisco, and maximum stomatal conductance.

The most recent version (ver. 4.2) of Biome-BGC was used in this study, including the complete
biome types (e.g., evergreen needle leaf forest, evergreen broadleaf forest, shrub, grass). However, the
settings for different types must be modified to adapt to the local environment.

3.3. Sensitivity Analysis

3.3.1. Extend Fourier Amplitude Sensitivity Test (EFAST)

A sensitivity analysis of the Biome-BGC model was necessary to quantify the effects of multiple
ecophysiological parameters on the model outputs. The forest flux site was mainly dominated by
broadleaf Korean pine, so ecophysiological parameters of broadleaf Korean pine were used in a
weighted average of the needle leaf forest (40%–50%) and broadleaf forest (50%–60%) based on the
component percentage according to the forestry investigation.

EFAST was applied to analyze the sensitivity of the carbon flux to ecophysiological parameters in
this study. This method was widely used to estimate the expected value and variance of the output
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and the contribution of the input parameters to uncertainty and sensitivity of the outputs [45]. The
output Y of a model simulator can be calculated as follows:

Y “ fpXq “ fpX1, X2, . . . , Xnq, (2)

where Xi (i = 1,2, . . . ,n) represents each input parameter, which has a range of variation to show its
uncertainty. The total variance of the model output (VY) is:

VY “
ÿ

i

Vi `
ÿ

i

ÿ

jąi

Vij `
ÿ

i

ÿ

jąi

ÿ

kąj

Vijk ` ...`V1,2,...,n, (3)

where Vi is the first order conditional variance of Y given that the input Xi has a fixed value xi. Vij is
the second order conditional variance when Xi = xi and Xij = xij. Vijk and V1,2, . . . ,n are the higher order
variance of interaction among multiple variables.

The first order sensitivity index, Si, is defined as, Si = Vi/VY. This quantifies the effect of varying
Xi alone, but averaged over variation in other input parameters. The value of Si is between 0 and 1.
The second and higher order sensitivity indices are: Sij = Vij/VY and Sijk = Vijk/VY. The total order
sensitivity index (St) was introduced as the sum of all the above indices, including the contributions of
individual parameters and the interactions between a specific parameter and other parameters.

3.3.2. Sensitivity Analysis on Biome-BGC Model

Based on the EFAST (SimLab 2.2), 5000 pseudo values were generated for each parameter
according to the probability distribution function (PDF). We used the contributions of the 25 crucial
ecophysiological parameters to the five-year average GPP to measure the sensitivity of the model
to parameters.

The uncertainty information of the 25 crucial parameters for broadleaf Korean pine, characterized
by PDF, is listed in Table 1. Defining the PDF for each crucial parameter was the first step for EFAST,
and the variability of the parameters was mainly obtained from White et al. [10].

Table 1. Distribution of Biome-BGC crucial ecophysiological parameters [10].

Parameter Description Unit Distribution a

FRC:LC New fine C: new leaf C kgC (kgC)´1 U(0.53, 6.5)
SC:LC New stem C: new leaf C kgC (kgC)´1 U(0.62, 4.9)

LWC:TWC New live wood C: new total wood C kgC (kgC)´1 U(0.028, 0.189)
CRC:SC New croot C: new stem C kgC (kgC)´1 U(0.12, 0.7)

CGP Current growth proportion Prop. U(0.25, 0.75)
C:Nleaf C:N of leaves kgC (kgN)´1 N(34.5, 5.4)
C:Nlit C:N of leaf litter kgC (kgN)´1 N(55, 16)
C:Nfr C:N of fine root kgC (kgN)´1 N(48, 15)

C:Ndw C:N of dead wood kgC (kgN)´1 U(300, 800)
Lcel Leaf litter cellulose proportion % N(0.2, 0.01)
Llig Leaf litter lignin proportion % N(0.18, 0.0008)

FRcel Fine root cellulose proportion % U(0.2, 0.6)
FRlig Fine root lignin proportion % U(0.1, 0.5)

DWlig Dead wood lignin proportion % N(0.23, 0.0049)
Wint Canopy water interception coefficient LAI´1day´1 N(0.045, 0.012)

K Canopy light extinction coefficient Unitless N(0.4, 0.007)
LAIall:proj All-sided to projected leaf area ratio LAI LAI´1 U(2.3, 3.14)

SLA Canopy average specific leaf area m2 (kgC)´1 N(25, 10)
FLNR Fraction of leaf N in Rubisco Unitless U(0.01, 1)
Gmax Maximum stomatal conductance ms´1 N(0.005, 0.0007)
Gbl Boundary layer conductance ms´1 N(0.03, 0.12)

LWPi Leaf water potential: start of conductance reduction Mpa U(´1.11, ´0.21)
LWPf Leaf water potential: complete conductance reduction Mpa U(´5, ´1)
VPDi Vapor pressure deficit: start of conductance reduction Pa U(500, 1000)
VPDf Vapor pressure deficit: complete conductance reduction Pa U(2000, 6000)

a U(min, max): uniform distribution, N (mean, standard deviation): normal distribution.
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3.4. Model Incorporation

Incorporation of the optimized MOD_17 and Biome-BGC model was used to make full use of
space-continuity of the remote sensing-based model and the time-continuity characteristics of the
process-based model and calibrate the multi-parameters of the process-based model.

The extremely heterogeneous forest landscape (e.g., distribution, age, height) and environmental
conditions (e.g., location, weather, terrain) of the study site made it necessary to globally calibrate the
parameters (e.g., ecophysiological parameters) of the Biome-BGC model [10]. Site parameters, such as
vegetation type, soil properties, and terrain information, were derived from vegetation and soil type
maps, and digital elevation models (DEMs). The ecophysiological parameters for the dominant tree
species and the surrounding atmospheric parameters of the study area were difficult to determine due
to a lack of prior knowledge.

For this study, the incorporation of the optimized MOD_17 and Biome-BGC model was performed
by calibrating sensitive parameters of the Biome-BGC model. Eight-day GPP estimates over five years
(2003–2007) during the growing seasons were computed for the 10 selected plots by running the
optimized MOD_17. The estimates were then used as reference data for calibrating the Biome-BGC
model configurations. As a result, a total of 1150 (10 plots ˆ 23 layers/plot/year ˆ 5 years) GPPs
from the Biome-BGC model were plotted against the reference values obtained from the optimized
MOD_17 model. When a best fit was found, the optimal configuration for the Biome-BGC model
was established.

3.5. The Ensemble Kalman Filter Scheme

Data assimilation was designed to create the best analysis of the state of the system and find the
optimal model performance, most consistent with observations. EnKF is a sequential data assimilation
method and a Monte Carlo based variant of the Kalman filter [15,17], able to integrate multi-source
observations sequentially in time. The standard analysis of EnKF can be expressed as:

Aa “ A ` PeHTpHPeHT ` Req
´1pD´HAq, (4)

where Aa and A are the analysis matrix and forecast matrix of state variable ensembles, respectively.
Pe and Re represent the covariance matrixes of state variables and observation variables, respectively.
H is the observation operator, and D is the observation vector. D-HA denotes the innovation vectors.

In this study, LAI is considered the state variable that is directly assimilated into Biome-BGC. The
model state and external observational data share the same variable. Consequently, the observation
operator is a unit matrix, as only the remote sensing data are involved.

In Biome-BGC, LAI is a key state variable reflecting vegetation growth and development, and is
calculated as follows:

LAI “ Cleafˆ SLA, (5)

where Cleaf (kg¨m´2¨C) is the carbon state variable and SLA is the special leaf area (m2¨ kg´1¨C). Leaf
carbon content in current time (Cleaf¨ t) is summed by the previous leaf carbon content (Cleaf¨ t´1) and
the change in leaf carbon content (∆Cleaf¨ t). Once the LAI observations were assimilated into the model,
LAI would convert into the leaf carbon content through Equation (5), with the leaf carbon being crucial
for photosynthetic assimilation and allocation.

4. Results

4.1. Optimization of MOD_17 Model

The original MODIS GPP products were validated against the EC measurements at the forest flux
site. The results showed that the original GPPs (GPP_Default in Figure 2a,b) contained significant
underestimation compared to the EC measurements, especially in winter and summer (Figure 2b,
R2 = 0.65, RMSE = 26.510 gC¨m´2¨ (8d)´1). Similar underestimation of a forest flux site was also
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reported by Wang et al. [46]. To analyze the impact surrounding the input of parameters collected
from three sources (meteorological, biome-specific, and f PAR parameters) on model behavior, three
optimized simulations were designed to improve the performance of the GPP.
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Figure 2. Seasonal performances (a) and comparisons (b) of eight-day GPPs obtained from the original
products (GPP_Default), three simulations (GPP_MOD1, GPP_MOD2, and GPP_MOD3), and EC
measurements (GPP_EC) at Changbai Mountains forest flux site between 2003 and 2007.

The first experiment (GPP_MOD1) was conducted using DAYMET data, including Tmin, VPD,
and PAR, as well as the default LUEmax and MODIS f PAR. As the blue line shows in Figure 2a,
the simulated GPPs improved significantly, especially during growing seasons, even though some
underestimation still persisted. Better results were obtained in the GPP_MOD1 experiment regarding
R2 and RMSE (Figure 2b, R2 = 0.87, RMSE = 16.835 gC¨m´2¨ (8d)´1). A further optimization
(GPP_MOD2) was performed using the DAYMET data, as well as calibrated LUEmax (calculated
from the measured GPP and APAR during growing seasons), and MODIS f APR. The calibrated value
of LUEmax, 1.658 gC¨MJ´1 APAR, was much greater than the default value obtained from the BPLUT
(1.116 gC¨MJ´1 APAR). As shown in Figure 2b, the good accordance obtained in the GPP_MOD2
experiment was supported by the R2 and RMSE (R2 = 0.89, RMSE = 12.941 gC¨m´2¨ (8d)´1).
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To mitigate the influence of noise (e.g., clouds, aerosols, water vapor) in the original MODIS f PAR
products on GPP values, the GLASS f PAR products were introduced into the GPP_MOD3 simulation.
The original MODIS f PAR products contained some serious noise and exhibited dramatic fluctuations
for the forest flux site. In contrast, the temporal profiles for the GLASS f PAR performed relatively
smoothly during 2003–2007. Generally, GPP simulations from the GPP_MOD3 yielded the highest
agreement with EC measurements (Figure 2b, R2 = 0.93, RMSE = 8.736 gC¨m´2¨ (8d)´1), therefore, the
simulations of the selected 10 plots were conducted by means of GPP_MOD3 as next calibration of the
Biome-BGC model.

4.2. Sensitivity Analysis of Biome-BGC

The results from the EFAST analysis indicated that the contributions by the total-sensitivity index
were higher than those by the first-order-sensitivity index, which means that the effects of interactions
among the 25 parameters on the model output were much more significant than the effects of the
individual parameters. Specifically, the annual mean GPP was most sensitive to Fraction of leaf N
in Rubisco (FLNR), which is greatest for both the first order sensitivity index and the total order
sensitivity index. Followed by FLNR, the total contributions of canopy average specific leaf area (SLA),
maximum stomatal conductance (Gmax), and the canopy water interception coefficient (Wint) were 0.35,
0.34, and 0.27, respectively. Together they formed the most important ecophysiological parameters
to the model predictions. Some parameters exhibited only small (St < 0.1) or negligible (St < 0.05 or
St « 0) main and interaction effects on the annual mean GPP.

The ecophysiological parameters played an important role in the model simulation, and the
sensitive parameters listed in Figure 3 were the most important contributors to the annual mean
GPP. Therefore, the sensitivity analysis presented an efficient way of reducing the complexity of
calibrating the Biome-BGC model by only considering the crucial parameters obtained from the
sensitivity analysis.
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4.3. Calibration of Biome-BGC Model

A key determinant for the model to apply in a specific landscape or region is the parameterization,
especially for the complicated process-based model. Here a preliminary calibration of the Biome-BGC
model was conducted by incorporating the optimized MOD_17 model. Calibration was performed by
adjusting the eight-day GPP outputs for the growing seasons from the Biome-BGC model in order
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to fit those obtained from the optimized MOD_17 model for the 10 selected forest plots. Sensitive
(St > 0.1) parameters were calibrated accordingly once the best agreement was determined. During
calibration, the sensitive parameters varied by 10% in both directions from the mean values reported
by White et al. [10]. A scatter plot (Figure 4) indicates optimal agreement between growing season
GPP values obtained from the optimized MOD_17 model and those from the calibrated Biome-BGC
model (R2 = 0.84, RMSE = 10.185 gC¨m´2¨ (8d)´1).Remote Sens. 2016, 8, 567 10 of 16 
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4.4. Carbon Fluxes from the Calibrated and Assimilated Model

Five years of GLASS LAI products were assimilated into the calibrated Biome-BGC model using
the EnKF with an assimilation window of eight days. When the size of the ensemble was larger than
100, the R2 and RMSE between predicted GPP and EC measurements reached approximately stable
values. The errors (from the model and GLASS LAI) were determined through LAI sites all over the
world reported by Xiao et al. [47]. The error of GLASS LAI products ranged from ´0.008 to 0.12. Then
the variance (0.032) was calculated and used in the EnKF algorithm. The model error was estimated at
the same time, and the value ranged from ´0.32 to 0.44, with a variance of 0.616 in EnKF.

Figure 5 shows the comparison between GLASS LAI and simulated LAI, depicted as: LAI_sim
(LAI obtained from the calibrated Biome-BGC without data assimilation) and LAI_DA (LAI simulated
by the assimilated Biome-BGC model using the EnKF). It is noticeable that LAI_sim generally
underestimated LAI compared with the observations, especially in growing seasons. LAI_sim
increased rapidly at the beginning of the growing season and the values were higher than the remote
sensing observations at the end of the growing season. The LAI_DA agreed well with the GLASS LAI,
except for a few fluctuations in winter.

The measured GPP profile from 2003 to 2007 is shown in Figure 6a, together with those obtained
from the default (GPP_Default), calibrated (GPP_Calibrated) and assimilated Biome-BGC model
(GPP_DA). The original model was incapable of simulating GPP behavior, especially in summer and
winter (Figure 6b, R2 = 0.72, RMSE = 2.419 gC¨m´2¨d´1). After calibration, the underestimation
during summer had significantly diminished by adjusting the key parameters (FLNR, SLA, Gmax,
etc.), with R2 = 0.87, and RMSE = 1.583 gC¨m´2¨d´1 (Figure 6c). However, some fluctuations still
remained, especially in spring. Therefore the time series GLASS LAI was assimilated into Biome-BGC.
The LAI was calculated from leaf carbon in Biome-BGC, and the assimilation directly affected the
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photosynthesis, thus affecting the performance of GPP. Figure 6d shows that GPPs from the assimilated
Biome-BGC agreed well with the EC measurements.
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from the EC measurement and calibrated Biome-BGC; (d) comparison and validation of GPP values
from the EC measurement and assimilated Biome-BGC.

5. Discussion

GPP estimates obtained from the optimized MOD_17 model performed well in this study, and
thus provided the possibility of incorporating the remote sensing-based model with the process-based
model (Biome-BGC) to acquire the carbon fluxes with temporal and spatial continuity. Furthermore,
this strategy provided the option of circumventing the problem of scarce field data describing the
various forest processes in specific biomes. Previous investigations have applied this method in a
Mediterranean forest ecosystem [44,48,49], but the errors caused by the uncertainties in the remote
sensing-based model would there be propagated to the next calibration and the predictions of carbon
fluxes; the calibration of the parameters mainly focused on the parameters related to summer drought
without considering exhaustive sensitivity analysis of other crucial parameters or a global calibration.
Additionally, many studies concentrating on the calibration of Biome-BGC using field measurements
(e.g., dendrochronological data, eddy covariance measurements) were carried out without considering
temporal continuity or spatial heterogeneity based on reliable remote sensing data [50,51].
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The results of sensitivity analysis showed that the total sensitivity indices of the crucial parameters
were the main contributors to the annual mean GPP. This means that one parameter may enlarge the
effects of other parameters [52]. The interaction effects of FLNR showed the highest influence on the
annual mean GPP. FLNR controls the carboxylation capacity (Vcmax), which is the first step in the fixing
of CO2 by the ribulose-1, 5-biphosphate protein [53]. Vcmax is a state variable in Biome-BGC with
high spatial variability, so it is difficult to acquire [54]. The SLA also made contributions to the annual
mean GPP by affecting the LAI. Gmax controlled the leaf conductance and was crucial for regulating
water loss and carbon assimilation. The Wint coefficient determined the amount of precipitation
intercepted by the canopy, which in turn controlled the amount of precipitation infiltrating [50]. With
the interactions between the sensitive parameters being so extensive, the correlation between the input
parameters should be further considered in a comprehensive calibration of the Biome-BGC. EnKF
sequential data assimilation is an efficient way to improve the simulated carbon fluxes, capable of
tracing the seasonal estimates of model outputs. As a key indicator of vegetation growth, the time
series GLASS LAI was assimilated into the Biome-BGC model. These products of higher quality than
the MODIS LAI were validated by Xiao et al. [47] at sites worldwide. The estimates of errors from
GLASS LAI and model structure were important to the EnKF algorithm as the errors determined the
extent to which the model predictions could be corrected. Considering the drawbacks of Biome-BGC
in describing the water cycle [55], it is necessary to assimilate a soil moisture parameter into the
model to improve the performance of evapotranspiration and soil moisture. The assimilation of
long-term remote sensing observations (e.g., LAI, soil moisture) into process-based models could
provide information on forest disturbance, an avenue that needs to be explored in further work.

The strategy explored in this study could be applied in long-term simulations of forest carbon
fluxes over large regions and even facilitate analyzing the response of carbon fluxes to climatic variation.
The reliability of the strategy has recently been proved in our study conducting long-term (between
2000 and 2012) validation of regional net primary productivity using dendrochronological data over
the Qilian Mountains (R2 = 0.73, RMSE = 24.46 gC¨m´2¨ a´1) [56]. However, annual estimates of
forest carbon fluxes still have limitations, some of which could be improved by better data or better
understanding of carbon fluxes using optimized methods. Long-term carbon storage will be influenced
by different kinds of forest disturbances (e.g., afforestation, deforestation, tree mortality, wildfire).
Therefore, research on how carbon fluxes relate to forest disturbances, land management, and soil
conditions should be considered in long-term simulations. The five-yearly national forest inventories
conducted in China could provide additional information on natural and human disturbance.

6. Conclusions

The optimization of the MOD_17 model using refined input data improved the forest GPP
behavior compared with applying the original MODIS model driven by default parameters. The
optimized model was then incorporated in the Biome-BGC model exploiting the powers of both
models for the simulation of forest carbon fluxes. The incorporation is also beneficial for the calibration
of ecophysiological parameters and can make Biome-BGC more resistant to the impact of environment
variability. The key ecophysiological parameters were determined with a sensitivity analysis on
Biome-BGC using EFAST, a global analysis method that could provide the first order sensitivity index
and the total order sensitivity index of the parameters to model predictions. The results demonstrated
that FLNR, SLA, and FRC:LC were the parameters most sensitive for the model output.

A data assimilation method using EnKF has been designed to improve the simulation of carbon
fluxes and reduce the errors based on time series remote sensing observations (GLASS LAI). This
method takes errors in observations, input data and model structure into account to ensure that the
output behavior is consistent with the observations. Eight-day GLASS LAI products were assimilated
into the calibrated Biome-BGC model from 2003 to 2007 at a Changbai Mountains forest flux site to
track the model over time. It was found that GPP behavior was smoothed by the EnKF, especially in
spring, with the performance generally improving significantly (R2 = 0.92, RMSE = 1.261 gC¨m´2¨d´1).
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With the model calibration and data assimilation, GPP behavior showed good agreement
with EC measurements at the forest flux site, and it is possible to simulate other forest processes
(e.g., evapotranspiration, respiration) based on this strategy as well, both on a local and a regional scale.
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